Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

GC-MS analysis and cytotoxic activity of the n-hexane fraction from Curcuma sahuynhensis Škornick. & N.S.Lý leaves collected in Vietnam

DOI
https://doi.org/10.14719/pst.2881
Submitted
20 August 2023
Published
14-12-2023
Versions

Abstract

Curcuma sahuynhensis Škornick. & N.S.Lý is an endemic plant in Vietnam that has been used by the Sa Huynh people as a spice and medicine to cure illnesses linked to digestive disorders. Very little information is available so far about the chemical composition and biological effects of C. sahuynhensis. To find new pharmaceutical ingredients, the in vitro cytotoxic effect and the chemical profile of C. sahuynhensis leaf extract were investigated. In this study, the percolation method and liquid-liquid dispersion technique were used to extract dry sample powder. The chemical composition was detected by gas chromatography-mass spectrometry (GC-MS). The Sulforhodamine B and MTT methods were used to determine the cytotoxic activity. The chemical composition analysis showed that the leaf extract contained 14 components. The major components in the n-hexane extract were 6,10,14-trimethylpentadecan-2-one, phytol, 1-ethylbutyl hydroperoxide, isoborneol, 1-methylpentyl hydroperoxide, and neophytadiene. On human cancer cell lines, namely MFC-7, SK-LU-1, Hela, MKN-7, and HL-60, the leaf extract showed dose-dependent cytotoxic activity, with IC50 values ranging from 221.70±10.24 to 369.42±10.60 ?g/mL. The present study provides significant information on the chemical components and cytotoxic effects of the n-hexane extract from C. sahuynhensis leaves. The findings will continue to be crucial in future research on the evaluation of secondary metabolite compound analysis for cancer therapeutic effects.

