Mushroom alkaloids as nutraceuticals, bioactive and medicinal properties: a preliminary review
DOI:
https://doi.org/10.14719/pst.3161Keywords:
alkaloids, bioactivities, antimicrobial, nematicidal, immunomodulatory, neutraceuticalsAbstract
Mushroom alkaloids are quite interesting due to their distinct secondary metabolites. Alkaloids are a class of secondary metabolites that are found in different types of organisms. The primary focus of this study is the alkaloids that were taken out of the mushrooms. Mainly the mushrooms alkaloids are classified as 2 groups like indoles and isoxazoles. In the present paper 68 distinct alkaloids produced from mushrooms were attempted to be listed under 24 distinct groups; i.e. 24 alkaloids were kept under Indole group, 5 different alkaloids were kept under ? - carboline group and pyrroloquinoline group, 4 different alkaloids were kept under pyrrole group, and 3 different alkaloids were mentioned under quinoline groups. Mushrooms were used as food in many parts of the world. The alkaloids obtained from mushrooms showing different bioactivities like antimicrobial, anticancer, anti-diabetic, hepatoprotective, anti-inflammatory, antioxidant, immunomodulatory, anti-obesity, anti - ageing, nematicidal, helmintic, against cardiovascular disease and as antiasthmatic agent. Mushrooms were widely used in the traditional medicine of many countries like china, India, Taiwan, Japan etc. these mushrooms became great resources for many groups of alkaloids with bioactivities which should be useful in present day modern clinical and pharmacological research. The present review aims at listing the applications of mushroom alkaloids in different fields like medicine, health science, pharmacy etc.
Downloads
References
Ergonul PG, Akata I, Kalyoncu F, Ergonul B. Fatty acid compositions of six wild edible mushroom species. Sci World J. 2013;4. https://doi.org/10.1155/2013/ 163964
Ramsbottom J. Mushrooms, toadstools: a study of the activities of fungi. London: Collins. 1954;306.
Wannet WJB, Hermans JHM, Drift CVDD, Camp HJMOD. HPLC detection of soluble carbohydrates involved in mannitol and trehalose metabolism in the edible mushroom Agaricus bisporus. J Agricult and Food Che. 2000;48(2):287–91. https://doi.org/ 10.1021/jf990596d
Waktola G, Temesgen T. Application of mushroom as food and medicine. Adv in Biotech and Microbio. 2018;11(4):2474-637. https://doi.org/10.19080/AIBM.2018.11. 555817
Pusztahelyi T, Holb IJ, Pocsi I. Secondary metabolites in fungus - plant interactions. Front Plant Sci. 2015;6:573. https://doi.org/10.3389/fpls.2015.00573
De-Leon AM, Orpilla JOV, Cruz KV, Dulay RMR, et al. Optimization of mycelial growth and mycochemical screening of Lentinus sajor-caju (fr.) from Banaue, Ifugao Province, Philippines. Int J Agri Tech. 2017;13(7.3):2549-67.
Romorosa ES, De-Guzman CT, Martin JRG, Jacob JKS. Preliminary investigation on the pharmacological properties of wood-rotting mushrooms collected from Isabela State University, Echague, Isabela, Philippines. Int J Agri Tech. 2017;13(7.3):2591-96.
Azeem U, Dhingra GS, Shri R. Evaluation of taxonomy, physicochemical parameters and mycochemical composition of wood decaying indian fungi Phellinus gilvus (Schwein.) Pat. and Phellinus torulosus (Pers.) Bourdot & Galzin: A Comparative Study. Int J Phytopharm Res. 2018;9(1):17-25.
Zhang JJ, Li Y, Zhou T, Xu PD, et al. Bioactivities and health benefits of mushrooms mainly from China. Molecules. 2016;21(7):938. https://doi.org/10.3390/ molecules21070938
Hobbs C, Medicinal mushrooms. An exploration of tradition, healing and culture. Botanica Press, Summertown, Tennessee, USA; 1995.
