This is an outdated version published on 09-10-2024. Read the most recent version.
Forthcoming

Mushroom alkaloids as nutraceuticals, bioactive and medicinal properties: a preliminary review

Authors

DOI:

https://doi.org/10.14719/pst.3161

Keywords:

alkaloids, bioactivities, antimicrobial, nematicidal, immunomodulatory, neutraceuticals

Abstract

Mushroom alkaloids are quite interesting due to their distinct secondary metabolites. Alkaloids are a class of secondary metabolites that are found in different types of organisms. The primary focus of this study is the alkaloids that were taken out of the mushrooms. Mainly the mushrooms alkaloids are classified as 2 groups like indoles and isoxazoles. In the present paper 68 distinct alkaloids produced from mushrooms were attempted to be listed under 24 distinct groups; i.e. 24 alkaloids were kept under Indole group, 5 different alkaloids were kept under ? - carboline group and pyrroloquinoline group, 4 different alkaloids were kept under pyrrole group, and 3 different alkaloids were mentioned under quinoline groups. Mushrooms were used as food in many parts of the world. The alkaloids obtained from mushrooms showing different bioactivities like antimicrobial, anticancer, anti-diabetic, hepatoprotective, anti-inflammatory, antioxidant, immunomodulatory, anti-obesity, anti - ageing, nematicidal, helmintic, against cardiovascular disease and as antiasthmatic agent. Mushrooms were widely used in the traditional medicine of many countries like china, India, Taiwan, Japan etc. these mushrooms became great resources for many groups of alkaloids with bioactivities which should be useful in present day modern clinical and pharmacological research. The present review aims at listing the applications of mushroom alkaloids in different fields like medicine, health science, pharmacy etc.

Downloads

Download data is not yet available.

References

Ergonul PG, Akata I, Kalyoncu F, Ergonul B. Fatty acid compositions of six wild edible mushroom species. Sci World J. 2013;4. https://doi.org/10.1155/2013/ 163964

Ramsbottom J. Mushrooms, toadstools: a study of the activities of fungi. London: Collins. 1954;306.

Wannet WJB, Hermans JHM, Drift CVDD, Camp HJMOD. HPLC detection of soluble carbohydrates involved in mannitol and trehalose metabolism in the edible mushroom Agaricus bisporus. J Agricult and Food Che. 2000;48(2):287–91. https://doi.org/ 10.1021/jf990596d

Waktola G, Temesgen T. Application of mushroom as food and medicine. Adv in Biotech and Microbio. 2018;11(4):2474-637. https://doi.org/10.19080/AIBM.2018.11. 555817

Pusztahelyi T, Holb IJ, Pocsi I. Secondary metabolites in fungus - plant interactions. Front Plant Sci. 2015;6:573. https://doi.org/10.3389/fpls.2015.00573

De-Leon AM, Orpilla JOV, Cruz KV, Dulay RMR, et al. Optimization of mycelial growth and mycochemical screening of Lentinus sajor-caju (fr.) from Banaue, Ifugao Province, Philippines. Int J Agri Tech. 2017;13(7.3):2549-67.

Romorosa ES, De-Guzman CT, Martin JRG, Jacob JKS. Preliminary investigation on the pharmacological properties of wood-rotting mushrooms collected from Isabela State University, Echague, Isabela, Philippines. Int J Agri Tech. 2017;13(7.3):2591-96.

Azeem U, Dhingra GS, Shri R. Evaluation of taxonomy, physicochemical parameters and mycochemical composition of wood decaying indian fungi Phellinus gilvus (Schwein.) Pat. and Phellinus torulosus (Pers.) Bourdot & Galzin: A Comparative Study. Int J Phytopharm Res. 2018;9(1):17-25.

Zhang JJ, Li Y, Zhou T, Xu PD, et al. Bioactivities and health benefits of mushrooms mainly from China. Molecules. 2016;21(7):938. https://doi.org/10.3390/ molecules21070938

Hobbs C, Medicinal mushrooms. An exploration of tradition, healing and culture. Botanica Press, Summertown, Tennessee, USA; 1995.