References

  1. Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health. 2019;9(4):217-22. https://doi.org/10.2991/jegh.k.191008.001
  2. Wahlang JB, Laishram PD, Brahma DK, Sarkar C, Lahon J, Nongkynrih BS. Adverse drug reactions due to cancer chemotherapy in a tertiary care teaching hospital. Ther Adv Drug Saf. 2017;8(2):61-66. https://doi.org/10.1177/2042098616672572
  3. Manurung H, Susanto D, Kusumawati E, Aryani R, Nugroho RA, Kusuma R et al. Phytochemical, GC-MS analysis and antioxidant activities of leaf methanolic extract of Lai (Durio kutejensis), the endemic plant of Kalimantan, Indonesia. Biodiversitas. 2022;23(11):5566-73. https://doi.org/10.13057/biodiv/d231104
  4. Safarzadeh E, Shotorbani SS, Baradaran B. Herbal medicine as inducers of apoptosis in cancer treatment. Adv Pharm Bull. 2014;4(Suppl 1):421-27. https://doi.org/10.5681/apb.2014.062
  5. Kooti W, Servatyari K, Behzadifar M, Asadi-Samani M, Sadeghi F, Nouri B et al. Effective medicinal plant in cancer treatment, part 2: review study. J Evid Based Complementary Altern Med. 2017;22(4):982-95. https://doi.org/10.1177/2156587217696927
  6. Kaliyadasa E, Samarasinghe BA. A review on golden species of Zingiberaceae family around the world: Genus Curcuma. Afr J Agric Res. 2019;14(9):519-31. https://doi.org/10.5897/AJAR2018.13755
  7. Jambunathan S, Bangarusamy D, Padma PR, Sundaravadivelu S. Cytotoxic activity of the methanolic extract of leaves and rhizomes of Curcuma amada Roxb. against breast cancer cell lines. Asian Pac J Trop Med. 2014;7(Suppl 1):S405-S409. https://doi.org/10.1016/S1995-7645(14)60266-2
  8. Pintatum A, Maneerat W, Logie E, Tuenter E, Sakavitsi ME, Pieters L et al. In vitro anti-inflammatory, anti-oxidant and cytotoxic activities of four Curcuma species and the isolation of compounds from Curcuma aromatica rhizome. Biomolecules. 2020;10(5):799. https://doi.org/10.3390/biom10050799
  9. Lobo R, Prabhu KS, Shirwaikar A, Shirwaikar A. Curcuma zedoaria Rosc. (white turmeric): a review of its chemical, pharmacological and ethnomedicinal properties. J Pharm Pharmacol. 2009;61(1):13-21. https://doi.org/10.1211/jpp.61.01.0003
  10. Zohmachhuana A, Lalnunmawia F, Mathipi V, Lalrinzuali K, Kumar NS. Curcuma aeruginosa Roxb. exhibits cytotoxicity in A-549 and HeLa cells by inducing apoptosis through caspase-dependent pathways. Biomed Pharmacother. 2022;150:113039. https://doi.org/10.1016/j.biopha.2022.113039
  11. Viriyaadhammaa N, Saiai A, Neimkhum W, Nirachonkul W, Chaiyana W, Chiampanichayakul S et al. Cytotoxic and antiproliferative effects of diarylheptanoids isolated from Curcuma comosa rhizomes on leukaemic cells. Molecules. 2020;25(22):5476. https://doi.org/10.3390/molecules25225476
  12. Van Chen TRAN, Lam DNX, Thong CLT, Nguyen DD, Nhi NTT, Triet NT. Morphological characters, pharmacognostical parameters and preliminary phytochemical screening of Curcuma sahuynhensis Škorni?k. & N.S. Lý in Quang Ngai Province, Vietnam. Biodiversitas. 2022;23(8):3907-20. https://doi.org/10.13057/biodiv/d230807
  13. Reda EH, Shakour ZTA, El-Halawany AM, El-Kashoury ESA, Shams KA, Mohamed TA et al. Comparative study on the essential oils from five wild Egyptian Centaurea species: Effective extraction techniques, antimicrobial activity and in-silico analyses. Antibiotics. 2021;10(3):252. https://doi.org/10.3390/antibiotics10030252
  14. Ch R, Chevallier O, McCarron P, McGrath TF, Wu D, Kapil AP et al. Metabolomic fingerprinting of volatile organic compounds for the geographical discrimination of rice samples from China, Vietnam and India. Food Chem. 2021;334:127553. https://doi.org/10.1016/j.foodchem.2020.127553
  15. Tran CV, Vo TM, Bui PT, Duong DNP, Duong LXN, Dinh DQ et al. Phytochemical screening, antioxidant activity and ?-glucosidase inhibitability of Bauhinia x blakeana Dunn. leaf and flower extracts from Vietnam. Trop J Nat Prod Res. 2023;7(4):2737-43. https://doi.org/10.26538/tjnpr/v7i4.11.
  16. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82(13):1107-12. https://doi.org/10.1093/jnci/82.13.1107
