Review Articles
Vol. 11 No. 4 (2024)
Mushroom alkaloids as nutraceuticals, bioactive and medicinal properties: a preliminary review
Department of Botany, School of Life Sciences, St. Joseph’s University, Lalbagh Road, Bengaluru – 560 027, Karnataka, India
Department of Botany, School of Life Sciences, St. Joseph’s University, Lalbagh Road, Bengaluru – 560 027, Karnataka, India
Abstract
Mushroom alkaloids are quite interesting due to their distinct secondary metabolites. Alkaloids are a class of secondary metabolites that are found in different types of organisms. The primary focus of this study is the alkaloids that were taken out of the mushrooms. Mainly the mushrooms alkaloids are classified as 2 groups like indoles and isoxazoles. In the present paper 68 distinct alkaloids produced from mushrooms were attempted to be listed under 24 distinct groups; i.e. 24 alkaloids were kept under Indole group, 5 different alkaloids were kept under ? - carboline group and pyrroloquinoline group, 4 different alkaloids were kept under pyrrole group, and 3 different alkaloids were mentioned under quinoline groups. Mushrooms were used as food in many parts of the world. The alkaloids obtained from mushrooms showing different bioactivities like antimicrobial, anticancer, anti-diabetic, hepatoprotective, anti-inflammatory, antioxidant, immunomodulatory, anti-obesity, anti - ageing, nematicidal, helmintic, against cardiovascular disease and as antiasthmatic agent. Mushrooms were widely used in the traditional medicine of many countries like china, India, Taiwan, Japan etc. these mushrooms became great resources for many groups of alkaloids with bioactivities which should be useful in present day modern clinical and pharmacological research. The present review aims at listing the applications of mushroom alkaloids in different fields like medicine, health science, pharmacy etc.
References
- Ergonul PG, Akata I, Kalyoncu F, Ergonul B. Fatty acid compositions of six wild edible mushroom species. Sci World J. 2013;4. https://doi.org/10.1155/2013/ 163964
- Ramsbottom J. Mushrooms, toadstools: a study of the activities of fungi. London: Collins. 1954;306.
- Wannet WJB, Hermans JHM, Drift CVDD, Camp HJMOD. HPLC detection of soluble carbohydrates involved in mannitol and trehalose metabolism in the edible mushroom Agaricus bisporus. J Agricult and Food Che. 2000;48(2):287–91. https://doi.org/ 10.1021/jf990596d
- Waktola G, Temesgen T. Application of mushroom as food and medicine. Adv in Biotech and Microbio. 2018;11(4):2474-637. https://doi.org/10.19080/AIBM.2018.11. 555817
- Pusztahelyi T, Holb IJ, Pocsi I. Secondary metabolites in fungus - plant interactions. Front Plant Sci. 2015;6:573. https://doi.org/10.3389/fpls.2015.00573
- De-Leon AM, Orpilla JOV, Cruz KV, Dulay RMR, et al. Optimization of mycelial growth and mycochemical screening of Lentinus sajor-caju (fr.) from Banaue, Ifugao Province, Philippines. Int J Agri Tech. 2017;13(7.3):2549-67.
- Romorosa ES, De-Guzman CT, Martin JRG, Jacob JKS. Preliminary investigation on the pharmacological properties of wood-rotting mushrooms collected from Isabela State University, Echague, Isabela, Philippines. Int J Agri Tech. 2017;13(7.3):2591-96.
- Azeem U, Dhingra GS, Shri R. Evaluation of taxonomy, physicochemical parameters and mycochemical composition of wood decaying indian fungi Phellinus gilvus (Schwein.) Pat. and Phellinus torulosus (Pers.) Bourdot & Galzin: A Comparative Study. Int J Phytopharm Res. 2018;9(1):17-25.
- Zhang JJ, Li Y, Zhou T, Xu PD, et al. Bioactivities and health benefits of mushrooms mainly from China. Molecules. 2016;21(7):938. https://doi.org/10.3390/ molecules21070938
- Hobbs C, Medicinal mushrooms. An exploration of tradition, healing and culture. Botanica Press, Summertown, Tennessee, USA; 1995.
