Variation of the chemical and biochemical responses to salinity during germination and early growth of seedlings of two populations of Agave durangensis Gentry

Authors

  • Génesis Gallegos-Hernández Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Instituto Politécnico Nacional, Durango 34220, México https://orcid.org/0009-0007-5466-0599
  • Norma Almaraz-Abarca Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Instituto Politécnico Nacional, Durango 34220, México https://orcid.org/0000-0003-1603-4865
  • Elí Amanda Delgado-Alvarado Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Instituto Politécnico Nacional, Durango 34220, México https://orcid.org/0000-0003-3835-9572
  • José Antonio Ávila-Reyes Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Instituto Politécnico Nacional, Durango 34220, México https://orcid.org/0000-0001-9552-957X
  • Rene Torres-Ricario Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Instituto Politécnico Nacional, Durango 34220, México https://orcid.org/0000-0002-2523-6699

DOI:

https://doi.org/10.14719/pst.2963

Keywords:

Maguey cenizo, anthocyanin accumulation, antioxidant enzymes, salt tolerance, seed provenance

Abstract

Agave durangensis (Asparagaceae) sustains a mescal industry in Mexico. The main reproductive strategy of the species is by seeds. The increased demand for agave-based beverages encourages producers to seek new cultivation areas. However, more than half of the territory of the country includes arid and semiarid zones, which are highly affected by salinity. The aim of the current study was to determine if salinity triggers different seed germination potential and variable biochemical and chemical responses in seedlings of two populations of A. durangensis, that might confer different tolerance to salinity. Seeds from each population were irrigated with four salinity treatments. Germination potential, as well as growth parameters and biochemical and chemical attributes of seedlings, were determined. Although with reduced germinability and germination speed, seeds of the two populations were able to germinate even under the strongest NaCl concentration (100 mM) evaluated. Effects in the growth parameters were registered; however, the seedlings of both populations survived throughout the experiments, increasing chlorophyll content and cell viability in most saline treatments. The enzymatic defense mechanism and the accumulation of proline were activated in a salt-dependent manner, which did not occur with the phenolic compounds; however, monomeric anthocyanin accumulation was outstanding under the two strongest NaCl concentrations evaluated. Important interpopulation differences were registered in each type of response, which were differently regulated under variable NaCl concentrations, some of them being more important than others under a particular saline condition. Seeds from the population Durango were more sensitive to salinity.

Downloads

Download data is not yet available.

References

Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Díaz-Vivancos P, Sánchez-Blanco MJ, Hernández JA. Plant responses to salt stress: Adaptive mechanisms. Agronomy. 2017; 7:18. https://doi.org/10.3390/agronomy7010018

Farooq F, Rashid N, Ibrar D, Hasnain Z, Ullah R, Nawaz M, et al. Impact of varying levels of soil salinity on emergence, growth and biochemical attributes of four Moringa oleifera landraces. PLoS ONE. 2022; 17(2):e0263978. https://doi.org/10.1371/journal.pone.0263978

Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol Biochem. 2020; 156:64-77. https://doi.org/10.1016/j.plaphy.2020.08.042

Oueslati S, Karray-Bouraoui N, Attia H, Rabhi M, Ksouri R, Lachaal M. Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiol Plant. 2010; 32(2):289-96. https://doi.org/10.1007/s11738-009-0406-0

Gharsallah C, Fakhfakh H, Grubb D, Gorsane F. Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB PLANTS. 2016; 8:plw055 https://doi.org/10.1093/aobpla/plw055

Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol. 2010;30(3):161-75. https://doi.org/10.3109/07388550903524243

Almaraz-Abarca N, Delgado-Alvarado EA, Torres-Morán MI, Herrera-Corral J, Ávila-Reyes JA, Naranjo-Jiménez N, Uribe-Soto JN. Genetic variability in natural populations of Agave durangensis (Agavaceae) revealed by morphological and molecular traits. Southwest Nat. 2013; 58(3):314–24. https://doi.org/10.1894/0038-4909-58.3.314