Matsuda M, Kobayashi T, Nagao S, Ohta T, Nozoe S. Laccarin, a new alkaloid from the mushroom, Laccaria vinaceoavellanea. Heterocycles. 1996;43(3):611-17. https://doi.org/ 10.3987/COM-95-7365
Chen C, Tong Q, Zhu H, Tan D, Zhang J, et al. Nine new cytochalasan alkaloids from Chaetomium globosum TW1-1 (Ascomycota, Sordariales). Sci Rep. 2016;6(1):1-8. https://doi.org/10.1038/ srep18711
Schrey H, Spiteller PE. Z- Proxamidines, Unprecedented 1,3 Diazacyclooct-1-ene alkaloids from fruiting bodies of Laccaria proxima. Che. 2019;25(34):8035-42. https://doi.org/10.1002/chem.201900566
Lohmann JS, Nussbaum MV, Brandt W, Mulbradt J, et al. Rosellin A and B, two red diketopiperazine alkaloids from the mushroom Mycena rosella. Tetrahed. 2018a;74(38):5113-18. https://doi.org/10.1016/j.tet.2018.06.049
Lu QQ, Tian JM, Wei J, Gao JM. Bioactive metabolites from the mycelia of the basidiomycete Hericium erinaceum. Natural Product Research. 2014;28(16):1288-92. https://doi.org/10.1080/14786419.2014.898145
Levy LM, Cabrera GM, Wright JE, Seldes AM. Indole alkaloids from a culture of the fungus Aporpiumcaryae. Phytochem. 2000;54(8):941-43. https://doi.org/10.1016/S0031-9422(00)001217-8
Kim KH, Park KM, Choi SU, Lee KR. Macrolepiotin, a new indole alkaloid from Macrolepiota neomastoidea. J Antibiot. 2009;62:335-38. https://doi.org/10.1038/ja. 2009.30
Lee YJ, Hwang BS, Song JG, Kim DW, et al. An indole alkaloid from the fruiting body of Boletus umbriniporous. Kore J Mycol. 2015;43(1):68-70. https://doi.org/10.4489/KJM.2015.431.1.68
Rafati H, Riahi H, Mohammadi A. Enhancement of indole alkaloids produced by Psilocybe cubensis (Earle) Singer (Agaricomycetideae) in controlled harvesting light conditions. Int J Med Mushr. 2009;11(4):419-26. https://doi.org/10.1615/ intJMedMushr.v11.i4.80
Sterner O. The isolation and structure determination of Sciodole, a new indole derivative from the fruit bodies of Tricholomasciodes. Nat Prod Lett. 2006;4(1):9-14. https://doi.org/10.1080/10575639408043885
Liu JQ, Wang CF, Peng XR, Qiu MH. New alkaloids from the fruiting bodies of Ganoderma sinense. Nat Prod Bioprospect. 2011;1:93-96. https://doi.org/ 10.1007/ s13659-011-0026-4
Teichert A, Lubken T, Schmidt J, Kuhnt C, Huth M, et al. Determination of beta-carboline alkaloids in fruiting bodies of Hygrophorous species by liquid chromatography/ electro-spray ionization tandem mass spectrometry. Phytoche Anal. 2008;19(4):335-41. https://doi.org/10.1002/pca.1057
Filho BAB, Oliveira MCFD, Mafezoli J, Barbosa FG, Filho ER. Secondary metabolite production by the basidiomycete, Lentinus strigellus, under different culture conditions. Nat Prod Commun. 2012;7(6):771-73. https://doi.org/10.1177/ 1934578X1200700620
Jiang MY, Feng T, Liu JK. N - Containing compounds of macromycetes. Nat Prod Rep. 2011;28(4):783-08. https://doi.org/10.1039/c0np00006j
Kim KH, Choi SU, Lee KR. Gymnopilin K: a new cytotoxic gymnopilin from Gymnopilus spectabilis. J Antibiot (Tokyo). 2011;135-37. https://doi.org/10.1038/ja. 2011.122
Koshino H, Lee IK, Kim JP, Kim WG, et al. Agrocybenine, novel class alkaloid from the Korean mushroom Agrocybe cylindracea. Tetrahed Let. 1996;37(26):4549-50. https://doi.org/10.1016/0040-4039(96)00900-8
Anke T, Oberwinkler F, Steglich W, Schramm G. The strobilurins - new antifungal antibiotics from the basidiomycete Strobilurus tenacellus. J Antibiot (Tokyo). 1977;30(10): 806-10. https://doi.org/10.7164/antibiotics.30.806.