Matsuda M, Kobayashi T, Nagao S, Ohta T, Nozoe S. Laccarin, a new alkaloid from the mushroom, Laccaria vinaceoavellanea. Heterocycles. 1996;43(3):611-17. https://doi.org/ 10.3987/COM-95-7365

Chen C, Tong Q, Zhu H, Tan D, Zhang J, et al. Nine new cytochalasan alkaloids from Chaetomium globosum TW1-1 (Ascomycota, Sordariales). Sci Rep. 2016;6(1):1-8. https://doi.org/10.1038/ srep18711

Schrey H, Spiteller PE. Z- Proxamidines, Unprecedented 1,3 Diazacyclooct-1-ene alkaloids from fruiting bodies of Laccaria proxima. Che. 2019;25(34):8035-42. https://doi.org/10.1002/chem.201900566

Lohmann JS, Nussbaum MV, Brandt W, Mulbradt J, et al. Rosellin A and B, two red diketopiperazine alkaloids from the mushroom Mycena rosella. Tetrahed. 2018a;74(38):5113-18. https://doi.org/10.1016/j.tet.2018.06.049

Lu QQ, Tian JM, Wei J, Gao JM. Bioactive metabolites from the mycelia of the basidiomycete Hericium erinaceum. Natural Product Research. 2014;28(16):1288-92. https://doi.org/10.1080/14786419.2014.898145

Levy LM, Cabrera GM, Wright JE, Seldes AM. Indole alkaloids from a culture of the fungus Aporpiumcaryae. Phytochem. 2000;54(8):941-43. https://doi.org/10.1016/S0031-9422(00)001217-8

Kim KH, Park KM, Choi SU, Lee KR. Macrolepiotin, a new indole alkaloid from Macrolepiota neomastoidea. J Antibiot. 2009;62:335-38. https://doi.org/10.1038/ja. 2009.30

Lee YJ, Hwang BS, Song JG, Kim DW, et al. An indole alkaloid from the fruiting body of Boletus umbriniporous. Kore J Mycol. 2015;43(1):68-70. https://doi.org/10.4489/KJM.2015.431.1.68

Rafati H, Riahi H, Mohammadi A. Enhancement of indole alkaloids produced by Psilocybe cubensis (Earle) Singer (Agaricomycetideae) in controlled harvesting light conditions. Int J Med Mushr. 2009;11(4):419-26. https://doi.org/10.1615/ intJMedMushr.v11.i4.80

Sterner O. The isolation and structure determination of Sciodole, a new indole derivative from the fruit bodies of Tricholomasciodes. Nat Prod Lett. 2006;4(1):9-14. https://doi.org/10.1080/10575639408043885

Liu JQ, Wang CF, Peng XR, Qiu MH. New alkaloids from the fruiting bodies of Ganoderma sinense. Nat Prod Bioprospect. 2011;1:93-96. https://doi.org/ 10.1007/ s13659-011-0026-4

Teichert A, Lubken T, Schmidt J, Kuhnt C, Huth M, et al. Determination of beta-carboline alkaloids in fruiting bodies of Hygrophorous species by liquid chromatography/ electro-spray ionization tandem mass spectrometry. Phytoche Anal. 2008;19(4):335-41. https://doi.org/10.1002/pca.1057

Filho BAB, Oliveira MCFD, Mafezoli J, Barbosa FG, Filho ER. Secondary metabolite production by the basidiomycete, Lentinus strigellus, under different culture conditions. Nat Prod Commun. 2012;7(6):771-73. https://doi.org/10.1177/ 1934578X1200700620

Jiang MY, Feng T, Liu JK. N - Containing compounds of macromycetes. Nat Prod Rep. 2011;28(4):783-08. https://doi.org/10.1039/c0np00006j

Kim KH, Choi SU, Lee KR. Gymnopilin K: a new cytotoxic gymnopilin from Gymnopilus spectabilis. J Antibiot (Tokyo). 2011;135-37. https://doi.org/10.1038/ja. 2011.122

Koshino H, Lee IK, Kim JP, Kim WG, et al. Agrocybenine, novel class alkaloid from the Korean mushroom Agrocybe cylindracea. Tetrahed Let. 1996;37(26):4549-50. https://doi.org/10.1016/0040-4039(96)00900-8

Anke T, Oberwinkler F, Steglich W, Schramm G. The strobilurins - new antifungal antibiotics from the basidiomycete Strobilurus tenacellus. J Antibiot (Tokyo). 1977;30(10): 806-10. https://doi.org/10.7164/antibiotics.30.806.