- Matsuda M, Kobayashi T, Nagao S, Ohta T, Nozoe S. Laccarin, a new alkaloid from the mushroom, Laccaria vinaceoavellanea. Heterocycles. 1996;43(3):611-17. https://doi.org/ 10.3987/COM-95-7365
- Chen C, Tong Q, Zhu H, Tan D, Zhang J, et al. Nine new cytochalasan alkaloids from Chaetomium globosum TW1-1 (Ascomycota, Sordariales). Sci Rep. 2016;6(1):1-8. https://doi.org/10.1038/ srep18711
- Schrey H, Spiteller PE. Z- Proxamidines, Unprecedented 1,3 Diazacyclooct-1-ene alkaloids from fruiting bodies of Laccaria proxima. Che. 2019;25(34):8035-42. https://doi.org/10.1002/chem.201900566
- Lohmann JS, Nussbaum MV, Brandt W, Mulbradt J, et al. Rosellin A and B, two red diketopiperazine alkaloids from the mushroom Mycena rosella. Tetrahed. 2018a;74(38):5113-18. https://doi.org/10.1016/j.tet.2018.06.049
- Lu QQ, Tian JM, Wei J, Gao JM. Bioactive metabolites from the mycelia of the basidiomycete Hericium erinaceum. Natural Product Research. 2014;28(16):1288-92. https://doi.org/10.1080/14786419.2014.898145
- Levy LM, Cabrera GM, Wright JE, Seldes AM. Indole alkaloids from a culture of the fungus Aporpiumcaryae. Phytochem. 2000;54(8):941-43. https://doi.org/10.1016/S0031-9422(00)001217-8
- Kim KH, Park KM, Choi SU, Lee KR. Macrolepiotin, a new indole alkaloid from Macrolepiota neomastoidea. J Antibiot. 2009;62:335-38. https://doi.org/10.1038/ja. 2009.30
- Lee YJ, Hwang BS, Song JG, Kim DW, et al. An indole alkaloid from the fruiting body of Boletus umbriniporous. Kore J Mycol. 2015;43(1):68-70. https://doi.org/10.4489/KJM.2015.431.1.68
- Rafati H, Riahi H, Mohammadi A. Enhancement of indole alkaloids produced by Psilocybe cubensis (Earle) Singer (Agaricomycetideae) in controlled harvesting light conditions. Int J Med Mushr. 2009;11(4):419-26. https://doi.org/10.1615/ intJMedMushr.v11.i4.80
- Sterner O. The isolation and structure determination of Sciodole, a new indole derivative from the fruit bodies of Tricholomasciodes. Nat Prod Lett. 2006;4(1):9-14. https://doi.org/10.1080/10575639408043885
- Liu JQ, Wang CF, Peng XR, Qiu MH. New alkaloids from the fruiting bodies of Ganoderma sinense. Nat Prod Bioprospect. 2011;1:93-96. https://doi.org/ 10.1007/ s13659-011-0026-4
- Teichert A, Lubken T, Schmidt J, Kuhnt C, Huth M, et al. Determination of beta-carboline alkaloids in fruiting bodies of Hygrophorous species by liquid chromatography/ electro-spray ionization tandem mass spectrometry. Phytoche Anal. 2008;19(4):335-41. https://doi.org/10.1002/pca.1057
- Filho BAB, Oliveira MCFD, Mafezoli J, Barbosa FG, Filho ER. Secondary metabolite production by the basidiomycete, Lentinus strigellus, under different culture conditions. Nat Prod Commun. 2012;7(6):771-73. https://doi.org/10.1177/ 1934578X1200700620
- Jiang MY, Feng T, Liu JK. N - Containing compounds of macromycetes. Nat Prod Rep. 2011;28(4):783-08. https://doi.org/10.1039/c0np00006j
- Kim KH, Choi SU, Lee KR. Gymnopilin K: a new cytotoxic gymnopilin from Gymnopilus spectabilis. J Antibiot (Tokyo). 2011;135-37. https://doi.org/10.1038/ja. 2011.122
- Koshino H, Lee IK, Kim JP, Kim WG, et al. Agrocybenine, novel class alkaloid from the Korean mushroom Agrocybe cylindracea. Tetrahed Let. 1996;37(26):4549-50. https://doi.org/10.1016/0040-4039(96)00900-8
- Anke T, Oberwinkler F, Steglich W, Schramm G. The strobilurins - new antifungal antibiotics from the basidiomycete Strobilurus tenacellus. J Antibiot (Tokyo). 1977;30(10): 806-10. https://doi.org/10.7164/antibiotics.30.806.
