Small millets: A multifunctional crop for achieving sustainable food security under climate change

Authors

DOI:

https://doi.org/10.14719/pst.4113

Keywords:

Millets; , Climate resilience; , Nutritional benefits; , C4 photosynthesis; , Biofortification; , Advanced breeding techniques

Abstract

Millets, a varied collection of small-seeded crops from the Poaceae family, are re-emerging as a viable alternative for sustainable food and nutritional security in the context of climate change. Historically a staple in India, millet consumption declined during the Green Revolution due to emphasis on rice and wheat. However, their nutritional enrichment and climate resilience are rekindling interest. Over ten millet species, including sorghum, pearl, and finger millet, are cultivated globally and thrive in marginal lands with minimal water and low nutrients. Their C4 photosynthetic pathway enhances water-use efficiency, making them suitable for hot, dry climates. Despite their benefits, millets face challenges, such as consumer preferences for rice and wheat and vulnerabilities to extreme weather events. Nevertheless, they offer significant nutritional advantages, including high levels of dietary fiber, essential amino acids, vitamins, and minerals. India is a leading millet producer, cultivating various types and experiencing a recent production surge. Investigations into the resilience of millets underscore their capacity to endure environmental stresses. Strategies for improving millet crops include conventional breeding, mutation breeding, and advanced techniques like CRISPR-Cas9. Bio-fortification efforts aim to address micronutrient deficiencies, with promising results in finger millet varieties. Advancements in genetic engineering and genome editing tools are revolutionizing millet improvement. The pangenome concept, which explores genetic diversity within species, offers a framework for developing enhanced cultivars. Integrating wild millet varieties into breeding programs can further unlock their potential. Comprehensive policy initiatives supporting millet cultivation, research, and public awareness are crucial for promoting these nutrient-rich grains, enhancing food security, and fostering sustainable agriculture.

Downloads

Download data is not yet available.

References

Arya C, Bisht A. Small millets: Path to food and nutrition security. In: Small Millet Grains: The Superfoods in Human Diet. Singapore: Springer Nature Singapore; 2022. p. 161-90. http://dx.doi.org/10.1007/978-981-16-9306-9_8

Srinivas A. Millet milling technologies. In: Handbook of Millets-Processing, Quality and Nutrition Status. Singapore: Springer Nature Singapore; 2022. p. 173-203. https://doi.org/10.1007/978-981-16-7224-8

Abubakar A, Ishak MY, Uddin MK, Sulaiman ZA, Ahmad MH, Shehu DS. Impact of climate change and adaptations for cultivation of millets in Central Sahel. Environ Sustain. 2023;6(4):441-54. http://dx.doi.org/10.1007/s42398-023-00291-8

Dwivedi N, Rathore V, Sharma K. A review of millet crops for agricultural sustainability in India. Asian J Agric Ext Econ Socio. 2023;41(10):216-24. https://doi.org/10.9734/ajaees/2023/v41i102162

Jobe TO, Rahimzadeh Karvansara P, Zenzen I, Kopriva S. Ensuring nutritious food under elevated CO2 conditions: a case for improved C4 crops. Front Plant Sci. 2020;11:1267. https://doi.org/10.3389/fpls.2020.01267

Cui H. Challenges and approaches to crop improvement through C3 to C4 engineering. Front Plant Sci. 2021;12:715391. https://doi.org/10.3389/fpls.2021.715391

Raut D, Sudeepthi B, Gawande KN, Reddy G, Vamsi S, Padhan SR, Panigrahi CK. Millet's role as a climate resilient staple for future food security: A review. Int J Environ Clim Chang. 2023;13(11):4542-52. https://doi.org/10.9734/ijecc/2023/v13i113634

Singh SB, Kumar P, Kasana RK, Choudhary M, Kumar S, Kumar R, et al. Unveiling combining ability and heterotic grouping of newly developed winter maize (Zea mays L.) inbred lines. Indian J Agric Sci. 2021;91(11):1586-91. https://krishi.icar.gov.in/jspui/bitstream/123456789/68643/1/RP-60-ijas_paper_2021.pdf

Hossain F, Muthusamy V, Bhat JS, Zunjare RU, Kumar S, Prakash NR, Mehta BK. Maize breeding. In: Fundamentals of Field Crop Breeding. Singapore: Springer Nature Singapore; 2022. p. 221-58. http://dx.doi.org/10.1007/978-981-16-9257-4_4

Pramitha L, Choudhary P, Das P, Sharma S, Karthi V, Vemuri H, Muthamilarasan M. Integrating genomics and phenomics tools to dissect climate resilience traits in small millets. In: Omics of Climate Resilient Small Millets. Singapore: Springer Nature Singapore; 2022. p. 275-98. https://doi.org/10.1007/978-981-19-3907-5_14

Kumar S, Babu C, Revathi S, Sumathi P. Estimation of genetic variability, heritability and association of green fodder yield with contributing traits in fodder pearl millet (Pennisetum glaucum). Int J Adv Bio Res. 2017;7(1):119-26.