Kim WG, Lee IK, Kim JP, Ryoo IJ, et al. New indole derivatives with free radical scavenging activity from Agrocybe cylindracea. J Nat Prod. 1997;60(7):721-23. https://doi.org/10.1021/np970150w
Samchai S, Seephonkai P, Kaewtong C. Two indole derivatives and phenolic compound isolated from mushroom Phellinus linteus. Chin J Nat Med. 2011;9(3):173-75. https://doi.org/10.3724/SP.J.1009.2011.00173
Chen M, Wang SL. Two new compounds from cultures of the basidiomycete Antrodiella albocinnamomea. Nat Prod Res. 2015;29(21):1985-89. https://doi.org/10.1080/14786419.2015.1017493
Wittstein K, Rascher M, Rupic Z, Lowen E, Winter B, et al. Corallocins A - C, nerve growth and brain - derived neurotrophic factor inducing metabolites from the mushroom Hericium coralloides. J Nat Prod. 2016;79(9):2264-69. https://doi.org/10.1021/acs.jnatprod.6b00371
Stachel SJ, Nilges M, Vranken DLV. Synthesis and isomerization of biindolinones from Collybia peronata and Tricholomas calpturatum. J Org Chem. 1997;62(14):4756-62. https://doi.org/10.1021/jo970388p
Geissler T, Brandt W, Porzel A, Schlenzig D, et al. Acetyl cholinesterase inhibitors from the toadstool Cortinarius infractus. Bioorg Med Chem. 2010;18(6):2173-77. https://doi.org/10.1016/j.bmc.2010.01.074
Kumar D, Vaya D, Chundawat TS. Total synthesis of 6-hydroxymetatacarboline-d discovered from Mycena metata via the Pictet - Spengler reaction followed by the Horner - Wadsworth - Emmons reaction. Acs Omega. 2021;6:8933-41. https://doi.org/10.1021/ acsomega.0c06202
Shao D, Tang S, Healey RA, Imerman PM, et al. A novel orellanine containing mushroom Cortinarius armillatus. Toxicon. 2016;114:65-74. http://dx.doi.org/10.1016/j.toxicon.2016.02.010
Buechel E, Martini U, Mayer A, Anke H, Sterner O. Omphalotins, B, C and D, nematicidal cyclopeptides from Omphalotus olearius. Absolute configuration of omphalotin A. Tetrahedron. 1998;54 (20):5345-52. https://doi.org/10.1016/s00404020(98) 002099
Yu X, Muller WEG, Guo Z, Lin W, et al. Indole alkaloids from the coprophilous fungus Aphanoascus fulvescens. Fitoterpia. 2019;136. https://doi.org/ 10.1016/j.fitote.2019.05.007
Tsujikawa K, Kanamori T, Iwata Y, Ohmae Y, et al. Morphological and chemical analysis of magic mushrooms in Japan. Forensic Science International. 2003;138:85-90. https://doi.org/10.1016/j.forsciint.2003.08.009
Wang K, Bao L, Ma K, Liu N, Huang Y, et al. Eight new alkaloids with PTP1B and ? - glucosidase inhibitory activities from the medicinal mushroom Hericium erinaceus. Tetrahedron. 2015;71(51):9557-63. https://doi.org /10.1016/j.tet.2015.10.068
Kim KH, Noh HJ, Choi SU, Lee KR. Isohericenone, a new cytotoxic isoindolinone alkaloid from Hericium erinaceum. J Antibiot. 2012;65:575-77. https://doi.org/10.1038/ ja.2012.65
Quang DN, Schmidt J, Porzel A, Wessjohann L, Haid M, Arnold N. Ampullosine, a new isoquinoline alkaloid from Sepedoniumam pullosporum (Ascomycetes). Nat Prod Commu. 2010;5(6):869-72. https://doi.org/10.1177/1934578X 1000500609
Valle PD, Martinez AL, Figueroa M, Raja HA, Mata R. Alkaloids from the fungus Penicillium spathulatum as ? - glucosidase inhibitors. Planta Medica. 2016;82(14):1286-94. https://doi.org/10.1055/s-0042-111393
Filer CN. Ibotenic acid: on the mechanism of its conversion to [3H] muscimol. J Radioanal and Nucl Che. 2018;318: 2033-38. https://doi.org/10.1007/ s10967-018-6203-8
Gore MG, Jordan PM. Microbore single - column analysis of pharmacologically active alkaloids from the fly agaric mushroom Amanita muscaria. J Chromato A. 1982;243(2):323-28. https://doi.org/10.1016/S0021-9673(00)82424-3
Quang DN, Spiteller P, Porzel A, Schmidt J, et al. Alkaloids from the mushroom Psudobaeospora pyrifera, Pyriferines A-C. J Nat Prod. 2008;71(9):1620-22. https://doi.org/10.1021/np800365f
Chen Y, Lan P. Total synthesases and biological evaluation of the Ganoderma lucidium alkaloids Lucidimines B and C. ACS Omega. 2018;3(3):3471-81. https://doi.org/ 10.1021/acsomega.8b00295
Feng Z, Hong LW, Xin C, Shu WJ. Isolation and identification of two phenoxazone alkaloids from Trametes cinnabarina (Jacq.) Franeh. Nat Prod Res Dev. 2014;26(3):358-60.
