Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 11 No. 4 (2024)

Mushroom alkaloids as nutraceuticals, bioactive and medicinal properties: a preliminary review

DOI
https://doi.org/10.14719/pst.3161
Submitted
4 December 2023
Published
09-10-2024 — Updated on 17-10-2024
Versions

Abstract

Mushroom alkaloids are quite interesting due to their distinct secondary metabolites. Alkaloids are a class of secondary metabolites that are found in different types of organisms. The primary focus of this study is the alkaloids that were taken out of the mushrooms. Mainly the mushrooms alkaloids are classified as 2 groups like indoles and isoxazoles. In the present paper 68 distinct alkaloids produced from mushrooms were attempted to be listed under 24 distinct groups; i.e. 24 alkaloids were kept under Indole group, 5 different alkaloids were kept under ? - carboline group and pyrroloquinoline group, 4 different alkaloids were kept under pyrrole group, and 3 different alkaloids were mentioned under quinoline groups. Mushrooms were used as food in many parts of the world. The alkaloids obtained from mushrooms showing different bioactivities like antimicrobial, anticancer, anti-diabetic, hepatoprotective, anti-inflammatory, antioxidant, immunomodulatory, anti-obesity, anti - ageing, nematicidal, helmintic, against cardiovascular disease and as antiasthmatic agent. Mushrooms were widely used in the traditional medicine of many countries like china, India, Taiwan, Japan etc. these mushrooms became great resources for many groups of alkaloids with bioactivities which should be useful in present day modern clinical and pharmacological research. The present review aims at listing the applications of mushroom alkaloids in different fields like medicine, health science, pharmacy etc.

References

  1. Ergonul PG, Akata I, Kalyoncu F, Ergonul B. Fatty acid compositions of six wild edible mushroom species. Sci World J. 2013;4. https://doi.org/10.1155/2013/ 163964
  2. Ramsbottom J. Mushrooms, toadstools: a study of the activities of fungi. London: Collins. 1954;306.
  3. Wannet WJB, Hermans JHM, Drift CVDD, Camp HJMOD. HPLC detection of soluble carbohydrates involved in mannitol and trehalose metabolism in the edible mushroom Agaricus bisporus. J Agricult and Food Che. 2000;48(2):287–91. https://doi.org/ 10.1021/jf990596d
  4. Waktola G, Temesgen T. Application of mushroom as food and medicine. Adv in Biotech and Microbio. 2018;11(4):2474-637. https://doi.org/10.19080/AIBM.2018.11. 555817
  5. Pusztahelyi T, Holb IJ, Pocsi I. Secondary metabolites in fungus - plant interactions. Front Plant Sci. 2015;6:573. https://doi.org/10.3389/fpls.2015.00573
  6. De-Leon AM, Orpilla JOV, Cruz KV, Dulay RMR, et al. Optimization of mycelial growth and mycochemical screening of Lentinus sajor-caju (fr.) from Banaue, Ifugao Province, Philippines. Int J Agri Tech. 2017;13(7.3):2549-67.
  7. Romorosa ES, De-Guzman CT, Martin JRG, Jacob JKS. Preliminary investigation on the pharmacological properties of wood-rotting mushrooms collected from Isabela State University, Echague, Isabela, Philippines. Int J Agri Tech. 2017;13(7.3):2591-96.
  8. Azeem U, Dhingra GS, Shri R. Evaluation of taxonomy, physicochemical parameters and mycochemical composition of wood decaying indian fungi Phellinus gilvus (Schwein.) Pat. and Phellinus torulosus (Pers.) Bourdot & Galzin: A Comparative Study. Int J Phytopharm Res. 2018;9(1):17-25.
  9. Zhang JJ, Li Y, Zhou T, Xu PD, et al. Bioactivities and health benefits of mushrooms mainly from China. Molecules. 2016;21(7):938. https://doi.org/10.3390/ molecules21070938
  10. Hobbs C, Medicinal mushrooms. An exploration of tradition, healing and culture. Botanica Press, Summertown, Tennessee, USA; 1995.