  17. Lakshmipriya T, Soumya T, Jayasree PR, Manish Kumar PR. Selective induction of DNA damage, G2 abrogation and mitochondrial apoptosis by leaf extract of traditional medicinal plant Wrightia arborea in K562 cells. Protoplasma. 2018;255:203-16. https://doi.org/10.1007/s00709-017-1137-5
  18. Sam LN, Huong LT, Minh PN, Vinh BT, Dai DN, Setzer WN et al. Chemical composition and antimicrobial activity of the rhizome essential oil of Curcuma sahuynhensis from Vietnam. J Essent Oil-Bear Plants. 2020;23(4):803-09. https://doi.org/10.1080/0972060X.2020.1821789
  19. Xiao Q, Mu X, Liu J, Li B, Liu H, Zhang B et al. Plant metabolomics: A new strategy and tool for quality evaluation of Chinese medicinal materials. Chin Med. 2022;17(1):45. https://doi.org/10.1186/s13020-022-00601-y
  20. Zhao M, Xiao L, Linghu K-G, Zhao G, Chen Q, Shen L et al. Comprehensive comparison on the anti-inflammation and GC-MS-based metabolomics discrimination between Bupleuri chinense DC. and B. scorzonerifolium Willd. Front Pharmacol. 2022;13:1005011. https://doi.org/10.3389/fphar.2022.1005011
  21. Balogun OS, Ajayi OS, Adeleke AJ. Hexahydrofarnesyl acetone-rich extractives from Hildegardia barteri. J Herbs Spices Med Plants. 2017;23(4):393-400. https://doi.org/10.1080/10496475.2017.1350614
  22. Nazli? M, Kremer D, Grubeši? RJ, Soldo B, Vuko E, Stabentheiner E et al. Endemic Veronica saturejoides Vis. ssp. saturejoides–Chemical composition and antioxidant activity of free volatile compounds. Plants. 2020;9(12):1646. https://doi.org/10.3390/plants9121646
  23. Altir NKM, Ali AMA, Gaafar ARZ, Qahtan AA, Abdel-Salam EM, Alshameri A et al. Phytochemical profile, in vitro antioxidant and anti-protein denaturation activities of Curcuma longa L. rhizome and leaves. Open Chem. 2021;19(1):945-52. https://doi.org/10.1515/chem-2021-0086
  24. Salama SA, Al-Faifi ZE, El-Amier YA. Chemical composition of Reichardia tingitana methanolic extract and its potential antioxidant, antimicrobial, cytotoxic and larvicidal activity. Plants. 2022;11(15):2028. https://doi.org/10.3390/plants11152028
  25. Boussaha S, Bramucci M, Rebbas K, Quassinti L, Mekkiou R, Maggi F. Chemical composition and anticancer activity of the essential oil from Vicia ochroleuca Ten., quite rare plant in Kabylia (Algeria). Nat Prod Res. 2023;2023:1-7. https://doi.org/10.1080/14786419.2023.2176492
  26. Chowdhury RR, Ghosh SK. Phytol-derived novel isoprenoid immunostimulants. Front Immun. 2012;3:49. https://doi.org/10.3389/fimmu.2012.00049
  27. Pejin B, Kojic V, Bogdanovic G. An insight into the cytotoxic activity of phytol at in vitro conditions. Nat Prod Res. 2014;28(22):2053-56. https://doi.org/10.1080/14786419.2014.921686
  28. Sakthivel R, Malar DS, Devi KP. Phytol shows anti-angiogenic activity and induces apoptosis in A549 cells by depolarizing the mitochondrial membrane potential. Biomed Pharmacother. 2018;105:742-52. https://doi.org/10.1016/j.biopha.2018.06.035
  29. Islam MT, Ali ES, Uddin SJ, Shaw S, Islam MA, Ahmed MI et al. Phytol: A review of biomedical activities. Food Chem Toxicol. 2018;121:82-94. https://doi.org/10.1016/j.fct.2018.08.032
  30. Shariare MH, Noor HB, Khan JH, Uddin J, Ahamad SR, Altamimi MA et al. Liposomal drug delivery of Corchorus olitorius leaf extract containing phytol using design of experiment (DoE): In-vitro anticancer and in-vivo anti-inflammatory studies. Colloids Surf B. 2021;199:111543. https://doi.org/10.1016/j.colsurfb.2020.111543
  31. de Alencar MVOB, Islam MT, da Mata AMOF, Dos Reis AC, de Lima RMT, de Oliveira Ferreira JR et al. Anticancer effects of phytol against Sarcoma (S-180) and Human Leukemic (HL-60) cancer cells. Environ Sci Pollut Res. 2023;30:80996-1007. https://doi.org/10.1007/s11356-023-28036-4
  32. Song Y, Cui C, Zhu H, Li Q, Zhao F, Jin Y. Expression, purification and characterization of zinc-finger nuclease to knockout the goat beta-lactoglobulin gene. Protein Expr Purif. 2015;112:1-7. https://doi.org/10.1016/j.pep.2015.04.004
  33. Armaka M, Papanikolaou E, Sivropoulou A, Arsenakis M. Antiviral properties of isoborneol, a potent inhibitor of herpes simplex virus type 1. Antiviral Res. 1999;43(2):79-92. https://doi.org/10.1016/S0166-3542(99)00036-4