Passie T, Seifert J, Schneider U, Emrich HM. The pharmacology of psilocybin. Addict Biol. 2006;7(4):357-64. https://doi.org/10.1080/1355621021000005937
Xu ZY, Wu ZA, Bi KS. A novel norsequiterpene alkaloids from the mushroom - forming Flammulina velutipes. Chin Che Let. 2013;24(1):57-58. http://dx.doi.org/ 10.1016/j.cclet.2012.11.012
Schmidt K, Riese U, Li Z, Hamburger M. Novel tetramic acids and pyridone alkaloids, militarinones B, C and D, from the insect pathogenic fungus Paecilomyces militaris. J Nat Prod. 2003;66(3):378-83. https://doi.org/ 10.1021/np020430y
Wangun HVK, Hertweck C. Epicoccarines A, B and epipyridone: tetramic acids and pyridine alkaloids from an Epicoccum sp. associated with the tree fungus Pholiota squarrosa. Org Biomol Chem. 2007;5:1702-05. https://doi.org/10.1039/B702378B
Sun Z, Hu M, Sun Z, Zhu N, Yang J, et al. Pyrrole alkaloids from the edible mushroom Phlebopus portentosus with their bioactive activities. Molecules. 2018;23(5):1198. https://doi.org/10.3390/molecules23051198
Sakamoto T, Nishida A, Wada N, Nakamura Y, et al. Identification of a novel pyrrole alkaloid from the edible mushroom Basidiomycetes -X (Echigoshirayukidake). Molecules. 2020;25(21):4879. https://doi.org/10.3390/molecules 25214879
Isaka M, Rugseree N, Maithip P, Kongsaeree P, et al. Hirsutellones A - E, antimycobacterial alkaloids from the insect pathogenic fungus Hirsutella nivea BCC 2594. Tetrahedron. 2005;61(23):5577-83. https://doi.org/10.1016/ j.tet.2005.03.099
Peters S, Spiteller P. Sanguinones A and B, blue pyrroloquinoline alkaloids from the fruiting bodies of the mushroom Mycena sanguinolenta. J Nat Prod. 2007a;70(8):1274-77. https://doi.org/10.1021/np070179s
Pulte A, Wagner S, Kogler H, Spiteller P. Pelianthinarubins A and B, red pyrroloquinoline alkaloids from the fruiting bodies of the mushroom Mycena pelianthina. J Nat Prod. 2016;79(4):873-78. https://doi.org/10.1021/acs.jnatprod.5b00942
Himstedt R, Wagner S, Jaeger RJR, Backenkohler JMLL, et al. Formaldehyde as a chemical defence agent of fruiting bodies of Mycena rosea and its role in the generation of the alkaloid Mycenarubin C. Chem Bio Chem. 2020;21(11):1613-20. https://doi.org/10.1002/cbic.201900733
Lohmann JS, Wagner S, Nussbaum MV, Pulte A, et al. Mycenafavin A, B, C and D: pyrroloquinoline alkaloids from the fruiting bodies of the mushroom Mycena haematopus. Chemistry. 2018;24(34):8609-14. https://doi.org/10.1002/chem. 201800235
Peters S, Spiteller P. Mycenarubins A and B, red pyrroloquinoline alkaloids from the mushroom Mycena rosea. Eur J Org Chem. 2007b;10:1571-76. https://doi.org/ 10.1002/ejoc.200600826
Unger SE, Vincze A, Cooks RG, Chrisman R, Rothman LD. Identification of quaternary alkaloids in mushroom by chromatography/secondary ion mass spectrometry. Anal Chem. 1981;53(7):976-81. https://doi.org/10.1021/ac00230a012