  11. Matsuda M, Kobayashi T, Nagao S, Ohta T, Nozoe S. Laccarin, a new alkaloid from the mushroom, Laccaria vinaceoavellanea. Heterocycles. 1996;43(3):611-17. https://doi.org/ 10.3987/COM-95-7365
  12. Chen C, Tong Q, Zhu H, Tan D, Zhang J, et al. Nine new cytochalasan alkaloids from Chaetomium globosum TW1-1 (Ascomycota, Sordariales). Sci Rep. 2016;6(1):1-8. https://doi.org/10.1038/ srep18711
  13. Schrey H, Spiteller PE. Z- Proxamidines, Unprecedented 1,3 Diazacyclooct-1-ene alkaloids from fruiting bodies of Laccaria proxima. Che. 2019;25(34):8035-42. https://doi.org/10.1002/chem.201900566
  14. Lohmann JS, Nussbaum MV, Brandt W, Mulbradt J, et al. Rosellin A and B, two red diketopiperazine alkaloids from the mushroom Mycena rosella. Tetrahed. 2018a;74(38):5113-18. https://doi.org/10.1016/j.tet.2018.06.049
  15. Lu QQ, Tian JM, Wei J, Gao JM. Bioactive metabolites from the mycelia of the basidiomycete Hericium erinaceum. Natural Product Research. 2014;28(16):1288-92. https://doi.org/10.1080/14786419.2014.898145
  16. Levy LM, Cabrera GM, Wright JE, Seldes AM. Indole alkaloids from a culture of the fungus Aporpiumcaryae. Phytochem. 2000;54(8):941-43. https://doi.org/10.1016/S0031-9422(00)001217-8
  17. Kim KH, Park KM, Choi SU, Lee KR. Macrolepiotin, a new indole alkaloid from Macrolepiota neomastoidea. J Antibiot. 2009;62:335-38. https://doi.org/10.1038/ja. 2009.30
  18. Lee YJ, Hwang BS, Song JG, Kim DW, et al. An indole alkaloid from the fruiting body of Boletus umbriniporous. Kore J Mycol. 2015;43(1):68-70. https://doi.org/10.4489/KJM.2015.431.1.68
  19. Rafati H, Riahi H, Mohammadi A. Enhancement of indole alkaloids produced by Psilocybe cubensis (Earle) Singer (Agaricomycetideae) in controlled harvesting light conditions. Int J Med Mushr. 2009;11(4):419-26. https://doi.org/10.1615/ intJMedMushr.v11.i4.80
  20. Sterner O. The isolation and structure determination of Sciodole, a new indole derivative from the fruit bodies of Tricholomasciodes. Nat Prod Lett. 2006;4(1):9-14. https://doi.org/10.1080/10575639408043885
  21. Liu JQ, Wang CF, Peng XR, Qiu MH. New alkaloids from the fruiting bodies of Ganoderma sinense. Nat Prod Bioprospect. 2011;1:93-96. https://doi.org/ 10.1007/ s13659-011-0026-4
  22. Teichert A, Lubken T, Schmidt J, Kuhnt C, Huth M, et al. Determination of beta-carboline alkaloids in fruiting bodies of Hygrophorous species by liquid chromatography/ electro-spray ionization tandem mass spectrometry. Phytoche Anal. 2008;19(4):335-41. https://doi.org/10.1002/pca.1057
  23. Filho BAB, Oliveira MCFD, Mafezoli J, Barbosa FG, Filho ER. Secondary metabolite production by the basidiomycete, Lentinus strigellus, under different culture conditions. Nat Prod Commun. 2012;7(6):771-73. https://doi.org/10.1177/ 1934578X1200700620
  24. Jiang MY, Feng T, Liu JK. N - Containing compounds of macromycetes. Nat Prod Rep. 2011;28(4):783-08. https://doi.org/10.1039/c0np00006j
  25. Kim KH, Choi SU, Lee KR. Gymnopilin K: a new cytotoxic gymnopilin from Gymnopilus spectabilis. J Antibiot (Tokyo). 2011;135-37. https://doi.org/10.1038/ja. 2011.122
  26. Koshino H, Lee IK, Kim JP, Kim WG, et al. Agrocybenine, novel class alkaloid from the Korean mushroom Agrocybe cylindracea. Tetrahed Let. 1996;37(26):4549-50. https://doi.org/10.1016/0040-4039(96)00900-8
  27. Anke T, Oberwinkler F, Steglich W, Schramm G. The strobilurins - new antifungal antibiotics from the basidiomycete Strobilurus tenacellus. J Antibiot (Tokyo). 1977;30(10): 806-10. https://doi.org/10.7164/antibiotics.30.806.