Kim WG, Lee IK, Kim JP, Ryoo IJ, et al. New indole derivatives with free radical scavenging activity from Agrocybe cylindracea. J Nat Prod. 1997;60(7):721-23. https://doi.org/10.1021/np970150w

Samchai S, Seephonkai P, Kaewtong C. Two indole derivatives and phenolic compound isolated from mushroom Phellinus linteus. Chin J Nat Med. 2011;9(3):173-75. https://doi.org/10.3724/SP.J.1009.2011.00173

Chen M, Wang SL. Two new compounds from cultures of the basidiomycete Antrodiella albocinnamomea. Nat Prod Res. 2015;29(21):1985-89. https://doi.org/10.1080/14786419.2015.1017493

Wittstein K, Rascher M, Rupic Z, Lowen E, Winter B, et al. Corallocins A - C, nerve growth and brain - derived neurotrophic factor inducing metabolites from the mushroom Hericium coralloides. J Nat Prod. 2016;79(9):2264-69. https://doi.org/10.1021/acs.jnatprod.6b00371

Stachel SJ, Nilges M, Vranken DLV. Synthesis and isomerization of biindolinones from Collybia peronata and Tricholomas calpturatum. J Org Chem. 1997;62(14):4756-62. https://doi.org/10.1021/jo970388p

Geissler T, Brandt W, Porzel A, Schlenzig D, et al. Acetyl cholinesterase inhibitors from the toadstool Cortinarius infractus. Bioorg Med Chem. 2010;18(6):2173-77. https://doi.org/10.1016/j.bmc.2010.01.074

Kumar D, Vaya D, Chundawat TS. Total synthesis of 6-hydroxymetatacarboline-d discovered from Mycena metata via the Pictet - Spengler reaction followed by the Horner - Wadsworth - Emmons reaction. Acs Omega. 2021;6:8933-41. https://doi.org/10.1021/ acsomega.0c06202

Shao D, Tang S, Healey RA, Imerman PM, et al. A novel orellanine containing mushroom Cortinarius armillatus. Toxicon. 2016;114:65-74. http://dx.doi.org/10.1016/j.toxicon.2016.02.010

Buechel E, Martini U, Mayer A, Anke H, Sterner O. Omphalotins, B, C and D, nematicidal cyclopeptides from Omphalotus olearius. Absolute configuration of omphalotin A. Tetrahedron. 1998;54 (20):5345-52. https://doi.org/10.1016/s00404020(98) 002099

Yu X, Muller WEG, Guo Z, Lin W, et al. Indole alkaloids from the coprophilous fungus Aphanoascus fulvescens. Fitoterpia. 2019;136. https://doi.org/ 10.1016/j.fitote.2019.05.007

Tsujikawa K, Kanamori T, Iwata Y, Ohmae Y, et al. Morphological and chemical analysis of magic mushrooms in Japan. Forensic Science International. 2003;138:85-90. https://doi.org/10.1016/j.forsciint.2003.08.009

Wang K, Bao L, Ma K, Liu N, Huang Y, et al. Eight new alkaloids with PTP1B and ? - glucosidase inhibitory activities from the medicinal mushroom Hericium erinaceus. Tetrahedron. 2015;71(51):9557-63. https://doi.org /10.1016/j.tet.2015.10.068

Kim KH, Noh HJ, Choi SU, Lee KR. Isohericenone, a new cytotoxic isoindolinone alkaloid from Hericium erinaceum. J Antibiot. 2012;65:575-77. https://doi.org/10.1038/ ja.2012.65

Quang DN, Schmidt J, Porzel A, Wessjohann L, Haid M, Arnold N. Ampullosine, a new isoquinoline alkaloid from Sepedoniumam pullosporum (Ascomycetes). Nat Prod Commu. 2010;5(6):869-72. https://doi.org/10.1177/1934578X 1000500609

Valle PD, Martinez AL, Figueroa M, Raja HA, Mata R. Alkaloids from the fungus Penicillium spathulatum as ? - glucosidase inhibitors. Planta Medica. 2016;82(14):1286-94. https://doi.org/10.1055/s-0042-111393

Filer CN. Ibotenic acid: on the mechanism of its conversion to [3H] muscimol. J Radioanal and Nucl Che. 2018;318: 2033-38. https://doi.org/10.1007/ s10967-018-6203-8