Perez-Aguilar LY, Plata-Rocha W, Monjardin-Armenta SA, Franco-Ochoa C, Zambrano-Medina YG. The identification and classification of arid zones through multicriteria evaluation and geographic information systems—Case study: Arid regions of northwest Mexico. ISPRS Int J GeoInf. 2021;10(11):720. https://doi.org/10.3390/ijgi10110720

Nobel PS, Berry WL. Element responses of Agaves. Amer J Bot. 1985; 72(5):686-94. https://doi.org/10.2307/2443680

Schuch UK, Kelly JJ. Salinity tolerance of cacti and succulents. Turfgrass, Landscape and Urban IPM Research Summary. 2008; 55:61-66. http://hdl.handle.net/10150/216639

El-Bagoury OH, El-Agroudy MH, Shenouda MA. Effect of salinity levels on growth of six plant species. Egypt J Agron. 1993;18(1/2):129-143

Miyamoto S. Salt tolerance of landscape plants common to the Southwest. El Paso: Texas Water Resources Institute. 2008

Bergsten SJ, Koeser AK, Stewart JR. Evaluation of the impacts of salinity on biomass and nutrient levels of Agave species with agricultural potential in semiarid regions. HortScience 2016;51(1):30-35. https://doi.org/10.21273/hortsci.51.1.30

Good-Ávila SV, Souza V, Gaut VS, Eguiarte LE. Timing and rate of speciation in Agave (Agavaceae). Proc Natl Acad Sci USA. 2006;103(24):9124–29. https://doi.org/10.1073/pnas.0603312103

Lini? I, Šamec D, Grúz J, Bok VV, Strnad M, Salopek-Sondi B. Involvement of phenolic acids in short-term adaptation to salinity stress is species-specific among Brassicaceae. Plants. 2019; 8(6):155. https://doi.org/10.3390/plants8060155

Kumar S, Li G, Yang J, Huang X, Ji Q, Zhou K, et al. Investigation of an antioxidative system for salinity tolerance in Oenanthe javanica. Antioxidants. 2020; 9(10):940. https://doi.org/10.3390/antiox9100940

Gengmao Z, Yu H, Xing S, Shihui L, Quanmei S, Changhai W. Salinity stress increases secondary metabolites and enzyme activity in safflower. Ind Crops Prod. 2015; 64(1):175-181. https://doi.org/10.1016/j.indcrop.2014.10.058

Elavarthi S, Martin B. Spectrophotometric assays for antioxidant enzymes in plants. In: Sunkar R, editor. Plant stress tolerance. Methods in Molecular Biology 639. New York: Humana Press; 2010; 273-280. https://doi.org/10.1007/978-1-60761-702-0_16

Vasavilbazo-Saucedo A, Almaraz-Abarca N, González-Ocampo HA, Ávila-Reyes JA, González-Valdez LS, Luna-González A, et al. Phytochemical characterization and antioxidant properties of the wild edible acerola Malpighia umbellata Rose. CYTA - J Food. 2018; 16(1):698-706. https://doi.org/10.1080/19476337.2018.1475424

Ordoñez AAL, Gomez JD, Vattuone MA, lsla MI. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem. 2006; 97(3):452-58. https://doi.org/10.1016/j.foodchem.2005.05.024

Herald TJ, Gadgil P, Perumal R, Bean SR, Wilson JD. High?throughput micro?plate HCl–vanillin assay for screening tannin content in sorghum grain. Journal of the Science of Food and Agriculture. 2014; 94(10): 2133-36. https://doi.org/10.1002/jsfa.6538

So V, Pocasap P, Sutthanut K, Sethabouppha B, Thukhammee W, Wattanathorn J, et al. Effect of harvest age on total phenolic, total anthocyanin content, bioactive antioxidant capacity and antiproliferation of black and white glutinous rice sprouts. Appl Sci. 2020; 10(20):7051. https://doi.org/10.3390/app10207051