Tan J, Dong Z, Hu L, Liu J. Lepidamine, the first Aristolane - type sesquiterpene alkaloid from the Basidiomycete Russula lepida. Helvetica Chimica Acta. 2003;86(2):307-09. https://doi.org/10.1002/hlca.200390032
Li G, Zhang K, Xu J, Dong J, Liu Y. Nematicidal substances from fungi. Recent Pat Biotechnol. 2007;1(3):212-33. https://doi.org/10.2174/187220807782330165
Teichert A, Schmidt J, Porzel A, Arnold N, Wessjohann L. (Iso)- quinoline alkaloids from fungal fruiting bodies of Cortinariu ssubtortus. J Nat Prod. 2008;71(6):1092-94. https://doi.org/10.1021/np8000859
Kusano M, Koshino H, Uzawa J, Fujioka S, et al. Nematicidal alkaloids and related compounds produced by the fungus Penicillium cf. simplicissimum. Biosci Biotech and Bioche. 2014;64(12):2559-68. https://doi.org/10.1271/ bbb.64.2559
Wang XL, Dou M, Luo Q, Cheng LZ, et al. Racemicalkaloids from the fungus Ganoderma cochlear. Fitoterapia. 2017;116:93-98. https://doi.org/ 10.1016/j.fitote.2016.11.011
Kim JY, Ki DW, Lee YJ, Ha LS, et al. Consoramides A-C, new zwitterionic alkaloids from the fungus Irpex consors. Mycobio. 2021;49(4):434-37. https://doi.org/10.1080/12298093.2021.1924926
Kim KH, Lee K, Park KM, Kim WK, Lee KR. Isolation of ?-lactam alkaloids from the Macrolepiota neomastoidea. Korean Che Soc. 2008;29(8):1591-93. https://doi.org/ 10.5012/bkcs.2008.29.8.1591
Kruzselyi D, Vetter J, Ott PG, Darcsi A, Beni S, et al. Isolation and structural elucidation of a novel brunnein - type antioxidant beta- carboline alkaloid from Cyclocybe cylindracea. Fitoterapia. 2019;137:104-80. https://doi.org/10.1016/j.fitote.2019.104180
Jaeger RJR, Lamshoft M, Gottfried S, Spiteller M, Spiteller P. HR - maldi - MS imaging assisted screening of beta - carboline alkaloids discovered from Mycena metata. J Nat Prod. 2013;76(2):127-34. https://doi.org/10.1021/np300455a
Teichert A, Schmidt J, Porzel A, Arnold N, Wessjohann L. Brunneins A - C, beta-carboline alkaloids from Cortinarius brunneus. Journal of Natural Products. 2007;70(9):1529-31. https://doi.org/10.1021/np070259w
Ho LH, Zulkifli NA, Tan TC. Edible mushroom: nutritional properties, potential nutraceutical values, and its utilisation in food product development. An introduction to mushroom. Published by Intech Open. 2020;10. https://doi.org/10.5772/intechopen.91827
Shari Honari RN. BSN topical therapies and antimicrobials in the management of burn wounds. Critical Care Nursing Clinics of North America. 2004;16(1):1-11. https://doi.org/10.1016/j.ccell.2003.09.008
Sivakumar R, Vetrichelvan T, Rajemdran NN, Devi MI, et al. Antibacterial activity of mushroom Osmoparous odoratus. Ind J Pharmace Sci. 2006;68(4):523-24. https://doi.org/10.4103/ 0250-474x.27836
