Identification, GC-MS analysis and antibacterial activity of endophytic fungi isolated from Trigonella foenum-graecum leaf

Authors

DOI:

https://doi.org/10.14719/pst.2735

Keywords:

Antibacterial activity, endophytic fungi, GC-MS analysis, Trigonella foenum-graecum

Abstract

The present study was designed to identify the endophytic fungi isolated from leaves of Trigonella foenum-graecum (local name: Fenugreek or Methi) from Bangladesh, followed by a GC-MS analysis of fungal culture filtrates to explore major components present in the ethyl acetate extract and finally to assess their putative antibacterial activity. Two pure fungal extracts, entitled TFLE-1 and TFLE-2 were isolated from the leaf of T. foenum-graecum followed by extraction with ethyl acetate. The fungal strains, TFLE-1 and TFLE-2 were identified as Fusarium lichenicola and Trichoderma euskadiense respectively as per microscopic and molecular identification. GC-MS analysis revealed the presence of a total of 47 bioactive compounds among which 2-((4-methylpentan-2-yloxy)carbonyl)benzoic acid (15.33%), pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) (12.42%), benzeneethanamine, 4-benzyloxy-2-fluoro-beta-hydroxy-5-methoxy (3.45%) for TFLE-1 and pentatriacontane (8.61%), diethyl trisulfide (2.90%) and benzene,3-heptynyl (2.78%) for TFLE-2 were the major ones. On antibacterial activity, by disc-diffusion method, the fungal strain T. euskadiense (code: TFLE-2) showed prominent antibacterial activity against both gram (+) and gram (-) multiple-resistant bacteria while compared to the standard drug kanamycin; values were found statistically significant (p?0.05). The findings of the study indicated presence of potentially bioactive endophytic fungal extracts obtained from the leaves of T. foenum-graecum cultivated in Bangladesh.

Downloads

Download data is not yet available.

References

Hills AR, Mahmood S. Historical background, origin, distribution and economic importance of fenugreek. In: Nayeem M, Aftab T, Khan MAM (eds) Fenugreek: Biology and Applications. Springer. 2021;p.3-11. https://doi.org/10.1007/978-981-16-1197-1_1

Meghwal M, Goswami TK. A review on the functional properties, nutritional content, medicinal utilization and potential application of fenugreek. J Food Process Technol. 2012;3(9):1-10. http://dx.doi.org/10.4172/2157-7110.1000181

Mawahib EME, Ammar MAA, Badr EAES. Antimicrobial activities of phytochemical screening of callus and seeds extracts of fenugreek (Trigonella foenum-graceum). Int J Curr Microbiol Appl Sci. 2015;4(2):147-57. ISSN: 2319-7706

Singh P, Bajpai V, Gond V, Kumar A, Tadigoppula N, Kumar B. Determination of bioactive compounds of fenugreek (Trigonella foenum-graceum) seeds using LC-MS techniques. In: Jain M, Garg R (eds.) Legume Genomics. Berlin/Heidelberg, Germany: Springer. 2020;p.377-93. https://doi.org/10.1007/978-1-0716-0235-5_21

Benayad Z, Cordoves CG, Es-Safi NE. Characterization of flavonoid glycosides from fenugreek (Trigonella foenumgraceum) crude seeds by HPLC–DAD–ESI/MS analysis. Int J Mol Sci. 2014;15:20668-685. https://doi.org/10.3390/ijms151120668

Akbari S, Abdurahman NH, Yunus RM, Alara OR, Abayomi OO. Extraction, characterization and antioxidant activity of fenugreek (Trigonella foenum-graecum) seed oil. Mater Sci Energy Technol. 2019;2:349-55. https://doi.org/10.1016/j.mset.2019.12.001

Certini G, Scalenghe R. The crucial interactions between climate and soil. Sci Total Environ. 2023;856:article no.159169. https://doi.org/10.1016/j.scitotenv.2023.159169.

Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629-61. https://doi.org/10.1021/acs.jnatprod.5b01055

Khan IH, Javaid A, Ahmed D. Trichoderma viride controls Macrophomina phaseolina through its DNA disintegration and production of antifungal compounds. Int J Agric Biol. 2021;25(4):888-94. https://doi.org/10.17957/IJAB/15.1743

Dar RA, Rather SA, Mushtaq S, Qazi PH. Purification and characterization of endophytic fungal strains from four different high value medicinal plants of Kashmir valley. Int J Phytopharm. 2015;5(1):8-11. https://www.researchgate.net/publication/307708874

Khan IH, Javaid A. In vitro screening of Aspergillus spp. for their biocontrol potential against Macrophomina phaseolina. Plant Pathol J. 2021;103(4):1195-205. https://doi.org/10.1007/s42161-021-00865-7

Khan IH, Javaid A. DNA cleavage of the fungal pathogen and production of antifungal compounds are the possible mechanisms of action of biocontrol agent Penicillium italicum against Macrophomina phaseolina. Mycol. 2022;114(1):24-34. https://doi.org/10.1080/00275514.2021.1990627

Khan IH, Javaid A. Antagonistic activity of Aspergillus versicolor against Macrophomina phaseolina. Braz J Microbiol. 2022;53(3):1613-21. https://doi.org/10.1007/s42770-022-00782-6

Khan IH, Javaid A. In vitro biocontrol potential of Trichoderma pseudokoningii against Macrophomina phaseolina. Int J Agric Biol. 2020;24(4):730-36. https://www.researchgate.net/publication/343682866

Amby DB, Thuy TT, Ho BD, Kosawang C, Son TB, Jørgensen HJ. First report of Fusarium lichenicola as a causal agent of fruit rot in pomelo (Citrus maxima). Plant Dis. 2015;99(9):1278. https:// doi.org/ 10.1094/PDIS-10-14-1017-PDN

Halim, I, Singh P, Sarfraz A, Kokkayil P, Pati, BK, Thakuria, B et al. Fungal keratitis due to Fusarium lichenicola: A case report and global review of Fusarium lichenicola keratitis. J Fungi. 2021;7:889. https://doi.org/10.3390/ jof7110889

Punja ZK, Roberts A. The Fusarium solani species complex infecting cannabis (Cannabis sativa L., marijuana) plants and a first report of Fusarium (Cylindrocarpon) lichenicola causing root and crown rot. Can J Plant Pathol. 2021;43(4):567-81. https://doi.org/10.1080/07060661.2020.1866672

Jaklitsch WM, Voglmayr H. Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Stud Mycol. 2015;80:1-87. https://doi.org/10.1016/j.simyco.2014.11.001

Hallmann J, Berg G, Schulz B. Isolation procedures for endophytic microorganisms. In: Shulz B, Boyle C, Sieber T, editors. Microbial Root Endophyte; Berlin, Heidelberg, New York: Springer. 2006;p.299-314. https://link.springer.com/chapter/10.1007/3-540-33526-9

Barnett HL, Hunter BB. Illustrated genera of imperfect fungi. 3rd ed. Minneapolis: Burgess Publishing Co. 1972. https://www.jstor.org/stable/25824597

White TJ, Bruns TD, Lee SB, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ. (eds.), PCR Protocols: A Guide to Methods and Applications, Academic Press, New York. 315-22. http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1

Rahman MS, Riad H, Forhad KS, Shaikh MR, Subbroto KS, Jongki H et al. Insights into the in vitro germicidal activities of Acalypha indica. Anal Sci Technol. 2017;30(1):26-31. https://doi.org/10.5806/AST.2017.30.1.26

Jorgensen JH, Turnidge JD. Susceptibility test methods: Dilution and disk diffusion methods. In: Jorgensen JH, Carroll KC, Funke G, Pfaller MA, Landry ML, Richter SS, Warnock DW, Richter SS, Patel JB. (eds.). Manual of Clinical Microbiology, 11th Edition, American Society of Microbiology. 1253-73. https://doi.org/10.1128/9781555817381.ch71

Gams W, Bissett J. Morphology and identification of Trichoderma. In: Kubicek CP and Harman GE. (eds.). Trichoderma and Gliocladium: Basic Biology, Taxonomy and Genetics. London: Taylor & Francis Ltd. 2002;p.3-31. ISBN 0-7484-0805-3