Gore MG, Jordan PM. Microbore single - column analysis of pharmacologically active alkaloids from the fly agaric mushroom Amanita muscaria. J Chromato A. 1982;243(2):323-28. https://doi.org/10.1016/S0021-9673(00)82424-3

Quang DN, Spiteller P, Porzel A, Schmidt J, et al. Alkaloids from the mushroom Psudobaeospora pyrifera, Pyriferines A-C. J Nat Prod. 2008;71(9):1620-22. https://doi.org/10.1021/np800365f

Chen Y, Lan P. Total synthesases and biological evaluation of the Ganoderma lucidium alkaloids Lucidimines B and C. ACS Omega. 2018;3(3):3471-81. https://doi.org/ 10.1021/acsomega.8b00295

Feng Z, Hong LW, Xin C, Shu WJ. Isolation and identification of two phenoxazone alkaloids from Trametes cinnabarina (Jacq.) Franeh. Nat Prod Res Dev. 2014;26(3):358-60.

Passie T, Seifert J, Schneider U, Emrich HM. The pharmacology of psilocybin. Addict Biol. 2006;7(4):357-64. https://doi.org/10.1080/1355621021000005937

Xu ZY, Wu ZA, Bi KS. A novel norsequiterpene alkaloids from the mushroom - forming Flammulina velutipes. Chin Che Let. 2013;24(1):57-58. http://dx.doi.org/ 10.1016/j.cclet.2012.11.012

Schmidt K, Riese U, Li Z, Hamburger M. Novel tetramic acids and pyridone alkaloids, militarinones B, C and D, from the insect pathogenic fungus Paecilomyces militaris. J Nat Prod. 2003;66(3):378-83. https://doi.org/ 10.1021/np020430y

Wangun HVK, Hertweck C. Epicoccarines A, B and epipyridone: tetramic acids and pyridine alkaloids from an Epicoccum sp. associated with the tree fungus Pholiota squarrosa. Org Biomol Chem. 2007;5:1702-05. https://doi.org/10.1039/B702378B

Sun Z, Hu M, Sun Z, Zhu N, Yang J, et al. Pyrrole alkaloids from the edible mushroom Phlebopus portentosus with their bioactive activities. Molecules. 2018;23(5):1198. https://doi.org/10.3390/molecules23051198

Sakamoto T, Nishida A, Wada N, Nakamura Y, et al. Identification of a novel pyrrole alkaloid from the edible mushroom Basidiomycetes -X (Echigoshirayukidake). Molecules. 2020;25(21):4879. https://doi.org/10.3390/molecules 25214879

Isaka M, Rugseree N, Maithip P, Kongsaeree P, et al. Hirsutellones A - E, antimycobacterial alkaloids from the insect pathogenic fungus Hirsutella nivea BCC 2594. Tetrahedron. 2005;61(23):5577-83. https://doi.org/10.1016/ j.tet.2005.03.099

Peters S, Spiteller P. Sanguinones A and B, blue pyrroloquinoline alkaloids from the fruiting bodies of the mushroom Mycena sanguinolenta. J Nat Prod. 2007a;70(8):1274-77. https://doi.org/10.1021/np070179s

Pulte A, Wagner S, Kogler H, Spiteller P. Pelianthinarubins A and B, red pyrroloquinoline alkaloids from the fruiting bodies of the mushroom Mycena pelianthina. J Nat Prod. 2016;79(4):873-78. https://doi.org/10.1021/acs.jnatprod.5b00942

Himstedt R, Wagner S, Jaeger RJR, Backenkohler JMLL, et al. Formaldehyde as a chemical defence agent of fruiting bodies of Mycena rosea and its role in the generation of the alkaloid Mycenarubin C. Chem Bio Chem. 2020;21(11):1613-20. https://doi.org/10.1002/cbic.201900733

Lohmann JS, Wagner S, Nussbaum MV, Pulte A, et al. Mycenafavin A, B, C and D: pyrroloquinoline alkaloids from the fruiting bodies of the mushroom Mycena haematopus. Chemistry. 2018;24(34):8609-14. https://doi.org/10.1002/chem. 201800235

Peters S, Spiteller P. Mycenarubins A and B, red pyrroloquinoline alkaloids from the mushroom Mycena rosea. Eur J Org Chem. 2007b;10:1571-76. https://doi.org/ 10.1002/ejoc.200600826