- Kim WG, Lee IK, Kim JP, Ryoo IJ, et al. New indole derivatives with free radical scavenging activity from Agrocybe cylindracea. J Nat Prod. 1997;60(7):721-23. https://doi.org/10.1021/np970150w
- Samchai S, Seephonkai P, Kaewtong C. Two indole derivatives and phenolic compound isolated from mushroom Phellinus linteus. Chin J Nat Med. 2011;9(3):173-75. https://doi.org/10.3724/SP.J.1009.2011.00173
- Chen M, Wang SL. Two new compounds from cultures of the basidiomycete Antrodiella albocinnamomea. Nat Prod Res. 2015;29(21):1985-89. https://doi.org/10.1080/14786419.2015.1017493
- Wittstein K, Rascher M, Rupic Z, Lowen E, Winter B, et al. Corallocins A - C, nerve growth and brain - derived neurotrophic factor inducing metabolites from the mushroom Hericium coralloides. J Nat Prod. 2016;79(9):2264-69. https://doi.org/10.1021/acs.jnatprod.6b00371
- Stachel SJ, Nilges M, Vranken DLV. Synthesis and isomerization of biindolinones from Collybia peronata and Tricholomas calpturatum. J Org Chem. 1997;62(14):4756-62. https://doi.org/10.1021/jo970388p
- Geissler T, Brandt W, Porzel A, Schlenzig D, et al. Acetyl cholinesterase inhibitors from the toadstool Cortinarius infractus. Bioorg Med Chem. 2010;18(6):2173-77. https://doi.org/10.1016/j.bmc.2010.01.074
- Kumar D, Vaya D, Chundawat TS. Total synthesis of 6-hydroxymetatacarboline-d discovered from Mycena metata via the Pictet - Spengler reaction followed by the Horner - Wadsworth - Emmons reaction. Acs Omega. 2021;6:8933-41. https://doi.org/10.1021/ acsomega.0c06202
- Shao D, Tang S, Healey RA, Imerman PM, et al. A novel orellanine containing mushroom Cortinarius armillatus. Toxicon. 2016;114:65-74. http://dx.doi.org/10.1016/j.toxicon.2016.02.010
- Buechel E, Martini U, Mayer A, Anke H, Sterner O. Omphalotins, B, C and D, nematicidal cyclopeptides from Omphalotus olearius. Absolute configuration of omphalotin A. Tetrahedron. 1998;54 (20):5345-52. https://doi.org/10.1016/s00404020(98) 002099
- Yu X, Muller WEG, Guo Z, Lin W, et al. Indole alkaloids from the coprophilous fungus Aphanoascus fulvescens. Fitoterpia. 2019;136. https://doi.org/ 10.1016/j.fitote.2019.05.007
- Tsujikawa K, Kanamori T, Iwata Y, Ohmae Y, et al. Morphological and chemical analysis of magic mushrooms in Japan. Forensic Science International. 2003;138:85-90. https://doi.org/10.1016/j.forsciint.2003.08.009
- Wang K, Bao L, Ma K, Liu N, Huang Y, et al. Eight new alkaloids with PTP1B and ? - glucosidase inhibitory activities from the medicinal mushroom Hericium erinaceus. Tetrahedron. 2015;71(51):9557-63. https://doi.org /10.1016/j.tet.2015.10.068
- Kim KH, Noh HJ, Choi SU, Lee KR. Isohericenone, a new cytotoxic isoindolinone alkaloid from Hericium erinaceum. J Antibiot. 2012;65:575-77. https://doi.org/10.1038/ ja.2012.65
- Quang DN, Schmidt J, Porzel A, Wessjohann L, Haid M, Arnold N. Ampullosine, a new isoquinoline alkaloid from Sepedoniumam pullosporum (Ascomycetes). Nat Prod Commu. 2010;5(6):869-72. https://doi.org/10.1177/1934578X 1000500609
- Valle PD, Martinez AL, Figueroa M, Raja HA, Mata R. Alkaloids from the fungus Penicillium spathulatum as ? - glucosidase inhibitors. Planta Medica. 2016;82(14):1286-94. https://doi.org/10.1055/s-0042-111393
- Filer CN. Ibotenic acid: on the mechanism of its conversion to [3H] muscimol. J Radioanal and Nucl Che. 2018;318: 2033-38. https://doi.org/10.1007/ s10967-018-6203-8
- Gore MG, Jordan PM. Microbore single - column analysis of pharmacologically active alkaloids from the fly agaric mushroom Amanita muscaria. J Chromato A. 1982;243(2):323-28. https://doi.org/10.1016/S0021-9673(00)82424-3
- Quang DN, Spiteller P, Porzel A, Schmidt J, et al. Alkaloids from the mushroom Psudobaeospora pyrifera, Pyriferines A-C. J Nat Prod. 2008;71(9):1620-22. https://doi.org/10.1021/np800365f
- Chen Y, Lan P. Total synthesases and biological evaluation of the Ganoderma lucidium alkaloids Lucidimines B and C. ACS Omega. 2018;3(3):3471-81. https://doi.org/ 10.1021/acsomega.8b00295
- Feng Z, Hong LW, Xin C, Shu WJ. Isolation and identification of two phenoxazone alkaloids from Trametes cinnabarina (Jacq.) Franeh. Nat Prod Res Dev. 2014;26(3):358-60.