Moussaoui F, Zellagui A, Segueni N, Touil A, Rhouati S. Flavonoid constituents from Algerian Launaea resedifolia (O.K.) and their antimicrobial activity. Rec Nat Prod. 2010;4(1):91-95. www.acgpubs.org/RNP; EISSN: 1307-6167

Pavithra PS, Janani VS, Charumathi KH, Indumathy R, Sirisha P, Rama SV. Antibacterial activity of plants used in Indian herbal medicine. Int J Green Pharm. 2010;4(1):22-28. https://doi.org/10.4103/0973-8258.62161

Okoro IO, Auguster O, Edith OA. Antioxidant and antimicrobial activities of polyphenols from ethnomedicinal plants of Nigeria. Afr J Biotechnol. 2010;9(20):2989-93. http://www.academicjournals.org/AJB

Ebana RU, Madunagu BE, Ekpe ED, Otung IN. Microbiological exploitation of cardiac glycosides and alkaloids from Garcinia kola, Borreria ocymoides, Kola nitida and Citrus aurantifolia. J Appl Bacteriol. 1991;71:398-401. https://doi.org/10.1111/j.1365-2672.1991.tb03807.x

Krasniqi I, Behrami A, Demaku S, Ismail Krasniqi. Antibacterial activity of coumarine derivatives synthesized from 4-hydroxychromen-2-one and comparison with standard drug. J Chem Pharm Res. 2015;7(8):1041-45. https://www.researchgate.net/publication/281824082

Colak SM, Yapici BM, Yapici AN. Determination of antimicrobial activity of tannic acid in pickling process. Rom Biotechnol Lett. 2010;15(3):5325-30. https://www.researchgate.net/publication/266178418

Faizi S, Khan RA, Azher S, Khan SA, Taussef S, Ahmad A. New antimicrobial alkaloids from the root of Polyalthia longifolia var. Pendula. Planta Med. 2003;69(4):350-55. https://doi.org/10.1055/s-2003-38883

Gonzaga WA, Weber AD, Giacomelli SR, Dalcol II, Hoelzel SCS, Morel AF. Antibacterial alkaloids from Zanthoxylum rhoifolium. Planta Med. 2003;69(4):371-74. https://doi.org/10.1055/s-2003-38882

Agoramoorthy G, Chandrasekaran M, Venkatesalu V, Hsu MJ. Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove from India. Braz J Microbiol. 2007;38:739-42. https://doi.org/10.1590/S1517-83822007000400028

Hussain MS, Rahman MA, Fareed S, Ansari S, Ahmad I, Mohd. S. Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci. 2012;4(1):10-20. https://doi.org/10.4103/0975-7406.92725

Leonidah KO, Jacob OM, Armelle TM, Simplice BT, Jackson AS, Igor KV et al. Antibacterial activities and structure-activity relationships of a panel of 48 compounds from Kenyan plants against multidrug resistant phenotypes. Springerplus. 2016;5(1):901. https://doi.org/10.1186/s40064-016-2599-1

Hudzicki J. Kirby-bauer disk diffusion susceptibility test protocol. ASM. 2009;p. 1-23. https://asm.org/getattachment/2594ce26-bd44-47f6-8287-0657aa9185ad/

Tayung K, Barik BP, Jha DK, Deka DC. Identification and characterization of antimicrobial metabolite from an endophytic fungus, Fusarium solani isolated from bark of Himalayan yew. Mycosphere. 2011;2(3):203-13. https://www.researchgate.net/publication/285150885

Sim JH, Chai-Hoon K, Learn-Han L, Yoke-Kqueen C. Molecular diversity of fungal endophytes isolated from Garcinia mangostana and Garcinia parvifolia. J Microbiol Biotechnol. 2010;20(4):651-58. https://doi.org/10.4014/jmb.0909.09030

Musavi SF, Balakrishnan RJ. Biodiversity, antimicrobial potential and phylogenetic placement of an endophytic Fusarium oxysporum NFX 06 isolated from Nothapodytes foetida. J Mycol. 2013;1-10. Article ID 172056. http://dx.doi.org/10.1155/2013/172056