Hur JM, Yang CH, Han SH, Lee SH, et al Antibactreial effect of Phellinus linteus against methicillin resistant Staphylococcus aureus. Fitoterapia. 2004;75(6):603-05. https://doi.org/10.1016/j.fitote.2004.06.005
Yoon SY, Eo SK, Kim YS, Lee CK, Han SS. Antimicrobial activity of Ganoderma lucidum extract alone and in combination with some antibiotics. Arch Pharm Res. 1994;17(6):438-42. https://doi.org/10.1007/BF02979122
Matijasevic D, Pantic M, Raskovic B, Pavlovic V, et al. The antibacterial activity of Coriolus versicolor methanol extract and its effect on ultrastructural changes of Staphylococcus aureus and Salmonella enteritidis. Front Microbio. 2016;7:1226. https://doi.org/10.3389/fmicb.2016.01226
Godoi AMD, Galhardi LCF, Lopes N, Rechenchoski DZ, et al. Evidence - based complementary and alternative medicine. 2014;6. https://doi.org/10.1155/2014/712634
Liu X, Raju P. In vitro cancer model for drug testing in comprehensive biotechnology (second edition). 2011;5:543-49. https://doi.org/10.1016/B978-0-08-088504-9.00502-X
Mishra V, Tomar S, Yadav P, Singh MP. Promising anticancer activity of polysaccharides and other macromolecules derived from Oyster mushroom (Pleurotus sp.). International J of Biological Macromolecules. 2021;182:628-37. https://doi.org/10.1016/ j.ijbiomac.2021.05.102
Ewald N, Bretzel RG. Diabetes mellitus secondary to pancreatic diseases (Type 3c) - Are we neglecting an important disease? European Journal of Internal Medicine. 2013;24(3):203-06. https://doi.org/10.1016/j.ejim.2012.12.017
Ravi B, Renitta RE, Prabha ML, Issac R, Naidu S. Evaluation of antidiabetic potential of oyster mushroom (Pleurotus ostreatus) in alloxan induced diabetic mice. Immunopharmacol Immunotoxicol. 2013;35(1):101-09. https://doi.org/10.3109/ 08923973.2012.710635
Sirisidthi K, Kosai P, Jiraungkoorskul W. Antihyperglycemic activity of Ophiocordyceps sinensis. Indian J Agric Res. 2015;49(5):400-06. https://doi.org/10.18805/ ijare.v49i5.5801
Xiao C, Jiao C, Xie Y, Ye L, et al. Grifola frondose GF5000 improves insulin resistance by modulation the composition of gut microbiota in diabetic rats. J Func Foods. 2021;77. https://doi.org/10.1016/j.j.ff.2020.104313
Ilyas U, Katare DP, Aeri V, Naseef PP. A review on hepatoprotective and immunomodulatory herbal plants. Pharmacogn Rev. 2016;10(19):66-70. https://doi.org/10.4103/0973-7847.176544.
Zhao C, Fan J, Liu Y, Guo W, et al. Hepatoprotective activity of Ganoderma lucidum triterpenoids in alcohol induced liver injury in mice, aniTRAQ - based proteomic analysis. Food Chem. 2019;271:148-56. https://doi.org/ 10.1016/j.foodchem.2018.07.115
Azab A, Nassar A, Azab AN. Anti-inflammatory activity of natural products. Molecules. 2016;21(10):1321. https://doi.org/10.3390/molecules21101321.