- Passie T, Seifert J, Schneider U, Emrich HM. The pharmacology of psilocybin. Addict Biol. 2006;7(4):357-64. https://doi.org/10.1080/1355621021000005937
- Xu ZY, Wu ZA, Bi KS. A novel norsequiterpene alkaloids from the mushroom - forming Flammulina velutipes. Chin Che Let. 2013;24(1):57-58. http://dx.doi.org/ 10.1016/j.cclet.2012.11.012
- Schmidt K, Riese U, Li Z, Hamburger M. Novel tetramic acids and pyridone alkaloids, militarinones B, C and D, from the insect pathogenic fungus Paecilomyces militaris. J Nat Prod. 2003;66(3):378-83. https://doi.org/ 10.1021/np020430y
- Wangun HVK, Hertweck C. Epicoccarines A, B and epipyridone: tetramic acids and pyridine alkaloids from an Epicoccum sp. associated with the tree fungus Pholiota squarrosa. Org Biomol Chem. 2007;5:1702-05. https://doi.org/10.1039/B702378B
- Sun Z, Hu M, Sun Z, Zhu N, Yang J, et al. Pyrrole alkaloids from the edible mushroom Phlebopus portentosus with their bioactive activities. Molecules. 2018;23(5):1198. https://doi.org/10.3390/molecules23051198
- Sakamoto T, Nishida A, Wada N, Nakamura Y, et al. Identification of a novel pyrrole alkaloid from the edible mushroom Basidiomycetes -X (Echigoshirayukidake). Molecules. 2020;25(21):4879. https://doi.org/10.3390/molecules 25214879
- Isaka M, Rugseree N, Maithip P, Kongsaeree P, et al. Hirsutellones A - E, antimycobacterial alkaloids from the insect pathogenic fungus Hirsutella nivea BCC 2594. Tetrahedron. 2005;61(23):5577-83. https://doi.org/10.1016/ j.tet.2005.03.099
- Peters S, Spiteller P. Sanguinones A and B, blue pyrroloquinoline alkaloids from the fruiting bodies of the mushroom Mycena sanguinolenta. J Nat Prod. 2007a;70(8):1274-77. https://doi.org/10.1021/np070179s
- Pulte A, Wagner S, Kogler H, Spiteller P. Pelianthinarubins A and B, red pyrroloquinoline alkaloids from the fruiting bodies of the mushroom Mycena pelianthina. J Nat Prod. 2016;79(4):873-78. https://doi.org/10.1021/acs.jnatprod.5b00942
- Himstedt R, Wagner S, Jaeger RJR, Backenkohler JMLL, et al. Formaldehyde as a chemical defence agent of fruiting bodies of Mycena rosea and its role in the generation of the alkaloid Mycenarubin C. Chem Bio Chem. 2020;21(11):1613-20. https://doi.org/10.1002/cbic.201900733
- Lohmann JS, Wagner S, Nussbaum MV, Pulte A, et al. Mycenafavin A, B, C and D: pyrroloquinoline alkaloids from the fruiting bodies of the mushroom Mycena haematopus. Chemistry. 2018;24(34):8609-14. https://doi.org/10.1002/chem. 201800235
- Peters S, Spiteller P. Mycenarubins A and B, red pyrroloquinoline alkaloids from the mushroom Mycena rosea. Eur J Org Chem. 2007b;10:1571-76. https://doi.org/ 10.1002/ejoc.200600826
- Unger SE, Vincze A, Cooks RG, Chrisman R, Rothman LD. Identification of quaternary alkaloids in mushroom by chromatography/secondary ion mass spectrometry. Anal Chem. 1981;53(7):976-81. https://doi.org/10.1021/ac00230a012