Toghueo RMK, Zeuko’o ME, Mbekou KMI, Jesus MA-e-C, Ngo MN, Eke P et al. Antimicrobial and antiradical activities of ethyl acetate extracts from endophytic fungi isolated from Cameroonian medicinal plants. J Med Plants Stud. 2016;4(4):290-95. ISSN 2320-3862

Moron LS, Lim YW, Dela Cruz TEE. Antimicrobial activities of crude culture extracts from mangrove fungal endophytes collected in Luzon Island, Philippines. Philipp Sci Lett. 2018;11:28-36. https://www.researchgate.net/publication/326587639

Hamzah T, Lee S, Hidayat A, Terhem R, Faridah-Hanum I, Mohamed R. Diversity and characterization of endophytic fungi isolated from the tropical mangrove species, Rhizophora mucronata and identification of potential antagonists against the soil-borne fungus, Fusarium solani. Front Microbiol. 2018;9:1707. https://doi.org/10.3389/fmicb.2018.01707

Hussain H, Drogis KH, Al-Harrasi A, Hassan Z, Shah A, Rana UA et al. Antimicrobial constituents from endophytic fungus Fusarium sp. Asian Pac J Trop Dis. 2015;5(3):186-89. https://doi.org/10.1016/S2222-1808(14)60650-2

Zhou G, Qiao L, Zhang X, Sun C, Che Q, Zhang G et al. Fusaricates H-K and fusolanones A-B from a mangrove endophytic fungus Fusarium solani HDN15-410. Phytochem. 2019;158:13-19. https://doi.org/10.1016/j.phytochem.2018.10.035

Sondergaard TE, Fredborg M, Christensen AMO, Damsgaard SK, Kramer NF, Giese H et al. Fast screening of antibacterial compounds from Fusaria. Toxins. 2016;8(12):355. https://doi.org/10.3390/toxins8120355

Nonaka K, Chiba T, Suga T, Asami Y, Iwatsuki M, Masuma R et al. Coculnol, a new penicillic acid produced by a coculture of Fusarium solani FKI-6853 and Talaromyces sp. FKA-65. J Antibiot. 2015;68(8):530-32. https://doi.org/10.1038/ja.2015.15

Supratman U, Hirai N, Sato S, Watanabe K, Malik A, Annas S et al. New naphthoquinone derivatives from Fusarium napiforme of a mangrove plant. Nat Prod Res. 2019;35(9):1406-12. https://doi.org/10.1080/14786419.2019.1650358

Sibero MT, Zhou T, Fukaya K, Urabe D, Radjasa OKK, Sabdono A et al. Two new aromatic polyketides from a sponge-derived Fusarium. Beilstein J Org Chem. 2019;15:2941-47. https://doi.org/10.3762/bjoc.15.289

Chen J, Bai X, Hua Y, Zhang H. Fusariumins C and D, two novel antimicrobial agents from Fusarium oxysporum ZZP-R1 symbiotic on Rumex madaio Makino. Fitoterapia. 2019;134:1-4. https://doi.org/10.1016/j.fitote.2019.01.016

Liu SZ, Yan X, Tang XX, Lin JG, Qiu YK. New bis-alkenoic acid derivatives from a marine-derived fungus Fusarium solani H915. Mar Drugs. 2018;16(12):483. https://doi.org/10.3390/md16120483

Zhang P, Yuan XL, Du Y, Zhang HB, Shen GM, Zhang ZF et al. Angularly prenylated indole alkaloids with antimicrobial and insecticidal activities from an endophytic fungus Fusarium sambucinum TE-6L. J Agric Food Chem. 2019;67(43):11994-2001. https://doi.org/10.1021/acs.jafc.9b05827

Ibrahim SRM, Mohamed GA, Al Haidari RA, Zayed MF, El-Kholy AA, Elkhayat ES et al. Fusarithioamide B, a new benzamide derivative from the endophytic fungus Fusarium chlamydosporium with potent cytotoxic and antimicrobial activities. Bioorg Med Chem. 2018;26(3):786-90. https://doi.org/10.1016/j.bmc.2017.12.049