Unger SE, Vincze A, Cooks RG, Chrisman R, Rothman LD. Identification of quaternary alkaloids in mushroom by chromatography/secondary ion mass spectrometry. Anal Chem. 1981;53(7):976-81. https://doi.org/10.1021/ac00230a012

Tan J, Dong Z, Hu L, Liu J. Lepidamine, the first Aristolane - type sesquiterpene alkaloid from the Basidiomycete Russula lepida. Helvetica Chimica Acta. 2003;86(2):307-09. https://doi.org/10.1002/hlca.200390032

Li G, Zhang K, Xu J, Dong J, Liu Y. Nematicidal substances from fungi. Recent Pat Biotechnol. 2007;1(3):212-33. https://doi.org/10.2174/187220807782330165

Teichert A, Schmidt J, Porzel A, Arnold N, Wessjohann L. (Iso)- quinoline alkaloids from fungal fruiting bodies of Cortinariu ssubtortus. J Nat Prod. 2008;71(6):1092-94. https://doi.org/10.1021/np8000859

Kusano M, Koshino H, Uzawa J, Fujioka S, et al. Nematicidal alkaloids and related compounds produced by the fungus Penicillium cf. simplicissimum. Biosci Biotech and Bioche. 2014;64(12):2559-68. https://doi.org/10.1271/ bbb.64.2559

Wang XL, Dou M, Luo Q, Cheng LZ, et al. Racemicalkaloids from the fungus Ganoderma cochlear. Fitoterapia. 2017;116:93-98. https://doi.org/ 10.1016/j.fitote.2016.11.011

Kim JY, Ki DW, Lee YJ, Ha LS, et al. Consoramides A-C, new zwitterionic alkaloids from the fungus Irpex consors. Mycobio. 2021;49(4):434-37. https://doi.org/10.1080/12298093.2021.1924926

Kim KH, Lee K, Park KM, Kim WK, Lee KR. Isolation of ?-lactam alkaloids from the Macrolepiota neomastoidea. Korean Che Soc. 2008;29(8):1591-93. https://doi.org/ 10.5012/bkcs.2008.29.8.1591

Kruzselyi D, Vetter J, Ott PG, Darcsi A, Beni S, et al. Isolation and structural elucidation of a novel brunnein - type antioxidant beta- carboline alkaloid from Cyclocybe cylindracea. Fitoterapia. 2019;137:104-80. https://doi.org/10.1016/j.fitote.2019.104180

Jaeger RJR, Lamshoft M, Gottfried S, Spiteller M, Spiteller P. HR - maldi - MS imaging assisted screening of beta - carboline alkaloids discovered from Mycena metata. J Nat Prod. 2013;76(2):127-34. https://doi.org/10.1021/np300455a

Teichert A, Schmidt J, Porzel A, Arnold N, Wessjohann L. Brunneins A - C, beta-carboline alkaloids from Cortinarius brunneus. Journal of Natural Products. 2007;70(9):1529-31. https://doi.org/10.1021/np070259w

Ho LH, Zulkifli NA, Tan TC. Edible mushroom: nutritional properties, potential nutraceutical values, and its utilisation in food product development. An introduction to mushroom. Published by Intech Open. 2020;10. https://doi.org/10.5772/intechopen.91827

Shari Honari RN. BSN topical therapies and antimicrobials in the management of burn wounds. Critical Care Nursing Clinics of North America. 2004;16(1):1-11. https://doi.org/10.1016/j.ccell.2003.09.008

Sivakumar R, Vetrichelvan T, Rajemdran NN, Devi MI, et al. Antibacterial activity of mushroom Osmoparous odoratus. Ind J Pharmace Sci. 2006;68(4):523-24. https://doi.org/10.4103/ 0250-474x.27836

Hur JM, Yang CH, Han SH, Lee SH, et al Antibactreial effect of Phellinus linteus against methicillin resistant Staphylococcus aureus. Fitoterapia. 2004;75(6):603-05. https://doi.org/10.1016/j.fitote.2004.06.005

Yoon SY, Eo SK, Kim YS, Lee CK, Han SS. Antimicrobial activity of Ganoderma lucidum extract alone and in combination with some antibiotics. Arch Pharm Res. 1994;17(6):438-42. https://doi.org/10.1007/BF02979122