- Tan J, Dong Z, Hu L, Liu J. Lepidamine, the first Aristolane - type sesquiterpene alkaloid from the Basidiomycete Russula lepida. Helvetica Chimica Acta. 2003;86(2):307-09. https://doi.org/10.1002/hlca.200390032
- Li G, Zhang K, Xu J, Dong J, Liu Y. Nematicidal substances from fungi. Recent Pat Biotechnol. 2007;1(3):212-33. https://doi.org/10.2174/187220807782330165
- Teichert A, Schmidt J, Porzel A, Arnold N, Wessjohann L. (Iso)- quinoline alkaloids from fungal fruiting bodies of Cortinariu ssubtortus. J Nat Prod. 2008;71(6):1092-94. https://doi.org/10.1021/np8000859
- Kusano M, Koshino H, Uzawa J, Fujioka S, et al. Nematicidal alkaloids and related compounds produced by the fungus Penicillium cf. simplicissimum. Biosci Biotech and Bioche. 2014;64(12):2559-68. https://doi.org/10.1271/ bbb.64.2559
- Wang XL, Dou M, Luo Q, Cheng LZ, et al. Racemicalkaloids from the fungus Ganoderma cochlear. Fitoterapia. 2017;116:93-98. https://doi.org/ 10.1016/j.fitote.2016.11.011
- Kim JY, Ki DW, Lee YJ, Ha LS, et al. Consoramides A-C, new zwitterionic alkaloids from the fungus Irpex consors. Mycobio. 2021;49(4):434-37. https://doi.org/10.1080/12298093.2021.1924926
- Kim KH, Lee K, Park KM, Kim WK, Lee KR. Isolation of ?-lactam alkaloids from the Macrolepiota neomastoidea. Korean Che Soc. 2008;29(8):1591-93. https://doi.org/ 10.5012/bkcs.2008.29.8.1591
- Kruzselyi D, Vetter J, Ott PG, Darcsi A, Beni S, et al. Isolation and structural elucidation of a novel brunnein - type antioxidant beta- carboline alkaloid from Cyclocybe cylindracea. Fitoterapia. 2019;137:104-80. https://doi.org/10.1016/j.fitote.2019.104180
- Jaeger RJR, Lamshoft M, Gottfried S, Spiteller M, Spiteller P. HR - maldi - MS imaging assisted screening of beta - carboline alkaloids discovered from Mycena metata. J Nat Prod. 2013;76(2):127-34. https://doi.org/10.1021/np300455a
- Teichert A, Schmidt J, Porzel A, Arnold N, Wessjohann L. Brunneins A - C, beta-carboline alkaloids from Cortinarius brunneus. Journal of Natural Products. 2007;70(9):1529-31. https://doi.org/10.1021/np070259w
- Ho LH, Zulkifli NA, Tan TC. Edible mushroom: nutritional properties, potential nutraceutical values, and its utilisation in food product development. An introduction to mushroom. Published by Intech Open. 2020;10. https://doi.org/10.5772/intechopen.91827
- Shari Honari RN. BSN topical therapies and antimicrobials in the management of burn wounds. Critical Care Nursing Clinics of North America. 2004;16(1):1-11. https://doi.org/10.1016/j.ccell.2003.09.008
- Sivakumar R, Vetrichelvan T, Rajemdran NN, Devi MI, et al. Antibacterial activity of mushroom Osmoparous odoratus. Ind J Pharmace Sci. 2006;68(4):523-24. https://doi.org/10.4103/ 0250-474x.27836