  34. Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X. Advances in pharmacological activities of terpenoids. Nat Prod Commun. 2020;15(3):1934578X20903555. https://doi.org/10.1177/1934578X20903555
  35. Kazi M, Alanazi Y, Kumar A, Shahba AAW, Rizwan Ahamad S, Alghamdi KM. Oral bioactive self-nanoemulsifying drug delivery systems of remdesivir and baricitinib: a paradigmatic case of drug repositioning for cancer management. Molecules. 2023;28(5):2237. https://doi.org/10.3390/molecules28052237
  36. Bhardwaj M, Sali VK, Mani S, Vasanthi HR. Neophytadiene from Turbinaria ornata suppresses LPS-induced inflammatory response in RAW 264.7 macrophages and Sprague Dawley rats. Inflammation. 2020;43:937-50. https://doi.org/10.1007/s10753-020-01179-z
  37. Gonzalez-Rivera ML, Barragan-Galvez JC, Gasca-Martínez D, Hidalgo-Figueroa S, Isiordia-Espinoza M, Alonso-Castro AJ. In vivo neuropharmacological effects of neophytadiene. Molecules. 2023;28(8):3457. https://doi.org/10.3390/molecules28083457
  38. Selmy AH, Hegazy MM, El-Hela AA, Saleh AM, El-Hamouly MM. In vitro and in silico studies of Neophytadiene; a diterpene isolated from Aeschynomene elaphroxylon (Guill. &Perr.) Taub. as apoptotic inducer. Egypt J Chem. 2023. https://doi.org/10.21608/ejchem.2023.178261.7296
  39. Fidyt K, Fiedorowicz A, Strz?da?a L, Szumny A. ?-caryophyllene and ?-caryophyllene oxide—natural compounds of anticancer and analgesic properties. Cancer Med. 2016;5(10):3007-17. https://doi.org/10.1002/cam4.816
  40. Ambrož M, Šmatová M, Šadibolová M, Pospíšilová E, Hadravská P, Kašparová M et al. Sesquiterpenes ?-humulene and ?-caryophyllene oxide enhance the efficacy of 5-fluorouracil and oxaliplatin in colon cancer cells. Acta Pharm. 2019;69(1):121-28. https://doi.org/10.2478/acph-2019-0003
  41. Patra JK, Das G, Bose S, Banerjee S, Vishnuprasad CN, del Pilar Rodriguez-Torres M et al. Star anise (Illicium verum): Chemical compounds, antiviral properties and clinical relevance. Phytother Res. 2020;34(6):1248-67. https://doi.org/10.1002/ptr.6614
  42. Al-Owaisi M, Al-Hadiwi N, Khan SA. GC-MS analysis, determination of total phenolics, flavonoid content and free radical scavenging activities of various crude extracts of Moringa peregrina (Forssk.) Fiori leaves. Asian Pac J Trop Biomed. 2014;4(12):964-70. https://doi.org/10.12980/APJTB.4.201414B295
  43. Padmashree M, Roopa B, Ashwathanarayana R, Naika R. Antibacterial properties of Ipomoea staphylina Roem & Schult. plant extracts with comparing its preliminary qualitative phytochemical and quantitative GC-MS analysis. Trop Plant Res. 2018;5(3):349-69. https://doi.org/10.22271/tpr.2018.v5.i3.044
  44. Ozcelik H, Tastan Y, Terzi E, Sonmez AY. Use of onion (Allium cepa) and garlic (Allium sativum) wastes for the prevention of fungal disease (Saprolegnia parasitica) on eggs of rainbow trout (Oncorhynchus mykiss). J Fish Dis. 2020;43(10):1325-30. https://doi.org/10.1111/jfd.13229
  45. Syed DN, Khan N, Afaq F, Mukhtar H. Chemoprevention of prostate cancer through dietary agents: Progress and promise. Cancer Epidemiol Biomark Prev. 2007;16(11):2193-203. https://doi.org/10.1158/1055-9965.EPI-06-0942
  46. Aron PM, Kennedy JA. Flavan-3-ols: Nature, occurrence and biological activity. Mol Nutr Food Res. 2008;52(1):79-104. https://doi.org/10.1002/mnfr.200700137
  47. Seshadri VD, Vijayaraghavan P, Kim YO, Kim HJ, Al-Ghamdi AA, Elshikh MS et al. In vitro antioxidant and cytotoxic activities of polyherbal extracts from Vetiveria zizanioides, Trichosanthes cucumerina and Mollugo cerviana on HeLa and MCF-7 cell lines. Saudi J Biol Sci. 2020;27(6):1475-81. https://doi.org/10.1016/j.sjbs.2020.04.005
  48. Kumar RS, Rajkapoor B, Perumal P. In vitro and in vivo anticancer activity of Indigofera cassioides Rottl. Ex. DC. Asian Pac J Trop Medi. 2011;4(5):379-85. https://doi.org/10.1016/S1995-7645(11)60108-9
  49. Al-Amin M, Eltayeb NM, Khairuddean M, Salhimi SM. Bioactive chemical constituents from Curcuma caesia Roxb. rhizomes and inhibitory effect of curcuzederone on the migration of triple-negative breast cancer cell line MDA-MB-231. Nat Prod Res. 2021;35(18):3166-70. https://doi.org/10.1080/14786419.2019.1690489

Downloads

Download data is not yet available.