Exploring the potential of synthetic seeds: Influence of explant, encapsulating agent and matrix, advantages and challenges
DOI:
https://doi.org/10.14719/pst.3931Keywords:
axillary buds, encapsulating agents, explant, matrix, shoot tissues, somatic embryos, synthetic seedsAbstract
Synthetic seed can serve as a substitute for conventional seed where conventional seed production is not practical. This method gives a viable solution for propagating plants that are difficult to reproduce through traditional means. Technologies based on synthetic seeds, encapsulating somatic embryos, shoot tissues, or axillary buds in a suitable matrix, demonstrate great influence over plant propagation by helping to accelerate germplasm exchange, increasing genetic preservation, and efficient genetic modification, thus providing the avenue for planting new seeds and accomplishing common goals. This review paper explores the importance of synthetic seeds, the impact of different explants, matrix composition, and encapsulating agents on the quality of synthetic seeds, as well as the benefits and drawbacks of synthetic seeds. Among the various explants used in synthetic seed production, somatic embryos promote genetic stability, shoot buds possess better viability, and axillary buds ensure genotype conservation. Alginate is the prevalent encapsulating agent due to its biocompatibility and cheapness. However, variable germination rates and microbial contamination remained a challenge and we must develop a protocol standardization too. Besides techniques like enhancing the germination rates, stabilizing genes, and having secondary metabolites in the process, the use of cryopreservation technologies and field performance evaluation is also crucially important in the process of creating synthetic seeds. This review discusses current trends in synthetic production research, emphasizing the need for new strategies to address poor germination rates and standardize explants used in synthetic seeds. It examines the factors affecting the production of synthetic seeds, factors affecting seed quality, and potential future developments.
Downloads
References
Rihan HZ, Kareem F, El-Mahrouk ME, Fuller MP. Artificial seeds (principle, aspects and applications). Agronomy. 2017;7(4):71. https://www.mdpi.com/2073-4395/7/4/71
Murashige T. Plant propagation through tissue cultures. Annual Review of Plant Biology. 1974;25(1):135-66. https://doi.org/10.1146/annurev.pp.25.060174.001031
Kitto SK, Janick J. Polyox as an artificial seed coat for asexual embryos. Horticultural Science. 1982;17(3):488-88.
Redenbaugh K, Paasch BD, Nichol JW, Kossler ME, Viss PR, Walker KA. Somatic seeds: encapsulation of asexual plant embryos. Bio/technology. 1986;4(9):797-801. https://doi.org/10.1038/nbt0986-797
Pi?tczak E, Wysoki?ska H. Encapsulation of Centaurium erythraea Rafn. – an efficient method for regeneration of transgenic plants. Acta Biologica Cracoviensia s. Botanica. 2013;55(2):37-44. https://doi.org/10.2478/abcsb-2013-0022
Rai MK, Asthana P, Singh SK, Jaiswal VS, Jaiswal U. The encapsulation technology in fruit plants — a review. Biotechnology Advances. 2009;27(6):671-79. 10.1016/j.biotechadv.2009.04.025
Nikhil A, Shukla S. Production of artificial seeds from nodal region of sweet neem (Murraya koenigii). J Adv Pharma Res Biosci. 2013;1(2):71-74.
Adriani M, Piccioni E, Standardi A. Effect of different treatments on the conversion of ‘Hayward’ kiwifruit synthetic seeds to whole plants following encapsulation of in vitro-derived buds. New Zealand Journal of Crop and Horticultural Science. 2000;28(1):59-67. https://doi.org/10.1080/01140671.2000.9514123
Gantait S, Kundu S, Ali N, Sahu NC. Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Acta Physiologiae Plantarum. 2015;37(5):1-12. https://doi.org/10.1007/s11738-015-1847-2
Redenbaugh K, Slade D, Viss P, Fujii JA. Encapsulation of somatic embryos in synthetic seed coats. HortScience. 1987;22(5):803-09. https://doi.org/10.21273/HORTSCI.22.5.803
Standardi A, Piccioni E. Recent perspectives on synthetic seed technology using nonembryogenic in vitro–derived explants. International Journal of Plant Sciences. 1998;159(6):968-78. https://doi.org/10.1086/314087
Repunte VP, Taya M, Tone S. Conservation of root regeneration potential of cell aggregates from horseradish hairy roots used as artificial seeds. Journal of Chemical Engineering of Japan. 1996;29(5):874-80. https://doi.org/10.1252/jcej.29.874
Gray DJ, Purohit A, Triglano RN. Somatic embryogenesis and development of synthetic seed technology. Critical Reviews in Plant Sciences. 1991;10(1):33-61. https://doi.org/10.1080/07352689109382306
Iqbal MU, Ali A, Rashid HA, Raja NI, Huma NA, Naveed Z, et al. Evaluation of sodium alginate and calcium chloride on development of synthetic seeds. Pak J Bot. 2019;51(5):1569-74. http://dx.doi.org/10.30848/PJB2019-5(36)
Micheli M, Standardi A, Dell'Orco P, Mencuccini M. Preliminary studies on the synthetic seed and encapsulation technologies of vitro-derived olive explants. Acta Horticulturae. 2000;1(1):911-14. https://doi.org/10.17660/ActaHortic.2002.586.199
Standardi A. Encapsulation: Promising technology for nurseries and plant tissue laboratories. AgroLife Scientific Journal. 2012;1(1):48-54.