  28. Kim WG, Lee IK, Kim JP, Ryoo IJ, et al. New indole derivatives with free radical scavenging activity from Agrocybe cylindracea. J Nat Prod. 1997;60(7):721-23. https://doi.org/10.1021/np970150w
  29. Samchai S, Seephonkai P, Kaewtong C. Two indole derivatives and phenolic compound isolated from mushroom Phellinus linteus. Chin J Nat Med. 2011;9(3):173-75. https://doi.org/10.3724/SP.J.1009.2011.00173
  30. Chen M, Wang SL. Two new compounds from cultures of the basidiomycete Antrodiella albocinnamomea. Nat Prod Res. 2015;29(21):1985-89. https://doi.org/10.1080/14786419.2015.1017493
  31. Wittstein K, Rascher M, Rupic Z, Lowen E, Winter B, et al. Corallocins A - C, nerve growth and brain - derived neurotrophic factor inducing metabolites from the mushroom Hericium coralloides. J Nat Prod. 2016;79(9):2264-69. https://doi.org/10.1021/acs.jnatprod.6b00371
  32. Stachel SJ, Nilges M, Vranken DLV. Synthesis and isomerization of biindolinones from Collybia peronata and Tricholomas calpturatum. J Org Chem. 1997;62(14):4756-62. https://doi.org/10.1021/jo970388p
  33. Geissler T, Brandt W, Porzel A, Schlenzig D, et al. Acetyl cholinesterase inhibitors from the toadstool Cortinarius infractus. Bioorg Med Chem. 2010;18(6):2173-77. https://doi.org/10.1016/j.bmc.2010.01.074
  34. Kumar D, Vaya D, Chundawat TS. Total synthesis of 6-hydroxymetatacarboline-d discovered from Mycena metata via the Pictet - Spengler reaction followed by the Horner - Wadsworth - Emmons reaction. Acs Omega. 2021;6:8933-41. https://doi.org/10.1021/ acsomega.0c06202
  35. Shao D, Tang S, Healey RA, Imerman PM, et al. A novel orellanine containing mushroom Cortinarius armillatus. Toxicon. 2016;114:65-74. http://dx.doi.org/10.1016/j.toxicon.2016.02.010
  36. Buechel E, Martini U, Mayer A, Anke H, Sterner O. Omphalotins, B, C and D, nematicidal cyclopeptides from Omphalotus olearius. Absolute configuration of omphalotin A. Tetrahedron. 1998;54 (20):5345-52. https://doi.org/10.1016/s00404020(98) 002099
  37. Yu X, Muller WEG, Guo Z, Lin W, et al. Indole alkaloids from the coprophilous fungus Aphanoascus fulvescens. Fitoterpia. 2019;136. https://doi.org/ 10.1016/j.fitote.2019.05.007
  38. Tsujikawa K, Kanamori T, Iwata Y, Ohmae Y, et al. Morphological and chemical analysis of magic mushrooms in Japan. Forensic Science International. 2003;138:85-90. https://doi.org/10.1016/j.forsciint.2003.08.009
  39. Wang K, Bao L, Ma K, Liu N, Huang Y, et al. Eight new alkaloids with PTP1B and ? - glucosidase inhibitory activities from the medicinal mushroom Hericium erinaceus. Tetrahedron. 2015;71(51):9557-63. https://doi.org /10.1016/j.tet.2015.10.068
  40. Kim KH, Noh HJ, Choi SU, Lee KR. Isohericenone, a new cytotoxic isoindolinone alkaloid from Hericium erinaceum. J Antibiot. 2012;65:575-77. https://doi.org/10.1038/ ja.2012.65
  41. Quang DN, Schmidt J, Porzel A, Wessjohann L, Haid M, Arnold N. Ampullosine, a new isoquinoline alkaloid from Sepedoniumam pullosporum (Ascomycetes). Nat Prod Commu. 2010;5(6):869-72. https://doi.org/10.1177/1934578X 1000500609
  42. Valle PD, Martinez AL, Figueroa M, Raja HA, Mata R. Alkaloids from the fungus Penicillium spathulatum as ? - glucosidase inhibitors. Planta Medica. 2016;82(14):1286-94. https://doi.org/10.1055/s-0042-111393
  43. Filer CN. Ibotenic acid: on the mechanism of its conversion to [3H] muscimol. J Radioanal and Nucl Che. 2018;318: 2033-38. https://doi.org/10.1007/ s10967-018-6203-8
  44. Gore MG, Jordan PM. Microbore single - column analysis of pharmacologically active alkaloids from the fly agaric mushroom Amanita muscaria. J Chromato A. 1982;243(2):323-28. https://doi.org/10.1016/S0021-9673(00)82424-3
  45. Quang DN, Spiteller P, Porzel A, Schmidt J, et al. Alkaloids from the mushroom Psudobaeospora pyrifera, Pyriferines A-C. J Nat Prod. 2008;71(9):1620-22. https://doi.org/10.1021/np800365f
  46. Chen Y, Lan P. Total synthesases and biological evaluation of the Ganoderma lucidium alkaloids Lucidimines B and C. ACS Omega. 2018;3(3):3471-81. https://doi.org/ 10.1021/acsomega.8b00295
  47. Feng Z, Hong LW, Xin C, Shu WJ. Isolation and identification of two phenoxazone alkaloids from Trametes cinnabarina (Jacq.) Franeh. Nat Prod Res Dev. 2014;26(3):358-60.