Matijasevic D, Pantic M, Raskovic B, Pavlovic V, et al. The antibacterial activity of Coriolus versicolor methanol extract and its effect on ultrastructural changes of Staphylococcus aureus and Salmonella enteritidis. Front Microbio. 2016;7:1226. https://doi.org/10.3389/fmicb.2016.01226

Godoi AMD, Galhardi LCF, Lopes N, Rechenchoski DZ, et al. Evidence - based complementary and alternative medicine. 2014;6. https://doi.org/10.1155/2014/712634

Liu X, Raju P. In vitro cancer model for drug testing in comprehensive biotechnology (second edition). 2011;5:543-49. https://doi.org/10.1016/B978-0-08-088504-9.00502-X

Mishra V, Tomar S, Yadav P, Singh MP. Promising anticancer activity of polysaccharides and other macromolecules derived from Oyster mushroom (Pleurotus sp.). International J of Biological Macromolecules. 2021;182:628-37. https://doi.org/10.1016/ j.ijbiomac.2021.05.102

Ewald N, Bretzel RG. Diabetes mellitus secondary to pancreatic diseases (Type 3c) - Are we neglecting an important disease? European Journal of Internal Medicine. 2013;24(3):203-06. https://doi.org/10.1016/j.ejim.2012.12.017

Ravi B, Renitta RE, Prabha ML, Issac R, Naidu S. Evaluation of antidiabetic potential of oyster mushroom (Pleurotus ostreatus) in alloxan induced diabetic mice. Immunopharmacol Immunotoxicol. 2013;35(1):101-09. https://doi.org/10.3109/ 08923973.2012.710635

Sirisidthi K, Kosai P, Jiraungkoorskul W. Antihyperglycemic activity of Ophiocordyceps sinensis. Indian J Agric Res. 2015;49(5):400-06. https://doi.org/10.18805/ ijare.v49i5.5801

Xiao C, Jiao C, Xie Y, Ye L, et al. Grifola frondose GF5000 improves insulin resistance by modulation the composition of gut microbiota in diabetic rats. J Func Foods. 2021;77. https://doi.org/10.1016/j.j.ff.2020.104313

Ilyas U, Katare DP, Aeri V, Naseef PP. A review on hepatoprotective and immunomodulatory herbal plants. Pharmacogn Rev. 2016;10(19):66-70. https://doi.org/10.4103/0973-7847.176544.

Zhao C, Fan J, Liu Y, Guo W, et al. Hepatoprotective activity of Ganoderma lucidum triterpenoids in alcohol induced liver injury in mice, aniTRAQ - based proteomic analysis. Food Chem. 2019;271:148-56. https://doi.org/ 10.1016/j.foodchem.2018.07.115

Azab A, Nassar A, Azab AN. Anti-inflammatory activity of natural products. Molecules. 2016;21(10):1321. https://doi.org/10.3390/molecules21101321.

Nitha B, Meera CR, Janardhanan KK. Anti-inflammatory and antitumour activities of cultured mycelium of morel mushroom, Morchella esculenta. Cur Sci. 2007;92:235-39. https://www.jstor.org/stable/24096695

Rajeswer Rao V. Antioxidant agents in advances in structure and activity relationship of coumarin derivatives. 2016;137-50. https://doi.org/10.1016/B978-0-12-803797-3.00007-2

Wong KL, Chao HH, Chan P, Chang LP, Liu CF. Antioxidant activity of Ganoderma lucidum in acute ethanol-induced heart toxicity. Phytothe Res. 2004;18(12):1024-26. https://doi.org/10.1002/ptr.1557

Wang PY, Zhu XL, Lin ZB. Antitumor and immunomodulatory effects of polysaccharides from broken spore of Ganoderma lucidum. Front Pharmacol. 2012;3:135. https://doi.org/10.3389/fphar.2012.00135

Vasatova M, Pudil R, Horacek JM, Buchler T. Current applications of cardiac troponin T for the diagnosis of myocardial damage. Advances in Clinical Chemistry. 2013;61:33-65. https://doi.org/10.1016/B978-0-12-407680-8.00002-6

Guillamon E, Lafuente AG, Lozano M, Arrigo AG, et al. Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia. 2010;81(7):715-23. https://doi.org/10.1016/j.fitote.2010.06.005