Chandra AK, Chandora R, Sood S, Malhotra N. Global production, demand and supply. In: Millets and Pseudo Cereals. Woodhead Publishing; 2021. p. 7-18.https://doi.org/10.1016/B978-0-12-820089-6.00002-1

Kumar S, Babu C, Sumathi P, Revathi S. Estimation of per se performance of yield traits in fodder pearl millet (Pennisetum glaucum (L.) R. Br.). Env and Ecol. 2017;35(3C):2316-21. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20173297373

Kumar A, Tomer V, Kumar M, Chawla P. Millets: Cultivation, processing and utilization. CRC Press; 2024. https://doi.org/10.1201/9781003159902

Chandra AK, Pandey D, Sood S, Joshi DC, Tiwari A, Sharma D, Kumar A. Uncovering the genomic regions underlying grain iron and zinc content using genome-wide association mapping in finger millet. 3 Biotech. 2024;14(2):47. https://doi.org/10.1007/s13205-023-03889-1

Chandra AK, Pandey D, Tiwari A, Sharma D, Agarwal A, Sood S, Kumar A. An omics study of iron and zinc homeostasis in finger millet: biofortified foods for micronutrient deficiency in an era of climate change? OMICS J Integr Biol. 2020;24(12):688-705. https://doi.org/10.1089/omi.2020.0095

Dey S, Raichaudhuri A. Abiotic stress in plants. In: Advances in Plant Defense Mechanisms. IntechOpen; 2022. p. 1-10 https://doi.org/10.5772/intechopen.105944.

Yadav S, Modi P, Dave A, Vijapura A, Patel D, Patel M. Effect of abiotic stress on crops. In: Mirza H, Marcelo CMTF, Masayuki F, Thiago ARN, editors. Sustainable Crop Production. Intechopen. 2020; p. 5-21. https://doi.org/10.5772/intechopen.88434

Taylor S. Anxiety disorders, climate change and the challenges ahead: Introduction to the special issue. J Anxiety Disord. 2020;76:102313. https://doi.org/10.1016/j.janxdis.2020.102313

Luo W, Chen M, Kang Y, Li W, Li D, Cui Y, Luo Y. Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall. Agric Water Manag. 2022;260:107285.https://doi.org/10.1016/j.agwat.2021.107285

Kumar A, Tomer V, Kaur A, Kumar V, Gupta K. Millets: a solution to agrarian and nutritional challenges. Agric Food Secur. 2018;7(1):1-15. https://doi.org/10.1186/s40066-018-0183-3

Dhanda S, Yadav A, Yadav DB, Chauhan BS. Emerging issues and potential opportunities in the rice–wheat cropping system of North-Western India. Front Plant Sci. 2022;13:832683. https://doi.org/10.3389/fpls.2022.832683

Paschapur AU, Joshi D, Mishra KK, Kant L, Kumar V, Kumar A. Millets for life: a brief introduction. In: Kumar A, Tripathi MK, Joshi D, Kumar V, editors. Millets and Millet Technology. Springer. 2021. p. 1-32. https://doi.org/10.1007/978-981-16-0676-2_1

Sage RF, Zhu XG. Exploiting the engine of C4 photosynthesis. J Exp Bot. 2011;62(9):2989-3000. https://doi.org/10.1093/jxb/err179

Meena RP, Joshi D, Bisht JK, Kant L. Global scenario of millets cultivation. Millets and Millet Technology. 2021:33-50. https://doi.org/10.1007/978-981-16-0676-2_2

Singh SB, Kumar S, Kumar R, Kumar P, Yathish KR, Jat BS, Chikkappa GK, Kumar B, Jat SL, Dagla MC, Kumar B. Stability analysis of promising winter maize (Zea mays L.) hybrids tested across Bihar using GGE biplot and AMMI model approach. Ind J Gen Pl Br. 2024;84(01):73-80. https://doi.org/10.31742/ISGPB.84.1.6

Mohod NB, Ashoka P, Borah A, Goswami P, Koshariya AK, Sahoo S, Prabhavathi N. The international year of millet 2023: A global initiative for sustainable food security and nutrition. Int J Pl Soil Sci. 2023;35(19):1204-11.https://doi.org/10.9734/ijpss/2023/v35i193659.