Ibrahim SRM, Elkhayat ES, Mohamed GAA, Fat’hi SM, Ross SA. Fusarithioamide A, a new antimicrobial and cytotoxic benzamide derivative from the endophytic fungus Fusarium chlamydosporium. Biochem Biophys Res Commun. 2016;479(2):211-16. https://doi.org/10.1016/j.bbrc.2016.09.041

Yan C, Liu W, Li J, Deng Y, Chen S, Liu H. Bioactive terpenoids from Santalum album derived endophytic fungus Fusarium sp. YD-2. RSC Adv. 2018;8(27):14823-28. https://doi.org/10.1039/c8ra02430h

Dong JW, Cai L, Li XJ, Duan RT, Shu Y, Chen FY et al. Production of a new tetracyclic triterpene sulfate metabolite sambacide by solid-state cultivated Fusarium sambucinum B10.2 using potato as substrate. Bioresour Technol. 2016;218:1266-70. https://doi.org/10.1016/j.biortech.2016.07.014

Zhang J, Liu D, Wang H, Liu T, Xin Z. Fusartricin, a sesquiterpenoid ether produced by an endophytic fungus Fusarium tricinctum Salicorn 19. Eur Food Res Technol. 2015;240 (4):805-14. https://doi.org/10.1007/s00217-014-2386-6

Zhang JL, Tang WL, Huang QR, Li YZ, Wei ML, Jiang LL et al. Trichoderma: A treasure house of structurally diverse secondary metabolites with medicinal importance. Front Microbiol. 2021;12:723828. https://doi.org/10.3389/fmicb.2021.723828

Brian PW, McGowan JG. Viridin a highly fungistatic substance produced by Trichoderma viride. Nature. 1945;156(3953):144-45. doi:10.1038/156144a0

Parker SR, Cutler HG, Schreiner PR. Koninginin C: A biologically active natural product from Trichoderma koningii. Biosci Biotechnol Biochem. 1995;59(6):1126-27. https://doi.org/10.1271/bbb.59.1126

Parker SR, Cutler HG, Schreiner PR. Koninginin E: Isolation of a biologically active natural product from Trichoderma koningii. Biosci Biotechnol Biochem. 1995;59(9):1747-49. https://doi.org/10.1271/bbb.59.1747

Mandala SM, Thornton RA, Frommer BR, Dreikorn S, Kurtz MB. Viridiofungins, novel inhibitors of sphingolipid synthesis. J Antibiot (Tokyo). 1997;50(4):339-43. https://doi.org/10.7164/antibiotics.50.339

Xiao-Yan S, Qing-Tao S, Shu-Tao X, Xiu-Lan C, Cai-Yun S, Yu-Zhong Z. Broad-spectrum antimicrobial activity and high stability of trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiol Lett. 2006;260:119-25. https://doi.org/10.1111/j.1574-6968.2006.00316.x

Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol. 2006;43(2):143-48. https://doi.org/10.1111/j.1472-765X.2006.01939.x

Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol. 2008;72:80-86. https://doi.org/10.1016/j.pmpp.2008.05.005

Leylaie S, Zafari D. Antiproliferative and antimicrobial activities of secondary metabolites and phylogenetic study of endophytic Trichoderma species from Vinca Plants. Front microbiol. 2018;9:1484. https://doi.org/10.3389/fmicb.2018.01484.

Hosseyni-Moghaddam MS, Soltani J. Bioactivity of endophytic Trichoderma fungal species from the plant family Cupressaceae. Ann Microbiol. 2013;64(2):753-61. https://doi.org/10.1007/s13213-013-0710-1

Leelavathi MS, Vani L, Reena P. Antimicrobial activity of Trichoderma harzianum against bacteria and fungi. Int J Curr Microbiol App Sci. 2014;3(1):96-103. ISSN: 2319-7706

Published

13-06-2024 — Updated on 01-07-2024

Versions

How to Cite

1.
Murshid GMM, Sohrab MH, Masud MM, Mazid MA. Identification, GC-MS analysis and antibacterial activity of endophytic fungi isolated from Trigonella foenum-graecum leaf . Plant Sci. Today [Internet]. 2024 Jul. 1 [cited 2024 Dec. 24];11(3). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/2735

Issue

Section

Research Articles