Trivedi D, Joshi A. Encapsulation of in vitro nodes of Stereospermum suaveolens DC. for propagation. Research Journal of Biotechnology. 2023;18(2):15-21. http://dx.doi.org/10.25303/1802rjbt15021
Standardi A, Micheli M. Encapsulation of in vitro-derived explants: An innovative tool for nurseries. Lambardi M, Ozudogru EA, Jain SM, editors. Protocols for Micropropagation of Selected Economically-Important Horticultural Plants Totowa, NJ: Humana Press; 2012. p. 397-418. https://doi.org/10.1007/978-1-62703-074-8_31
Nongdam P. Development of synthetic seed technology in plants and its applications: A review. International Journal of Current Science. 2016;6(4):86-101. https://api.semanticscholar.org/CorpusID:212535904
Timbert R, Barbotin JN, Kersulec A, Bazinet C, Thomas D. Physico-chemical properties of the encapsulation matrix and germination of carrot somatic embryos. Biotechnology and Bioengineering. 1995;46(6):573-78. https://doi.org/10.1002/bit.260460610
Hegde V, Makeshkumar T, Sheela MN, Chandra CV, Koundinya AV, Anil SR, et al. Production of synthetic seed in cassava (Manihot esculenta Crantz). Journal of Root Crops. 2016;42(2):5-9. https://ojs338.isrc.in/index.php/jrc/article/view/407
Aisy AR, Ratnasari E, Dewi SK. Pengaruh penggunaan jenis natrium alginat terhadap enkapsulasi benih sintetik Phalaenopsis sp. Lentera Bio: Berkala Ilmiah Biologi. 2022;11(1):131-38. https://doi.org/10.26740/lenterabio.v11n1.p131-138
Prakash AV, Nair DS, Alex S, Soni KB, Viji MM, Reghunath BR. Calcium alginate encapsulated synthetic seed production in Plumbago rosea L. for germplasm exchange and distribution. Physiology and Molecular Biology of Plants. 2018;24(1):963-71. http://dx.doi.org/10.1007/s12298-018-0559-7
Asmah HN, Hasnida HN, Zaimah NN, Noraliza A, Salmi NN. Synthetic seed technology for encapsulation and regrowth of in vitro-derived Acacia hyrid shoot and axillary buds. African Journal of Biotechnology. 2011;10(40):7820-24. https://doi.org/10.5897/AJB11.492
Sharma S, Shahzad A, da Silva JA. Synseed technology—A complete synthesis. Biotechnology Advances. 2013;31(2):186-207. https://doi.org/10.1016/j.biotechadv.2012.09.007
Hamza EM. Factors affecting synseeds formation and germination of banana cultivar Grande Naine. World Applied Science Journal. 2013;25(10):1390-99. https://doi.org/10.5829/idosi.wasj.2013.25.10.13411
Muslihatin W, Jadid N, Safitri CE, Kuncoro EP. In vitro germination of Moringa oleifera synthetic seed on different composition of medium. Bioscience Research. 2018;15(3):1982-91.
Bekheet SA. A synthetic seed method through encapsulation of in vitro proliferated bulblets of garlic (Allium sativum L.). Arab J Biotech. 2006;9(3):415-26.
