Identification, GC-MS analysis and antibacterial activity of endophytic fungi isolated from Trigonella foenum-graecum leaf
DOI:
https://doi.org/10.14719/pst.2735Keywords:
Antibacterial activity, endophytic fungi, GC-MS analysis, Trigonella foenum-graecumAbstract
The present study was designed to identify the endophytic fungi isolated from leaves of Trigonella foenum-graecum (local name: Fenugreek or Methi) from Bangladesh, followed by a GC-MS analysis of fungal culture filtrates to explore major components present in the ethyl acetate extract and finally to assess their putative antibacterial activity. Two pure fungal extracts, entitled TFLE-1 and TFLE-2 were isolated from the leaf of T. foenum-graecum followed by extraction with ethyl acetate. The fungal strains, TFLE-1 and TFLE-2 were identified as Fusarium lichenicola and Trichoderma euskadiense respectively as per microscopic and molecular identification. GC-MS analysis revealed the presence of a total of 47 bioactive compounds among which 2-((4-methylpentan-2-yloxy)carbonyl)benzoic acid (15.33%), pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) (12.42%), benzeneethanamine, 4-benzyloxy-2-fluoro-beta-hydroxy-5-methoxy (3.45%) for TFLE-1 and pentatriacontane (8.61%), diethyl trisulfide (2.90%) and benzene,3-heptynyl (2.78%) for TFLE-2 were the major ones. On antibacterial activity, by disc-diffusion method, the fungal strain T. euskadiense (code: TFLE-2) showed prominent antibacterial activity against both gram (+) and gram (-) multiple-resistant bacteria while compared to the standard drug kanamycin; values were found statistically significant (p?0.05). The findings of the study indicated presence of potentially bioactive endophytic fungal extracts obtained from the leaves of T. foenum-graecum cultivated in Bangladesh.
Downloads
References
Hills AR, Mahmood S. Historical background, origin, distribution and economic importance of fenugreek. In: Nayeem M, Aftab T, Khan MAM (eds) Fenugreek: Biology and Applications. Springer. 2021;p.3-11. https://doi.org/10.1007/978-981-16-1197-1_1
Meghwal M, Goswami TK. A review on the functional properties, nutritional content, medicinal utilization and potential application of fenugreek. J Food Process Technol. 2012;3(9):1-10. http://dx.doi.org/10.4172/2157-7110.1000181
Mawahib EME, Ammar MAA, Badr EAES. Antimicrobial activities of phytochemical screening of callus and seeds extracts of fenugreek (Trigonella foenum-graceum). Int J Curr Microbiol Appl Sci. 2015;4(2):147-57. ISSN: 2319-7706
Singh P, Bajpai V, Gond V, Kumar A, Tadigoppula N, Kumar B. Determination of bioactive compounds of fenugreek (Trigonella foenum-graceum) seeds using LC-MS techniques. In: Jain M, Garg R (eds.) Legume Genomics. Berlin/Heidelberg, Germany: Springer. 2020;p.377-93. https://doi.org/10.1007/978-1-0716-0235-5_21
Benayad Z, Cordoves CG, Es-Safi NE. Characterization of flavonoid glycosides from fenugreek (Trigonella foenumgraceum) crude seeds by HPLC–DAD–ESI/MS analysis. Int J Mol Sci. 2014;15:20668-685. https://doi.org/10.3390/ijms151120668
Akbari S, Abdurahman NH, Yunus RM, Alara OR, Abayomi OO. Extraction, characterization and antioxidant activity of fenugreek (Trigonella foenum-graecum) seed oil. Mater Sci Energy Technol. 2019;2:349-55. https://doi.org/10.1016/j.mset.2019.12.001
Certini G, Scalenghe R. The crucial interactions between climate and soil. Sci Total Environ. 2023;856:article no.159169. https://doi.org/10.1016/j.scitotenv.2023.159169.
Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629-61. https://doi.org/10.1021/acs.jnatprod.5b01055
Khan IH, Javaid A, Ahmed D. Trichoderma viride controls Macrophomina phaseolina through its DNA disintegration and production of antifungal compounds. Int J Agric Biol. 2021;25(4):888-94. https://doi.org/10.17957/IJAB/15.1743
Dar RA, Rather SA, Mushtaq S, Qazi PH. Purification and characterization of endophytic fungal strains from four different high value medicinal plants of Kashmir valley. Int J Phytopharm. 2015;5(1):8-11. https://www.researchgate.net/publication/307708874
Khan IH, Javaid A. In vitro screening of Aspergillus spp. for their biocontrol potential against Macrophomina phaseolina. Plant Pathol J. 2021;103(4):1195-205. https://doi.org/10.1007/s42161-021-00865-7
Khan IH, Javaid A. DNA cleavage of the fungal pathogen and production of antifungal compounds are the possible mechanisms of action of biocontrol agent Penicillium italicum against Macrophomina phaseolina. Mycol. 2022;114(1):24-34. https://doi.org/10.1080/00275514.2021.1990627
Khan IH, Javaid A. Antagonistic activity of Aspergillus versicolor against Macrophomina phaseolina. Braz J Microbiol. 2022;53(3):1613-21. https://doi.org/10.1007/s42770-022-00782-6
Khan IH, Javaid A. In vitro biocontrol potential of Trichoderma pseudokoningii against Macrophomina phaseolina. Int J Agric Biol. 2020;24(4):730-36. https://www.researchgate.net/publication/343682866
Amby DB, Thuy TT, Ho BD, Kosawang C, Son TB, Jørgensen HJ. First report of Fusarium lichenicola as a causal agent of fruit rot in pomelo (Citrus maxima). Plant Dis. 2015;99(9):1278. https:// doi.org/ 10.1094/PDIS-10-14-1017-PDN
Halim, I, Singh P, Sarfraz A, Kokkayil P, Pati, BK, Thakuria, B et al. Fungal keratitis due to Fusarium lichenicola: A case report and global review of Fusarium lichenicola keratitis. J Fungi. 2021;7:889. https://doi.org/10.3390/ jof7110889
Punja ZK, Roberts A. The Fusarium solani species complex infecting cannabis (Cannabis sativa L., marijuana) plants and a first report of Fusarium (Cylindrocarpon) lichenicola causing root and crown rot. Can J Plant Pathol. 2021;43(4):567-81. https://doi.org/10.1080/07060661.2020.1866672
Jaklitsch WM, Voglmayr H. Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Stud Mycol. 2015;80:1-87. https://doi.org/10.1016/j.simyco.2014.11.001
Hallmann J, Berg G, Schulz B. Isolation procedures for endophytic microorganisms. In: Shulz B, Boyle C, Sieber T, editors. Microbial Root Endophyte; Berlin, Heidelberg, New York: Springer. 2006;p.299-314. https://link.springer.com/chapter/10.1007/3-540-33526-9
Barnett HL, Hunter BB. Illustrated genera of imperfect fungi. 3rd ed. Minneapolis: Burgess Publishing Co. 1972. https://www.jstor.org/stable/25824597
White TJ, Bruns TD, Lee SB, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ. (eds.), PCR Protocols: A Guide to Methods and Applications, Academic Press, New York. 315-22. http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1
Rahman MS, Riad H, Forhad KS, Shaikh MR, Subbroto KS, Jongki H et al. Insights into the in vitro germicidal activities of Acalypha indica. Anal Sci Technol. 2017;30(1):26-31. https://doi.org/10.5806/AST.2017.30.1.26
Jorgensen JH, Turnidge JD. Susceptibility test methods: Dilution and disk diffusion methods. In: Jorgensen JH, Carroll KC, Funke G, Pfaller MA, Landry ML, Richter SS, Warnock DW, Richter SS, Patel JB. (eds.). Manual of Clinical Microbiology, 11th Edition, American Society of Microbiology. 1253-73. https://doi.org/10.1128/9781555817381.ch71