Chavan RR, Bhinge SD, Bhutkar MA, Randive DS, Wadkar GH, Todkar SS, et al. Characterization, antioxidant, antimicrobial and cytotoxic activities of green synthesized silver and iron nanoparticles using alcoholic Blumea eriantha DC plant extract. Mater Today Commun. 2020; 24:101320. https://doi.org/10.1016/j.mtcomm.2020.101320

Vyas D, Kumar S. Tea (Camellia sinensis (L.) O. Kuntze) clone with lower period of winter dormancy exhibits lesser cellular damage in response to low temperature. Plant Physiology and Biochemistry. 2005; 43(4):383-88. https://doi.org/ 10.1016/j.plaphy.2005.02.016

Wa?kiewicz A, Muzolf-Panek M, Goli?ski P. Phenolic content changes in plants under salt stress. In: Ahmad P, Azooz MM, Prasad MNV, editors. Ecophysiology and responses of plants under salt stress. New York: Springer; 2013;283-314. https://doi.org/10.1007/978-1-4614-4747-4

Wallander-Compean L, Almaraz-Abarca N, Alejandre-Iturbide G, Uribe-Soto JN, Ávila-Reyes JA, Torres-Ricario R, et al. Variación fenológica y morfométrica de Phaseolus vulgaris (Fabaceae) de cinco poblaciones silvestres de Durango, México. Bot Sci. 2022; 100(3):563-78. https://doi.org/10.17129/botsci.2981

Dehnavi AR, Zahedi M, Ludwiczak A, Perez SC, Piernik A. Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy. 2020; 10(6):859. https://doi.org/10.3390/agronomy10060859

Hernández-Pacheco CE, Almaraz-Abarca N, Rojas-López M, Torres-Ricario R, Ávila-Reyes JA, González-Valdez LS. et al. Salinity generates varying chemical and biochemical responses in Physalis ixocarpa (Solanaceae) during different times of exposure. Electron J Biotechnol. 2022; 59: 25-35. https://doi.org/10.1016/j.ejbt.2022.06.002

Uçarli C. Effects of salinity on seed germination and early seedling stage. In: Fahad S, Saud S, Chen Y, Wu C, Wang D, editors. Abiotic stress in plants. IntechOpen; 2021. https://doi.org/10.5772/intechopen.93647

Aazami MA, Rasouli F, Ebrahimzadeh A. Oxidative damage, antioxidant mechanism and gene expression in tomato responding to salinity stress under in vitro conditions and application of iron and zinc oxide nanoparticles on callus induction and plant regeneration. BMC Plant Biol. 2021; 21:597. https://doi.org/10.1186/s12870-021-03379-7

Rahman M, Soomro UA, Haq MZ, Gul S. Effects of NaCl salinity on wheat (Triticum aestivum L.) cultivars. World J Agric Sci. 2008; 4(3):398–403

Barriada-Bernal G, Almaraz-Abarca N, Gallardo-Velázquez T, Torres-Morán I, Herrera-Arrieta Y, González-Elizondo S, et al. Seed vigor variation of Agave durangensis Gentry (Agavaceae). Am J Plant Sci. 2013;4(11):2227-39. https://doi.org/10.4236/ajps.2013.411276

Ji X, Tang J, Zhang J. Effects of salt stress on the morphology, growth and physiological parameters of Juglans microcarpa L. seedlings. Plants. 2022;11(18): 2381. https://doi.org/10.3390/plants11182381

Guo X, Ahmad N, Zhao S, Zhao C, Zhong W, Wang X, et al. Effect of salt stress on growth and physiological properties of Asparagus seedlings. Plants. 2022;1(21):2836. https://doi.org/10.3390/plants11212836

Farooq M, Ahmad R, Shahzad M, Sajjad Y, Hassam A, Shah MM, et al. Differential variations in total flavonoid content and antioxidant enzymes activities in pea under different salt and drought stresses. Sci Hortic. 2021;287:110258. https://doi.org/10.1016/j.scienta.2021.110258

Bilska K, Wojciechowska N, Alipour S, Kalemba EM. Ascorbic acid—The little-known antioxidant in woody plants. Antioxidants. 2019;8:645. https://doi.org/10.3390/antiox8120645