Pereira JE, Guedes RD, Costa FH, Schmitz GC. Composição da matriz de encapsulamento na formação e conversão de sementes sintéticas de pimenta-longa. Horticultura Brasileira. 2008;26(1):93-96. https://doi.org/10.1590/S0102-05362008000100018
Tadda SA, Kui X, Yang H, Li M, Huang Z, Chen X, Qiu D. The response of vegetable sweet potato (Ipomoea batatas Lam.) nodes to different concentrations of encapsulation agent and MS salts. Agronomy. 2021;12(1):19. https://doi.org/10.3390/agronomy12010019
Jang BK, Cho JS, Lee CH. Synthetic seed technology development and production studies for storage, transport and industrialization of bracken spores. Plants. 2020;9(9):1-12. https://doi.org/10.3390/plants9091079
Kaur S. In vitro conservation and exploiting polyembryonate potential of synthetic seeds of Malaxis acuminata D. Don. Plant Tissue Culture and Biotechnology. 2023;33(1):9-15. https://doi.org/10.3329/ptcb.v33i1.66347
Barroso FD, Milagres CD, Fontes PC, Cecon PR. Magnesium-influenced seed potato development and yield. Journal of Plant Nutrition. 2021;44(2):296-308. https://doi.org/10.1080/01904167.2020.1822404
Tobe K, Li X, Omasa K. Effects of five different salts on seed germination and seedling growth of Haloxylon ammodendron (Chenopodiaceae). Seed Science Research. 2004;14(4):345-53. https://doi.org/10.1079/SSR2004188
Choursiya N, Singh R, Singh P, Singh SK. Development of synthetic seed and its evaluation under controlled conditions. International Journal of Advanced and Innovative Research. 2014;3(9):45-48.
Chandra K, Pandey A, Kumar P. Synthetic seed—Future prospects in crop improvement. Int J Agric Innov Res. 2018;6(1):120-25.
Salaj TE, Matúšová RA, Salaj J. The effect of carbohydrates and polyethylene glycol on somatic embryo maturation in hybrid fir Abies alba × Abies numidica. Acta Biologica Cracoviensia (Series Botanica). 2004;46(1):159-67. https://doi.org/10.1023/A:1027312410957
Heringer AS, Vale EM, Barroso T, Santa-Catarina C, Silveira V. Polyethylene glycol effects on somatic embryogenesis of papaya hybrid UENF/CALIMAN 01 seeds. Theoretical and Experimental Plant Physiology. 2013;25(2):116-24. https://doi.org/10.1590/S2197-00252013000200004
Muslihatin W, Jadid N, Saputro TB, Purwani KI, Himayani CE, Calandry AW. Characteristic of synthetic seeds from two medicinal plants (Moringa oleifera and Camellia sinensis). Journal of Physics: Conference Series. IOP Publishing. 2018 Jun 1;1040(1):012005. https://doi.org/10.1088/1742-6596/1040/1/012005
Muslihatin W, Febriawan Z, Nasution AM, Patrialoka SN, Pratama IP, Aisyah PY, et al. Morphological and physiological characteristics of bertoni stem cuttings under 3-indoleacetic acid (IAA) treatment. Agriculture (Pol'nohospodárstvo). 2023;69(4):186-93. https://doi.org/10.2478/agri-2023-0016
Pereira AE, Sandoval-Herrera IE, Zavala-Betancourt SA, Oliveira HC, Ledezma-Pérez AS, Romero J, Fraceto LF. ?-polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: Characterization and evaluation of biological activity. Carbohydrate Polymers. 2017;157(1):1862-73. https://doi.org/10.1016/j.carbpol.2016.11.073
Magray MM, Wani KP, Chatto MA, Ummyiah HM. Synthetic seed technology. International Journal of Current Microbiology and Applied Sciences. 2017;6(11):662-74. https://doi.org/10.20546/ijcmas.2017.611.079
Ara H, Jaiswal U, Jaiswal VS. Synthetic seed: Prospects and limitations. Current Science. 2000;78(12):1438-44. http://www.jstor.org/stable/24104316
Rojas-Vásquez R, Zuñiga-Umaña JM, Abdelnour-Esquivel A, Hernández-Soto A, Gatica-Arias A. Development of synthetic seeds in Arabica coffee embryos under aseptic and non-aseptic conditions. Vegetos. 2022;35(3):839-49. https://doi.org/10.1007/s42535-022-00364-9
Saadat S, Majd A, Naseri L, Iranbakhsh A, Jafari M. Optimization of somatic embryogenesis, synthetic seed production and evaluation of genetic fidelity in Teucrium polium L. In Vitro Cellular and Developmental Biology-Plant. 2023;59(4):483-96. https://doi.org/10.1007/s11627-023-10360-6
Neelakandan AK, Wang K. Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Reports. 2012;31(4):597-620. https://doi.org/10.1007/s00299-011-1202-z
Faisal M, Alatar AA, Ahmad N, Anis M, Hegazy AK. Assessment of genetic fidelity in Rauvolfia serpentina plantlets grown from synthetic (encapsulated) seeds following in vitro storage at 4 °C. Molecules. 2012;17(5):5050-61. https://doi.org/10.3390/molecules17055050
Gantait S, Mukherjee E, Bandyopadhyay P, Bhattacharyya S. M-brigde-and elicitor-assisted enhanced post-storage germination of Rauvolfia serpentina synthetic seeds, their genetic fidelity assessment and reserpine estimation. Industrial Crops and Products. 2022;180(1):114732. https://doi.org/10.1016/j.indcrop.2022.114732
Lata H, Chandra S, Techen N, Wang YH, ElSohly MA, Khan IA. Genetic fidelity of Stevia rebaudiana Bertoni plants grown from synthetic seeds following in vitro storage. Planta Medica. 2016;82(05):PB23. https://doi.org/10.1055/s-0036-1578671
Liu C, He Z, Zhang Y, Hu F, Li M, Liu Q, et al. Synthetic apomixis enables stable transgenerational transmission of heterotic phenotypes in hybrid rice. Plant Communications. 2022;4(2):1-9. https://doi.org/10.1016/j.xplc.2022.100470
Singh A, Dwivedi P. Methyl-jasmonate and salicylic acid as potent elicitors for secondary metabolite production in medicinal plants: A review. Journal of Pharmacognosy and Phytochemistry. 2018;7(1):750-57.