Gams W, Bissett J. Morphology and identification of Trichoderma. In: Kubicek CP and Harman GE. (eds.). Trichoderma and Gliocladium: Basic Biology, Taxonomy and Genetics. London: Taylor & Francis Ltd. 2002;p.3-31. ISBN 0-7484-0805-3
Moussaoui F, Zellagui A, Segueni N, Touil A, Rhouati S. Flavonoid constituents from Algerian Launaea resedifolia (O.K.) and their antimicrobial activity. Rec Nat Prod. 2010;4(1):91-95. www.acgpubs.org/RNP; EISSN: 1307-6167
Pavithra PS, Janani VS, Charumathi KH, Indumathy R, Sirisha P, Rama SV. Antibacterial activity of plants used in Indian herbal medicine. Int J Green Pharm. 2010;4(1):22-28. https://doi.org/10.4103/0973-8258.62161
Okoro IO, Auguster O, Edith OA. Antioxidant and antimicrobial activities of polyphenols from ethnomedicinal plants of Nigeria. Afr J Biotechnol. 2010;9(20):2989-93. http://www.academicjournals.org/AJB
Ebana RU, Madunagu BE, Ekpe ED, Otung IN. Microbiological exploitation of cardiac glycosides and alkaloids from Garcinia kola, Borreria ocymoides, Kola nitida and Citrus aurantifolia. J Appl Bacteriol. 1991;71:398-401. https://doi.org/10.1111/j.1365-2672.1991.tb03807.x
Krasniqi I, Behrami A, Demaku S, Ismail Krasniqi. Antibacterial activity of coumarine derivatives synthesized from 4-hydroxychromen-2-one and comparison with standard drug. J Chem Pharm Res. 2015;7(8):1041-45. https://www.researchgate.net/publication/281824082
Colak SM, Yapici BM, Yapici AN. Determination of antimicrobial activity of tannic acid in pickling process. Rom Biotechnol Lett. 2010;15(3):5325-30. https://www.researchgate.net/publication/266178418
Faizi S, Khan RA, Azher S, Khan SA, Taussef S, Ahmad A. New antimicrobial alkaloids from the root of Polyalthia longifolia var. Pendula. Planta Med. 2003;69(4):350-55. https://doi.org/10.1055/s-2003-38883
Gonzaga WA, Weber AD, Giacomelli SR, Dalcol II, Hoelzel SCS, Morel AF. Antibacterial alkaloids from Zanthoxylum rhoifolium. Planta Med. 2003;69(4):371-74. https://doi.org/10.1055/s-2003-38882
Agoramoorthy G, Chandrasekaran M, Venkatesalu V, Hsu MJ. Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove from India. Braz J Microbiol. 2007;38:739-42. https://doi.org/10.1590/S1517-83822007000400028
Hussain MS, Rahman MA, Fareed S, Ansari S, Ahmad I, Mohd. S. Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci. 2012;4(1):10-20. https://doi.org/10.4103/0975-7406.92725
Leonidah KO, Jacob OM, Armelle TM, Simplice BT, Jackson AS, Igor KV et al. Antibacterial activities and structure-activity relationships of a panel of 48 compounds from Kenyan plants against multidrug resistant phenotypes. Springerplus. 2016;5(1):901. https://doi.org/10.1186/s40064-016-2599-1
Hudzicki J. Kirby-bauer disk diffusion susceptibility test protocol. ASM. 2009;p. 1-23. https://asm.org/getattachment/2594ce26-bd44-47f6-8287-0657aa9185ad/
Tayung K, Barik BP, Jha DK, Deka DC. Identification and characterization of antimicrobial metabolite from an endophytic fungus, Fusarium solani isolated from bark of Himalayan yew. Mycosphere. 2011;2(3):203-13. https://www.researchgate.net/publication/285150885
Sim JH, Chai-Hoon K, Learn-Han L, Yoke-Kqueen C. Molecular diversity of fungal endophytes isolated from Garcinia mangostana and Garcinia parvifolia. J Microbiol Biotechnol. 2010;20(4):651-58. https://doi.org/10.4014/jmb.0909.09030