  48. Passie T, Seifert J, Schneider U, Emrich HM. The pharmacology of psilocybin. Addict Biol. 2006;7(4):357-64. https://doi.org/10.1080/1355621021000005937
  49. Xu ZY, Wu ZA, Bi KS. A novel norsequiterpene alkaloids from the mushroom - forming Flammulina velutipes. Chin Che Let. 2013;24(1):57-58. http://dx.doi.org/ 10.1016/j.cclet.2012.11.012
  50. Schmidt K, Riese U, Li Z, Hamburger M. Novel tetramic acids and pyridone alkaloids, militarinones B, C and D, from the insect pathogenic fungus Paecilomyces militaris. J Nat Prod. 2003;66(3):378-83. https://doi.org/ 10.1021/np020430y
  51. Wangun HVK, Hertweck C. Epicoccarines A, B and epipyridone: tetramic acids and pyridine alkaloids from an Epicoccum sp. associated with the tree fungus Pholiota squarrosa. Org Biomol Chem. 2007;5:1702-05. https://doi.org/10.1039/B702378B
  52. Sun Z, Hu M, Sun Z, Zhu N, Yang J, et al. Pyrrole alkaloids from the edible mushroom Phlebopus portentosus with their bioactive activities. Molecules. 2018;23(5):1198. https://doi.org/10.3390/molecules23051198
  53. Sakamoto T, Nishida A, Wada N, Nakamura Y, et al. Identification of a novel pyrrole alkaloid from the edible mushroom Basidiomycetes -X (Echigoshirayukidake). Molecules. 2020;25(21):4879. https://doi.org/10.3390/molecules 25214879
  54. Isaka M, Rugseree N, Maithip P, Kongsaeree P, et al. Hirsutellones A - E, antimycobacterial alkaloids from the insect pathogenic fungus Hirsutella nivea BCC 2594. Tetrahedron. 2005;61(23):5577-83. https://doi.org/10.1016/ j.tet.2005.03.099
  55. Peters S, Spiteller P. Sanguinones A and B, blue pyrroloquinoline alkaloids from the fruiting bodies of the mushroom Mycena sanguinolenta. J Nat Prod. 2007a;70(8):1274-77. https://doi.org/10.1021/np070179s
  56. Pulte A, Wagner S, Kogler H, Spiteller P. Pelianthinarubins A and B, red pyrroloquinoline alkaloids from the fruiting bodies of the mushroom Mycena pelianthina. J Nat Prod. 2016;79(4):873-78. https://doi.org/10.1021/acs.jnatprod.5b00942
  57. Himstedt R, Wagner S, Jaeger RJR, Backenkohler JMLL, et al. Formaldehyde as a chemical defence agent of fruiting bodies of Mycena rosea and its role in the generation of the alkaloid Mycenarubin C. Chem Bio Chem. 2020;21(11):1613-20. https://doi.org/10.1002/cbic.201900733
  58. Lohmann JS, Wagner S, Nussbaum MV, Pulte A, et al. Mycenafavin A, B, C and D: pyrroloquinoline alkaloids from the fruiting bodies of the mushroom Mycena haematopus. Chemistry. 2018;24(34):8609-14. https://doi.org/10.1002/chem. 201800235
  59. Peters S, Spiteller P. Mycenarubins A and B, red pyrroloquinoline alkaloids from the mushroom Mycena rosea. Eur J Org Chem. 2007b;10:1571-76. https://doi.org/ 10.1002/ejoc.200600826
  60. Unger SE, Vincze A, Cooks RG, Chrisman R, Rothman LD. Identification of quaternary alkaloids in mushroom by chromatography/secondary ion mass spectrometry. Anal Chem. 1981;53(7):976-81. https://doi.org/10.1021/ac00230a012