- Hur JM, Yang CH, Han SH, Lee SH, et al Antibactreial effect of Phellinus linteus against methicillin resistant Staphylococcus aureus. Fitoterapia. 2004;75(6):603-05. https://doi.org/10.1016/j.fitote.2004.06.005
- Yoon SY, Eo SK, Kim YS, Lee CK, Han SS. Antimicrobial activity of Ganoderma lucidum extract alone and in combination with some antibiotics. Arch Pharm Res. 1994;17(6):438-42. https://doi.org/10.1007/BF02979122
- Matijasevic D, Pantic M, Raskovic B, Pavlovic V, et al. The antibacterial activity of Coriolus versicolor methanol extract and its effect on ultrastructural changes of Staphylococcus aureus and Salmonella enteritidis. Front Microbio. 2016;7:1226. https://doi.org/10.3389/fmicb.2016.01226
- Godoi AMD, Galhardi LCF, Lopes N, Rechenchoski DZ, et al. Evidence - based complementary and alternative medicine. 2014;6. https://doi.org/10.1155/2014/712634
- Liu X, Raju P. In vitro cancer model for drug testing in comprehensive biotechnology (second edition). 2011;5:543-49. https://doi.org/10.1016/B978-0-08-088504-9.00502-X
- Mishra V, Tomar S, Yadav P, Singh MP. Promising anticancer activity of polysaccharides and other macromolecules derived from Oyster mushroom (Pleurotus sp.). International J of Biological Macromolecules. 2021;182:628-37. https://doi.org/10.1016/ j.ijbiomac.2021.05.102
- Ewald N, Bretzel RG. Diabetes mellitus secondary to pancreatic diseases (Type 3c) - Are we neglecting an important disease? European Journal of Internal Medicine. 2013;24(3):203-06. https://doi.org/10.1016/j.ejim.2012.12.017
- Ravi B, Renitta RE, Prabha ML, Issac R, Naidu S. Evaluation of antidiabetic potential of oyster mushroom (Pleurotus ostreatus) in alloxan induced diabetic mice. Immunopharmacol Immunotoxicol. 2013;35(1):101-09. https://doi.org/10.3109/ 08923973.2012.710635
- Sirisidthi K, Kosai P, Jiraungkoorskul W. Antihyperglycemic activity of Ophiocordyceps sinensis. Indian J Agric Res. 2015;49(5):400-06. https://doi.org/10.18805/ ijare.v49i5.5801
- Xiao C, Jiao C, Xie Y, Ye L, et al. Grifola frondose GF5000 improves insulin resistance by modulation the composition of gut microbiota in diabetic rats. J Func Foods. 2021;77. https://doi.org/10.1016/j.j.ff.2020.104313
- Ilyas U, Katare DP, Aeri V, Naseef PP. A review on hepatoprotective and immunomodulatory herbal plants. Pharmacogn Rev. 2016;10(19):66-70. https://doi.org/10.4103/0973-7847.176544.
- Zhao C, Fan J, Liu Y, Guo W, et al. Hepatoprotective activity of Ganoderma lucidum triterpenoids in alcohol induced liver injury in mice, aniTRAQ - based proteomic analysis. Food Chem. 2019;271:148-56. https://doi.org/ 10.1016/j.foodchem.2018.07.115
- Azab A, Nassar A, Azab AN. Anti-inflammatory activity of natural products. Molecules. 2016;21(10):1321. https://doi.org/10.3390/molecules21101321.