Musavi SF, Balakrishnan RJ. Biodiversity, antimicrobial potential and phylogenetic placement of an endophytic Fusarium oxysporum NFX 06 isolated from Nothapodytes foetida. J Mycol. 2013;1-10. Article ID 172056. http://dx.doi.org/10.1155/2013/172056
Toghueo RMK, Zeuko’o ME, Mbekou KMI, Jesus MA-e-C, Ngo MN, Eke P et al. Antimicrobial and antiradical activities of ethyl acetate extracts from endophytic fungi isolated from Cameroonian medicinal plants. J Med Plants Stud. 2016;4(4):290-95. ISSN 2320-3862
Moron LS, Lim YW, Dela Cruz TEE. Antimicrobial activities of crude culture extracts from mangrove fungal endophytes collected in Luzon Island, Philippines. Philipp Sci Lett. 2018;11:28-36. https://www.researchgate.net/publication/326587639
Hamzah T, Lee S, Hidayat A, Terhem R, Faridah-Hanum I, Mohamed R. Diversity and characterization of endophytic fungi isolated from the tropical mangrove species, Rhizophora mucronata and identification of potential antagonists against the soil-borne fungus, Fusarium solani. Front Microbiol. 2018;9:1707. https://doi.org/10.3389/fmicb.2018.01707
Hussain H, Drogis KH, Al-Harrasi A, Hassan Z, Shah A, Rana UA et al. Antimicrobial constituents from endophytic fungus Fusarium sp. Asian Pac J Trop Dis. 2015;5(3):186-89. https://doi.org/10.1016/S2222-1808(14)60650-2
Zhou G, Qiao L, Zhang X, Sun C, Che Q, Zhang G et al. Fusaricates H-K and fusolanones A-B from a mangrove endophytic fungus Fusarium solani HDN15-410. Phytochem. 2019;158:13-19. https://doi.org/10.1016/j.phytochem.2018.10.035
Sondergaard TE, Fredborg M, Christensen AMO, Damsgaard SK, Kramer NF, Giese H et al. Fast screening of antibacterial compounds from Fusaria. Toxins. 2016;8(12):355. https://doi.org/10.3390/toxins8120355
Nonaka K, Chiba T, Suga T, Asami Y, Iwatsuki M, Masuma R et al. Coculnol, a new penicillic acid produced by a coculture of Fusarium solani FKI-6853 and Talaromyces sp. FKA-65. J Antibiot. 2015;68(8):530-32. https://doi.org/10.1038/ja.2015.15
Supratman U, Hirai N, Sato S, Watanabe K, Malik A, Annas S et al. New naphthoquinone derivatives from Fusarium napiforme of a mangrove plant. Nat Prod Res. 2019;35(9):1406-12. https://doi.org/10.1080/14786419.2019.1650358
Sibero MT, Zhou T, Fukaya K, Urabe D, Radjasa OKK, Sabdono A et al. Two new aromatic polyketides from a sponge-derived Fusarium. Beilstein J Org Chem. 2019;15:2941-47. https://doi.org/10.3762/bjoc.15.289
Chen J, Bai X, Hua Y, Zhang H. Fusariumins C and D, two novel antimicrobial agents from Fusarium oxysporum ZZP-R1 symbiotic on Rumex madaio Makino. Fitoterapia. 2019;134:1-4. https://doi.org/10.1016/j.fitote.2019.01.016
Liu SZ, Yan X, Tang XX, Lin JG, Qiu YK. New bis-alkenoic acid derivatives from a marine-derived fungus Fusarium solani H915. Mar Drugs. 2018;16(12):483. https://doi.org/10.3390/md16120483
Zhang P, Yuan XL, Du Y, Zhang HB, Shen GM, Zhang ZF et al. Angularly prenylated indole alkaloids with antimicrobial and insecticidal activities from an endophytic fungus Fusarium sambucinum TE-6L. J Agric Food Chem. 2019;67(43):11994-2001. https://doi.org/10.1021/acs.jafc.9b05827
Ibrahim SRM, Mohamed GA, Al Haidari RA, Zayed MF, El-Kholy AA, Elkhayat ES et al. Fusarithioamide B, a new benzamide derivative from the endophytic fungus Fusarium chlamydosporium with potent cytotoxic and antimicrobial activities. Bioorg Med Chem. 2018;26(3):786-90. https://doi.org/10.1016/j.bmc.2017.12.049