  61. Tan J, Dong Z, Hu L, Liu J. Lepidamine, the first Aristolane - type sesquiterpene alkaloid from the Basidiomycete Russula lepida. Helvetica Chimica Acta. 2003;86(2):307-09. https://doi.org/10.1002/hlca.200390032
  62. Li G, Zhang K, Xu J, Dong J, Liu Y. Nematicidal substances from fungi. Recent Pat Biotechnol. 2007;1(3):212-33. https://doi.org/10.2174/187220807782330165
  63. Teichert A, Schmidt J, Porzel A, Arnold N, Wessjohann L. (Iso)- quinoline alkaloids from fungal fruiting bodies of Cortinariu ssubtortus. J Nat Prod. 2008;71(6):1092-94. https://doi.org/10.1021/np8000859
  64. Kusano M, Koshino H, Uzawa J, Fujioka S, et al. Nematicidal alkaloids and related compounds produced by the fungus Penicillium cf. simplicissimum. Biosci Biotech and Bioche. 2014;64(12):2559-68. https://doi.org/10.1271/ bbb.64.2559
  65. Wang XL, Dou M, Luo Q, Cheng LZ, et al. Racemicalkaloids from the fungus Ganoderma cochlear. Fitoterapia. 2017;116:93-98. https://doi.org/ 10.1016/j.fitote.2016.11.011
  66. Kim JY, Ki DW, Lee YJ, Ha LS, et al. Consoramides A-C, new zwitterionic alkaloids from the fungus Irpex consors. Mycobio. 2021;49(4):434-37. https://doi.org/10.1080/12298093.2021.1924926
  67. Kim KH, Lee K, Park KM, Kim WK, Lee KR. Isolation of ?-lactam alkaloids from the Macrolepiota neomastoidea. Korean Che Soc. 2008;29(8):1591-93. https://doi.org/ 10.5012/bkcs.2008.29.8.1591
  68. Kruzselyi D, Vetter J, Ott PG, Darcsi A, Beni S, et al. Isolation and structural elucidation of a novel brunnein - type antioxidant beta- carboline alkaloid from Cyclocybe cylindracea. Fitoterapia. 2019;137:104-80. https://doi.org/10.1016/j.fitote.2019.104180
  69. Jaeger RJR, Lamshoft M, Gottfried S, Spiteller M, Spiteller P. HR - maldi - MS imaging assisted screening of beta - carboline alkaloids discovered from Mycena metata. J Nat Prod. 2013;76(2):127-34. https://doi.org/10.1021/np300455a
  70. Teichert A, Schmidt J, Porzel A, Arnold N, Wessjohann L. Brunneins A - C, beta-carboline alkaloids from Cortinarius brunneus. Journal of Natural Products. 2007;70(9):1529-31. https://doi.org/10.1021/np070259w
  71. Ho LH, Zulkifli NA, Tan TC. Edible mushroom: nutritional properties, potential nutraceutical values, and its utilisation in food product development. An introduction to mushroom. Published by Intech Open. 2020;10. https://doi.org/10.5772/intechopen.91827
  72. Shari Honari RN. BSN topical therapies and antimicrobials in the management of burn wounds. Critical Care Nursing Clinics of North America. 2004;16(1):1-11. https://doi.org/10.1016/j.ccell.2003.09.008
  73. Sivakumar R, Vetrichelvan T, Rajemdran NN, Devi MI, et al. Antibacterial activity of mushroom Osmoparous odoratus. Ind J Pharmace Sci. 2006;68(4):523-24. https://doi.org/10.4103/ 0250-474x.27836