Quirt J, Hildebrand KJ, Mazza J, Noya F, Kim H. Asthma. Allergy Asthma Clin Immunol. 2018;14 (Suppl 2):50. https://doi.org/10.1186/s13223-018-0279-0

Cahng YC, Hsiao YM, Hung SC, Chen YW, et al. Alleviation of Dermatophagoides microceras-induced allergy by an immunomodulatory protein, FIP-fve, from Flammulina velutipes in mice. Biosci Biotech and Bioche. 2015;79(1):88-96. https://doi.org/10.1080/ 09168451.2014.956682

Safaei M, Sundararajan EA, Driss M, Boulila W, Shapi'i A. A systematic literature review on obesity: Understanding the causes and consequences of obesity and reviewing various machine learning approaches used to predict obesity. Computers in Biology and Medicine. 2021;136: https://doi.org/10.1016/j.compbiomed.2021.104754

Yunita EP, Yuniar AM, Kusumastuty I, Maghfirotun A, Handayani D. The effects of beta-glucan extract from oyster mushroom (Pleurotus ostreatus) on expression of serum malondialdehyde in sprague dawley rats induced by HFHF diet. J Phy: Confe Series. 2020;1665. https://doi.org/10.1088/1742-6596/1665/1/012035

Liu JK. Antiaging agents: safe interventions to slow aging and healthy life span extension. Nat Prod Bio Prospect. 2022;12:18. https://doi.org/10.1007/s13659-022-00339-y

Weng Y, Xiang L, Matsuura A, Zhang Y, et al. Ganodermsides A and B, two novel anti-aging ergosterols from spores of a medicinal mushroom Ganoderma lucidum on yeast via UTH1 gene. Bioorga and Med Che. 2010;18(3):999-02. https://doi.org/10.1016/j.bmc.2009.12.070

Zhang H, Wang ZY, Zhang Z, Wang X. Purified Auricularia auricular - judae polysaccharide (AAP I-a) prevents oxidative stress in an ageing mouse model. Carbohyd Poly. 2010;84(1):638-48. https://doi.org/10.1016/j.carbpol.2010.12.044

Lee CH, Lee YY, Chang YC, Pon WL, Lee SP, et al. A carnivorous mushroom paralyzes and kills nematodes via a volatile ketone. Sci Adv. 2023;9(3):4809. https://doi.org/10.1126/sciadv.ade4809.

Ferreira JM, Carreira DN, Braga FR, Soares FEDF. First report of the nematicidal activity of Flammulina velutipes, its spent mushroom compost and metabolites. 3 Biotech. 2019;9(11):410. https://doi.org/10.1007/s13205-019-1951-x

Matos AFID, Greesler LT, Giacometi M, Barasuol BM, et al. Nematocidal effect of oyster culinary-medicinal mushroom Pleurotus ostreatus (Agaricomycetes) against Haemonchus contortus. Int J Med Mushr. 2020;22(11):1089-98. https://doi.org/10.1615/ IntJMedMushrooms.2020036364

R Edith, S Meignanalakshmi, K Vijayarani, M Balagangatharathilagar. In vitro evaluation of antiparasitic activity of oyster mushroom (Pleurotus ostreatus) protein hydrolysates against Haemonchus contortus larvae. The Pharma Innovation Journal. 2023;12(3):5882-85.

Dube M, Llanes D, Saoud M, Rennert R, et al. Albatrellus confluens (Alb. and Schwein.) Kotl. and Pouz.: Natural fungal compounds and synthetic derivatives with in vitro anthelmintic activities and antiprolifertaive effects against two human cancer cell lines. Molecules. 2022;27(9):2950. https://doi.org/10.3390/molecules27092950

Badarina I, Putranto HD, Sulistyowati E. In vitro anthelmintic activity of the extract of coffee husk fermented with Pleurotus ostreatus for Ascaridia galli. Animal Prod. 2017;19(1):55-60. https://doi.org/10.20884/1.jap.2017.19.1.595

Published

09-10-2024

Versions

How to Cite

1.
Archana O, Nagadesi PK. Mushroom alkaloids as nutraceuticals, bioactive and medicinal properties: a preliminary review. Plant Sci. Today [Internet]. 2024 Oct. 9 [cited 2024 Nov. 15];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/3161

Issue

Section

Review Articles