Ibrahim SRM, Elkhayat ES, Mohamed GAA, Fat’hi SM, Ross SA. Fusarithioamide A, a new antimicrobial and cytotoxic benzamide derivative from the endophytic fungus Fusarium chlamydosporium. Biochem Biophys Res Commun. 2016;479(2):211-16. https://doi.org/10.1016/j.bbrc.2016.09.041
Yan C, Liu W, Li J, Deng Y, Chen S, Liu H. Bioactive terpenoids from Santalum album derived endophytic fungus Fusarium sp. YD-2. RSC Adv. 2018;8(27):14823-28. https://doi.org/10.1039/c8ra02430h
Dong JW, Cai L, Li XJ, Duan RT, Shu Y, Chen FY et al. Production of a new tetracyclic triterpene sulfate metabolite sambacide by solid-state cultivated Fusarium sambucinum B10.2 using potato as substrate. Bioresour Technol. 2016;218:1266-70. https://doi.org/10.1016/j.biortech.2016.07.014
Zhang J, Liu D, Wang H, Liu T, Xin Z. Fusartricin, a sesquiterpenoid ether produced by an endophytic fungus Fusarium tricinctum Salicorn 19. Eur Food Res Technol. 2015;240 (4):805-14. https://doi.org/10.1007/s00217-014-2386-6
Zhang JL, Tang WL, Huang QR, Li YZ, Wei ML, Jiang LL et al. Trichoderma: A treasure house of structurally diverse secondary metabolites with medicinal importance. Front Microbiol. 2021;12:723828. https://doi.org/10.3389/fmicb.2021.723828
Brian PW, McGowan JG. Viridin a highly fungistatic substance produced by Trichoderma viride. Nature. 1945;156(3953):144-45. doi:10.1038/156144a0
Parker SR, Cutler HG, Schreiner PR. Koninginin C: A biologically active natural product from Trichoderma koningii. Biosci Biotechnol Biochem. 1995;59(6):1126-27. https://doi.org/10.1271/bbb.59.1126
Parker SR, Cutler HG, Schreiner PR. Koninginin E: Isolation of a biologically active natural product from Trichoderma koningii. Biosci Biotechnol Biochem. 1995;59(9):1747-49. https://doi.org/10.1271/bbb.59.1747
Mandala SM, Thornton RA, Frommer BR, Dreikorn S, Kurtz MB. Viridiofungins, novel inhibitors of sphingolipid synthesis. J Antibiot (Tokyo). 1997;50(4):339-43. https://doi.org/10.7164/antibiotics.50.339
Xiao-Yan S, Qing-Tao S, Shu-Tao X, Xiu-Lan C, Cai-Yun S, Yu-Zhong Z. Broad-spectrum antimicrobial activity and high stability of trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiol Lett. 2006;260:119-25. https://doi.org/10.1111/j.1574-6968.2006.00316.x
Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol. 2006;43(2):143-48. https://doi.org/10.1111/j.1472-765X.2006.01939.x
Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol. 2008;72:80-86. https://doi.org/10.1016/j.pmpp.2008.05.005
Leylaie S, Zafari D. Antiproliferative and antimicrobial activities of secondary metabolites and phylogenetic study of endophytic Trichoderma species from Vinca Plants. Front microbiol. 2018;9:1484. https://doi.org/10.3389/fmicb.2018.01484.
Hosseyni-Moghaddam MS, Soltani J. Bioactivity of endophytic Trichoderma fungal species from the plant family Cupressaceae. Ann Microbiol. 2013;64(2):753-61. https://doi.org/10.1007/s13213-013-0710-1
Leelavathi MS, Vani L, Reena P. Antimicrobial activity of Trichoderma harzianum against bacteria and fungi. Int J Curr Microbiol App Sci. 2014;3(1):96-103. ISSN: 2319-7706
Downloads
Published
Versions
- 01-07-2024 (2)
- 13-06-2024 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 Gazi Md. Monjur Murshid, Md. Hossain Sohrab, Mohammad Mehedi Masud, Md. Abdul Mazid
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).