  74. Hur JM, Yang CH, Han SH, Lee SH, et al Antibactreial effect of Phellinus linteus against methicillin resistant Staphylococcus aureus. Fitoterapia. 2004;75(6):603-05. https://doi.org/10.1016/j.fitote.2004.06.005
  75. Yoon SY, Eo SK, Kim YS, Lee CK, Han SS. Antimicrobial activity of Ganoderma lucidum extract alone and in combination with some antibiotics. Arch Pharm Res. 1994;17(6):438-42. https://doi.org/10.1007/BF02979122
  76. Matijasevic D, Pantic M, Raskovic B, Pavlovic V, et al. The antibacterial activity of Coriolus versicolor methanol extract and its effect on ultrastructural changes of Staphylococcus aureus and Salmonella enteritidis. Front Microbio. 2016;7:1226. https://doi.org/10.3389/fmicb.2016.01226
  77. Godoi AMD, Galhardi LCF, Lopes N, Rechenchoski DZ, et al. Evidence - based complementary and alternative medicine. 2014;6. https://doi.org/10.1155/2014/712634
  78. Liu X, Raju P. In vitro cancer model for drug testing in comprehensive biotechnology (second edition). 2011;5:543-49. https://doi.org/10.1016/B978-0-08-088504-9.00502-X
  79. Mishra V, Tomar S, Yadav P, Singh MP. Promising anticancer activity of polysaccharides and other macromolecules derived from Oyster mushroom (Pleurotus sp.). International J of Biological Macromolecules. 2021;182:628-37. https://doi.org/10.1016/ j.ijbiomac.2021.05.102
  80. Ewald N, Bretzel RG. Diabetes mellitus secondary to pancreatic diseases (Type 3c) - Are we neglecting an important disease? European Journal of Internal Medicine. 2013;24(3):203-06. https://doi.org/10.1016/j.ejim.2012.12.017
  81. Ravi B, Renitta RE, Prabha ML, Issac R, Naidu S. Evaluation of antidiabetic potential of oyster mushroom (Pleurotus ostreatus) in alloxan induced diabetic mice. Immunopharmacol Immunotoxicol. 2013;35(1):101-09. https://doi.org/10.3109/ 08923973.2012.710635
  82. Sirisidthi K, Kosai P, Jiraungkoorskul W. Antihyperglycemic activity of Ophiocordyceps sinensis. Indian J Agric Res. 2015;49(5):400-06. https://doi.org/10.18805/ ijare.v49i5.5801
  83. Xiao C, Jiao C, Xie Y, Ye L, et al. Grifola frondose GF5000 improves insulin resistance by modulation the composition of gut microbiota in diabetic rats. J Func Foods. 2021;77. https://doi.org/10.1016/j.j.ff.2020.104313
  84. Ilyas U, Katare DP, Aeri V, Naseef PP. A review on hepatoprotective and immunomodulatory herbal plants. Pharmacogn Rev. 2016;10(19):66-70. https://doi.org/10.4103/0973-7847.176544.
  85. Zhao C, Fan J, Liu Y, Guo W, et al. Hepatoprotective activity of Ganoderma lucidum triterpenoids in alcohol induced liver injury in mice, aniTRAQ - based proteomic analysis. Food Chem. 2019;271:148-56. https://doi.org/ 10.1016/j.foodchem.2018.07.115
  86. Azab A, Nassar A, Azab AN. Anti-inflammatory activity of natural products. Molecules. 2016;21(10):1321. https://doi.org/10.3390/molecules21101321.