Dwivedi N, Tiwari A, Singh R, Tripathi IP. Evaluation of plant secondary metabolites composition and antimicrobial activities of Eucalyptus globulus extracts. Int J Curr Microbial App Sci. 2018;7(1):4517-27.
Cardoso JC, Oliveira ME, Cardoso FD. Advances and challenges on the in vitro production of secondary metabolites from medicinal plants. Horticultura Brasileira. 2019;37(2):124-32. https://doi.org/10.1590/S0102-053620190201
Nandy S, Das T, Dey A. Role of jasmonic acid and salicylic acid signaling in secondary metabolite production. Aftab T, Yusuf M, editors. Jasmonates and Salicylates Signaling in Plants. Cham: Springer International Publishing; 2021. p. 87-113. https://doi.org/10.1007/978-3-030-75805-9_5
Sanyal R, Nandi S, Pandey S, Das T, Kaur P, Konjengbam M, et al. In vitro propagation and secondary metabolite production in Gloriosa superba L. Applied Microbiology and Biotechnology. 2022;106(17):5399-414. https://doi.org/10.1007/s00253-022-12094-8
Engelmann F. Plant cryopreservation: progress and prospects. In Vitro Cellular and Developmental Biology-Plant. 2004;40(1):427-33. https://doi.org/10.1079/IVP2004541
Sevindik B, ?zgü T, Tütüncü ME, Mendi YY. Cryopreservation and synthetic seed production in ornamental flower bulbs (geophytes). Acta Horticulturae. International Society for Horticultural Science (ISHS), Leuven, Belgium. 2019; p. 17-28. https://doi.org/10.17660/ActaHortic.2019.1234.3
Gulati R. Strategies for sustaining plant germplasm evaluation and conservation a review. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences. 2018;4(5):313-20. https://doi.org/10.26479/2018.0405.25
?im?ek Ö, Özbay S, Isak MA. Synthetic seed production and cryopreservation for myrtle (Myrtus communis L.) genotypes. Çukurova Tar?m ve G?da Bilimleri Dergisi. 2024;39(1):126-36. https://dergipark.org.tr/en/pub/cutarim/issue/85563/1420329
Siew WL, Kwok MY, Ong YM, Liew HP, Yew BK. Effective use of synthetic seed technology in the regeneration of Dendrobium white fairy orchid. Journal of Ornamental Plants. 2014;4(1):1-7.
Bukhari N, Siddique I, Perveen K, Siddiqui I, Alwahibi M. Synthetic seed production and physio-biochemical studies in Cassia angustifolia Vahl. —a medicinal plant. Acta Biologica Hungarica. 2014;65(3):355-67. https://doi.org/10.1556/ABiol.65.2014.3.11
Arguedas M, Villalobos A, Gómez D, Hernández L, Zevallos BE, Cejas I, et al. Field performance of cryopreserved seed-derived maize plants. CryoLetters. 2018;39(6):366-70. http://www.cryoletters.org/Abstracts/vol_39_6_2018.htm#366
Darshini T and Aruna J. Importance of in vitro methods in the propagation of nutraceutical plants- a mini review. Research and Reviews in Biotechnology and Biosciences. 2023;9(2):23-31. https://doi.org/10.5281/zenodo.7932908
Mangena P. Synthetic seeds and their role in agriculture: status and progress in sub-Saharan Africa. Plant Sci Today. 2021;8(3):482-90. https://horizonepublishing.com/journals/index.php/PST/article/view/1116
Downloads
Published
Versions
- 01-01-2025 (2)
- 27-12-2024 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 S Sahu, SP Monalisa, S Jigile, S Kar, SS Parida, SK Swain
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).