- Nitha B, Meera CR, Janardhanan KK. Anti-inflammatory and antitumour activities of cultured mycelium of morel mushroom, Morchella esculenta. Cur Sci. 2007;92:235-39. https://www.jstor.org/stable/24096695
- Rajeswer Rao V. Antioxidant agents in advances in structure and activity relationship of coumarin derivatives. 2016;137-50. https://doi.org/10.1016/B978-0-12-803797-3.00007-2
- Wong KL, Chao HH, Chan P, Chang LP, Liu CF. Antioxidant activity of Ganoderma lucidum in acute ethanol-induced heart toxicity. Phytothe Res. 2004;18(12):1024-26. https://doi.org/10.1002/ptr.1557
- Wang PY, Zhu XL, Lin ZB. Antitumor and immunomodulatory effects of polysaccharides from broken spore of Ganoderma lucidum. Front Pharmacol. 2012;3:135. https://doi.org/10.3389/fphar.2012.00135
- Vasatova M, Pudil R, Horacek JM, Buchler T. Current applications of cardiac troponin T for the diagnosis of myocardial damage. Advances in Clinical Chemistry. 2013;61:33-65. https://doi.org/10.1016/B978-0-12-407680-8.00002-6
- Guillamon E, Lafuente AG, Lozano M, Arrigo AG, et al. Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia. 2010;81(7):715-23. https://doi.org/10.1016/j.fitote.2010.06.005
- Quirt J, Hildebrand KJ, Mazza J, Noya F, Kim H. Asthma. Allergy Asthma Clin Immunol. 2018;14 (Suppl 2):50. https://doi.org/10.1186/s13223-018-0279-0
- Cahng YC, Hsiao YM, Hung SC, Chen YW, et al. Alleviation of Dermatophagoides microceras-induced allergy by an immunomodulatory protein, FIP-fve, from Flammulina velutipes in mice. Biosci Biotech and Bioche. 2015;79(1):88-96. https://doi.org/10.1080/ 09168451.2014.956682
- Safaei M, Sundararajan EA, Driss M, Boulila W, Shapi'i A. A systematic literature review on obesity: Understanding the causes and consequences of obesity and reviewing various machine learning approaches used to predict obesity. Computers in Biology and Medicine. 2021;136: https://doi.org/10.1016/j.compbiomed.2021.104754
- Yunita EP, Yuniar AM, Kusumastuty I, Maghfirotun A, Handayani D. The effects of beta-glucan extract from oyster mushroom (Pleurotus ostreatus) on expression of serum malondialdehyde in sprague dawley rats induced by HFHF diet. J Phy: Confe Series. 2020;1665. https://doi.org/10.1088/1742-6596/1665/1/012035
- Liu JK. Antiaging agents: safe interventions to slow aging and healthy life span extension. Nat Prod Bio Prospect. 2022;12:18. https://doi.org/10.1007/s13659-022-00339-y
- Weng Y, Xiang L, Matsuura A, Zhang Y, et al. Ganodermsides A and B, two novel anti-aging ergosterols from spores of a medicinal mushroom Ganoderma lucidum on yeast via UTH1 gene. Bioorga and Med Che. 2010;18(3):999-02. https://doi.org/10.1016/j.bmc.2009.12.070
- Zhang H, Wang ZY, Zhang Z, Wang X. Purified Auricularia auricular - judae polysaccharide (AAP I-a) prevents oxidative stress in an ageing mouse model. Carbohyd Poly. 2010;84(1):638-48. https://doi.org/10.1016/j.carbpol.2010.12.044
- Lee CH, Lee YY, Chang YC, Pon WL, Lee SP, et al. A carnivorous mushroom paralyzes and kills nematodes via a volatile ketone. Sci Adv. 2023;9(3):4809. https://doi.org/10.1126/sciadv.ade4809.
- Ferreira JM, Carreira DN, Braga FR, Soares FEDF. First report of the nematicidal activity of Flammulina velutipes, its spent mushroom compost and metabolites. 3 Biotech. 2019;9(11):410. https://doi.org/10.1007/s13205-019-1951-x
- Matos AFID, Greesler LT, Giacometi M, Barasuol BM, et al. Nematocidal effect of oyster culinary-medicinal mushroom Pleurotus ostreatus (Agaricomycetes) against Haemonchus contortus. Int J Med Mushr. 2020;22(11):1089-98. https://doi.org/10.1615/ IntJMedMushrooms.2020036364
- R Edith, S Meignanalakshmi, K Vijayarani, M Balagangatharathilagar. In vitro evaluation of antiparasitic activity of oyster mushroom (Pleurotus ostreatus) protein hydrolysates against Haemonchus contortus larvae. The Pharma Innovation Journal. 2023;12(3):5882-85.
- Dube M, Llanes D, Saoud M, Rennert R, et al. Albatrellus confluens (Alb. and Schwein.) Kotl. and Pouz.: Natural fungal compounds and synthetic derivatives with in vitro anthelmintic activities and antiprolifertaive effects against two human cancer cell lines. Molecules. 2022;27(9):2950. https://doi.org/10.3390/molecules27092950
- Badarina I, Putranto HD, Sulistyowati E. In vitro anthelmintic activity of the extract of coffee husk fermented with Pleurotus ostreatus for Ascaridia galli. Animal Prod. 2017;19(1):55-60. https://doi.org/10.20884/1.jap.2017.19.1.595
Downloads
Download data is not yet available.