  87. Nitha B, Meera CR, Janardhanan KK. Anti-inflammatory and antitumour activities of cultured mycelium of morel mushroom, Morchella esculenta. Cur Sci. 2007;92:235-39. https://www.jstor.org/stable/24096695
  88. Rajeswer Rao V. Antioxidant agents in advances in structure and activity relationship of coumarin derivatives. 2016;137-50. https://doi.org/10.1016/B978-0-12-803797-3.00007-2
  89. Wong KL, Chao HH, Chan P, Chang LP, Liu CF. Antioxidant activity of Ganoderma lucidum in acute ethanol-induced heart toxicity. Phytothe Res. 2004;18(12):1024-26. https://doi.org/10.1002/ptr.1557
  90. Wang PY, Zhu XL, Lin ZB. Antitumor and immunomodulatory effects of polysaccharides from broken spore of Ganoderma lucidum. Front Pharmacol. 2012;3:135. https://doi.org/10.3389/fphar.2012.00135
  91. Vasatova M, Pudil R, Horacek JM, Buchler T. Current applications of cardiac troponin T for the diagnosis of myocardial damage. Advances in Clinical Chemistry. 2013;61:33-65. https://doi.org/10.1016/B978-0-12-407680-8.00002-6
  92. Guillamon E, Lafuente AG, Lozano M, Arrigo AG, et al. Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia. 2010;81(7):715-23. https://doi.org/10.1016/j.fitote.2010.06.005
  93. Quirt J, Hildebrand KJ, Mazza J, Noya F, Kim H. Asthma. Allergy Asthma Clin Immunol. 2018;14 (Suppl 2):50. https://doi.org/10.1186/s13223-018-0279-0
  94. Cahng YC, Hsiao YM, Hung SC, Chen YW, et al. Alleviation of Dermatophagoides microceras-induced allergy by an immunomodulatory protein, FIP-fve, from Flammulina velutipes in mice. Biosci Biotech and Bioche. 2015;79(1):88-96. https://doi.org/10.1080/ 09168451.2014.956682
  95. Safaei M, Sundararajan EA, Driss M, Boulila W, Shapi'i A. A systematic literature review on obesity: Understanding the causes and consequences of obesity and reviewing various machine learning approaches used to predict obesity. Computers in Biology and Medicine. 2021;136: https://doi.org/10.1016/j.compbiomed.2021.104754
  96. Yunita EP, Yuniar AM, Kusumastuty I, Maghfirotun A, Handayani D. The effects of beta-glucan extract from oyster mushroom (Pleurotus ostreatus) on expression of serum malondialdehyde in sprague dawley rats induced by HFHF diet. J Phy: Confe Series. 2020;1665. https://doi.org/10.1088/1742-6596/1665/1/012035
  97. Liu JK. Antiaging agents: safe interventions to slow aging and healthy life span extension. Nat Prod Bio Prospect. 2022;12:18. https://doi.org/10.1007/s13659-022-00339-y
  98. Weng Y, Xiang L, Matsuura A, Zhang Y, et al. Ganodermsides A and B, two novel anti-aging ergosterols from spores of a medicinal mushroom Ganoderma lucidum on yeast via UTH1 gene. Bioorga and Med Che. 2010;18(3):999-02. https://doi.org/10.1016/j.bmc.2009.12.070
  99. Zhang H, Wang ZY, Zhang Z, Wang X. Purified Auricularia auricular - judae polysaccharide (AAP I-a) prevents oxidative stress in an ageing mouse model. Carbohyd Poly. 2010;84(1):638-48. https://doi.org/10.1016/j.carbpol.2010.12.044
  100. Lee CH, Lee YY, Chang YC, Pon WL, Lee SP, et al. A carnivorous mushroom paralyzes and kills nematodes via a volatile ketone. Sci Adv. 2023;9(3):4809. https://doi.org/10.1126/sciadv.ade4809.
  101. Ferreira JM, Carreira DN, Braga FR, Soares FEDF. First report of the nematicidal activity of Flammulina velutipes, its spent mushroom compost and metabolites. 3 Biotech. 2019;9(11):410. https://doi.org/10.1007/s13205-019-1951-x
  102. Matos AFID, Greesler LT, Giacometi M, Barasuol BM, et al. Nematocidal effect of oyster culinary-medicinal mushroom Pleurotus ostreatus (Agaricomycetes) against Haemonchus contortus. Int J Med Mushr. 2020;22(11):1089-98. https://doi.org/10.1615/ IntJMedMushrooms.2020036364
  103. R Edith, S Meignanalakshmi, K Vijayarani, M Balagangatharathilagar. In vitro evaluation of antiparasitic activity of oyster mushroom (Pleurotus ostreatus) protein hydrolysates against Haemonchus contortus larvae. The Pharma Innovation Journal. 2023;12(3):5882-85.
  104. Dube M, Llanes D, Saoud M, Rennert R, et al. Albatrellus confluens (Alb. and Schwein.) Kotl. and Pouz.: Natural fungal compounds and synthetic derivatives with in vitro anthelmintic activities and antiprolifertaive effects against two human cancer cell lines. Molecules. 2022;27(9):2950. https://doi.org/10.3390/molecules27092950
  105. Badarina I, Putranto HD, Sulistyowati E. In vitro anthelmintic activity of the extract of coffee husk fermented with Pleurotus ostreatus for Ascaridia galli. Animal Prod. 2017;19(1):55-60. https://doi.org/10.20884/1.jap.2017.19.1.595

Downloads

Download data is not yet available.