Nitha B, Meera CR, Janardhanan KK. Anti-inflammatory and antitumour activities of cultured mycelium of morel mushroom, Morchella esculenta. Cur Sci. 2007;92:235-39. https://www.jstor.org/stable/24096695
Rajeswer Rao V. Antioxidant agents in advances in structure and activity relationship of coumarin derivatives. 2016;137-50. https://doi.org/10.1016/B978-0-12-803797-3.00007-2
Wong KL, Chao HH, Chan P, Chang LP, Liu CF. Antioxidant activity of Ganoderma lucidum in acute ethanol-induced heart toxicity. Phytothe Res. 2004;18(12):1024-26. https://doi.org/10.1002/ptr.1557
Wang PY, Zhu XL, Lin ZB. Antitumor and immunomodulatory effects of polysaccharides from broken spore of Ganoderma lucidum. Front Pharmacol. 2012;3:135. https://doi.org/10.3389/fphar.2012.00135
Vasatova M, Pudil R, Horacek JM, Buchler T. Current applications of cardiac troponin T for the diagnosis of myocardial damage. Advances in Clinical Chemistry. 2013;61:33-65. https://doi.org/10.1016/B978-0-12-407680-8.00002-6
Guillamon E, Lafuente AG, Lozano M, Arrigo AG, et al. Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia. 2010;81(7):715-23. https://doi.org/10.1016/j.fitote.2010.06.005
Quirt J, Hildebrand KJ, Mazza J, Noya F, Kim H. Asthma. Allergy Asthma Clin Immunol. 2018;14 (Suppl 2):50. https://doi.org/10.1186/s13223-018-0279-0
Cahng YC, Hsiao YM, Hung SC, Chen YW, et al. Alleviation of Dermatophagoides microceras-induced allergy by an immunomodulatory protein, FIP-fve, from Flammulina velutipes in mice. Biosci Biotech and Bioche. 2015;79(1):88-96. https://doi.org/10.1080/ 09168451.2014.956682
Safaei M, Sundararajan EA, Driss M, Boulila W, Shapi'i A. A systematic literature review on obesity: Understanding the causes and consequences of obesity and reviewing various machine learning approaches used to predict obesity. Computers in Biology and Medicine. 2021;136: https://doi.org/10.1016/j.compbiomed.2021.104754
Yunita EP, Yuniar AM, Kusumastuty I, Maghfirotun A, Handayani D. The effects of beta-glucan extract from oyster mushroom (Pleurotus ostreatus) on expression of serum malondialdehyde in sprague dawley rats induced by HFHF diet. J Phy: Confe Series. 2020;1665. https://doi.org/10.1088/1742-6596/1665/1/012035
Liu JK. Antiaging agents: safe interventions to slow aging and healthy life span extension. Nat Prod Bio Prospect. 2022;12:18. https://doi.org/10.1007/s13659-022-00339-y
Weng Y, Xiang L, Matsuura A, Zhang Y, et al. Ganodermsides A and B, two novel anti-aging ergosterols from spores of a medicinal mushroom Ganoderma lucidum on yeast via UTH1 gene. Bioorga and Med Che. 2010;18(3):999-02. https://doi.org/10.1016/j.bmc.2009.12.070
Zhang H, Wang ZY, Zhang Z, Wang X. Purified Auricularia auricular - judae polysaccharide (AAP I-a) prevents oxidative stress in an ageing mouse model. Carbohyd Poly. 2010;84(1):638-48. https://doi.org/10.1016/j.carbpol.2010.12.044
Lee CH, Lee YY, Chang YC, Pon WL, Lee SP, et al. A carnivorous mushroom paralyzes and kills nematodes via a volatile ketone. Sci Adv. 2023;9(3):4809. https://doi.org/10.1126/sciadv.ade4809.
Ferreira JM, Carreira DN, Braga FR, Soares FEDF. First report of the nematicidal activity of Flammulina velutipes, its spent mushroom compost and metabolites. 3 Biotech. 2019;9(11):410. https://doi.org/10.1007/s13205-019-1951-x
Matos AFID, Greesler LT, Giacometi M, Barasuol BM, et al. Nematocidal effect of oyster culinary-medicinal mushroom Pleurotus ostreatus (Agaricomycetes) against Haemonchus contortus. Int J Med Mushr. 2020;22(11):1089-98. https://doi.org/10.1615/ IntJMedMushrooms.2020036364
R Edith, S Meignanalakshmi, K Vijayarani, M Balagangatharathilagar. In vitro evaluation of antiparasitic activity of oyster mushroom (Pleurotus ostreatus) protein hydrolysates against Haemonchus contortus larvae. The Pharma Innovation Journal. 2023;12(3):5882-85.
Dube M, Llanes D, Saoud M, Rennert R, et al. Albatrellus confluens (Alb. and Schwein.) Kotl. and Pouz.: Natural fungal compounds and synthetic derivatives with in vitro anthelmintic activities and antiprolifertaive effects against two human cancer cell lines. Molecules. 2022;27(9):2950. https://doi.org/10.3390/molecules27092950
Badarina I, Putranto HD, Sulistyowati E. In vitro anthelmintic activity of the extract of coffee husk fermented with Pleurotus ostreatus for Ascaridia galli. Animal Prod. 2017;19(1):55-60. https://doi.org/10.20884/1.jap.2017.19.1.595
Downloads
Published
Versions
- 17-10-2024 (2)
- 09-10-2024 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 Archana O, Praveen Kumar Nagadesi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).