Naing AH, CK Kim. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses. Physiol Plant 2021; 172:1711–23. https://doi.org/10.1111/ppl.13373

Azeem M, Pirjan K, Qasim M, Mahmood A, Javed T, Muhammad H, et al. Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam. Sci Rep. 2023; 13(1):1-17. https://doi.org/10.1038/s41598-023-29954-6

Sevengor S, Yasar F, Kusvuran S, Ellialtioglu S. The effect of salt stress on growth chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedlings. Afr J Agric Res. 2011; 6:4920-24

Yamagata K. Carotenoids regulate endothelial functions and reduce the risk of cardiovascular disease. In: Cvetkavic D, Nikolic G, editors. Carotenoids. London: IntechOpen; 2017; 105-121. https://doi.org/10.5772/65523

Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Govindjee R, Scholes GD. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev. 2017; 117(2):249–93

Minh LT, Khang DT, Ha PTT, Tuyen PT, Minh TN, Quan NV, et al. Effects of salinity stress on growth and phenolics of Rice (Oryza sativa L.). International Letters of Natural Sciences 2016; 57:1-10. https://doi.org/10.18052/www.scipress.com/ILNS.57.1

Xu Z, Mahmood K, Rothstein SJ. ROS induces anthocyanin production via late biosynthetic genes and anthocyanin deficiency confers the hypersensitivity to ROS-generating stresses in Arabidopsis. Plant and Cell Physiology. 2017; 58(8):1364–77. https://doi.org/10.1093/pcp/pcx073

Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. 2017; 61:1361779. https://doi.org/10.1080/16546628.2017.1361779

Chang WC, Chen MH, Lee TM. 2,3,5-triphenyltetrazolium reduction in the viability assay of Ulva fasciata (Chlorophyta) in response to salinity stress. Bot Bull Acad Sinica. 1999; 40(3):207-12

Tanaka J, Kiyoshi K, Kadokura T, Suzuki Kichiro, Nakayama S. Elucidation of the enzyme involved in 2,3,5-triphenyl tetrazolium chloride (TTC) staining activity and the relationship between TTC staining activity and fermentation profiles in Saccharomyces cerevisiae. J Biosci Bioeng. 2021; 131(4):396-404. https://doi.org/10.1016/j.jbiosc.2020.12.001

Ghazanfar B, Cheng Z, Ahmad I, Khan AR, Hanqiang L, Haiyan D, et al. Synergistic and individual effect of Glomus etunicatum root colonization and acetylsalicylic acid on root activity and architecture of tomato plants under moderate NaCl stress. Pak J Bot. 2015; 47(6):2047-54

Lu I-F, Sung M-S, Lee T-M. Salinity stress and hydrogen peroxide regulation of antioxidant defense system in Ulva fasciata. Mar Biol. 2006; 150:1-15. https://doi.org/10.1007/s00227-006-0323-3

Jacoby RP, Taylor NL, Millar AH. The role of mitochondrial respiration in salinity tolerance. Trends Plant Sci. 2011; 16(11):614-23. https://doi.org/10.1016/j.tplants.2011.08.002

Liu J, He Z. Small DNA methylation, big player in plant abiotic stress responses and memory. Front Plant Sci. 2020; 11:595603. https://doi.org/10.3389/fpls.2020.595603

Meltzer PS, Kallioniemi A, Trent JM. Chromosome alterations in human solid tumors. In: Vogelstein B, Kinzler KW, editors. The genetic basis of human cancer. New York: McGraw-Hill; 2002. p. 93-113

Published

28-01-2024 — Updated on 01-04-2024

Versions

How to Cite

1.
Gallegos-Hernández G, Almaraz-Abarca N, Delgado-Alvarado EA, Ávila-Reyes JA, Torres-Ricario R. Variation of the chemical and biochemical responses to salinity during germination and early growth of seedlings of two populations of Agave durangensis Gentry. Plant Sci. Today [Internet]. 2024 Apr. 1 [cited 2024 Nov. 8];11(2). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/2963

Issue

Section

Research Articles

Most read articles by the same author(s)