Kumar R, Karmakar S, Minz A, Singh J, Kumar A, Kumar A. Assessment of greenhouse gases emission in maize-wheat cropping system under varied N fertilizer application using cool farm tool. Front Environ Sci. 2021;9:710108. https://doi.org/10.3389/fenvs.2021.710108

Salgotra RK, Chauhan BS. Genetic diversity, conservation and utilization of plant genetic resources. Genes. 2023;14(1):174. https://doi.org/10.3390/genes14010174

El-Hashash EF, Al-Habeeb A, Bakri H, Majjami AY. A comprehensive review of pearl and small millets: Taxonomy, production, breeding and future prospects in Saudi Arabia. Asian J Res Crop Sci. 2023;8(4):151-66. https://doi.org/10.9734/ajrcs/2023/v8i4196

Choudhary P, Shukla P, Muthamilarasan M. Genetic enhancement of climate-resilient traits in small millets: A review. Heliyon. 2023. https://doi.org/10.1016/j.heliyon.2023.e14502

Vetriventhan M, Azevedo VC, Upadhyaya HD, Nirmalakumari A, Kane-Potaka J, Anitha S, Tonapi VA. Genetic and genomic resources and breeding for accelerating improvement of small millets: current status and future interventions. The Nucleus. 2020;63:217-39. https://doi.org/10.1007/s13237-020-00322-3

Joshi DC, Meena RP, Chandora R. Genetic resources: Collection, characterization, conservation and documentation. In: Millets and Pseudo Cereals. Woodhead Publishing; 2021. p. 19-31.https://doi.org/10.1016/B978-0-12-820089-6.00003-3

Rajasekaran R, Francis N. Genetic and genomic resources for improving proso millet (Panicum miliaceum L.): a potential crop for food and nutritional security. The Nucleus. 2021;64(1):21-32. http://dx.doi.org/10.1007/s13237-020-00331-2

Narciso JO, Nyström L. The genetic diversity and nutritional quality of proso millet (Panicum miliaceum) and its Philippine ecotype, the ancient grain “kabog millet”: a review. J Agric Food Res. 2023;11:100499. https://doi.org/10.1016/j.jafr.2023.100499

Ravikesavan R, Jeeva G, Jency JP, Muthamilarasan M, Francis N. Kodo millet (Paspalum scorbiculatum L.). In: Neglected and Underutilized Crops. Academic Press; 2023. p. 279-304.https://doi.org/10.1016/B978-0-323-90537-4.00019-3

Renganathan VG, Vanniarajan C, Karthikeyan A, Ramalingam J. Barnyard millet for food and nutritional security: Current status and future research direction. Front Genet. 2020;11:497319. https://doi.org/10.3389/fgene.2020.00500

Vetriventhan M, Upadhyaya HD, Azevedo VC, Allan V, Anitha S. Variability and trait-specific accessions for grain yield and nutritional traits in germplasm of little millet (Panicum sumatrense Roth. Ex. Roem. & Schult.). Crop Sci. 2021;61(4):2658-79. http://dx.doi.org/10.1002/csc2.20527

Elangovan M, Venkatesh K. Small millets genetic resources management. In: Genetic Improvement of Small Millets. Singapore: Springer Nature Singapore; 2024. p. 1-16. https://doi.org/10.1007/978-981-99-7232-6

Navyashree N, Sengar AS, Sunil CK, Venkatachalapathy N. White finger millet (KMR-340): A comparative study to determine the effect of processing and their characterization. Food Chem. 2022;374:131665. http://dx.doi.org/10.1016/j.foodchem.2021.131665

Verma KC, Joshi N, Rana AS, Bhatt D. Quality parameters and medicinal uses of foxtail millet (Setaria italica L.): A review. J Pharmacogn Phytochem. 2020;9(4):1036-38.

Patil RB, Vijayalakshmi KG, Vijayalakshmi D. Physical, functional, nutritional, phytochemical and antioxidant properties of kodo millet (Paspalum scrobiculatum). J Pharmacogn Phytochem. 2020;9(5):2390-93.

Dey S, Saxena A, Kumar Y, Maity T, Tarafdar A. Understanding the antinutritional factors and bioactive compounds of kodo millet (Paspalum scrobiculatum) and little millet (Panicum sumatrense). J Food Qual. 2022;2022:1-19. https://doi.org/10.1155/2022/1578448

Hymavathi TV, Roberts TP, Jyothsna E, Sri VT. Proximate and mineral content of ready to use minor millets. Int J Chem Stud. 2020;8(2):2120-23. http://dx.doi.org/10.22271/chemi.2020.v8.i2af.9065

Bisht K, Bisht K, Gudadhe NN, Raut AA, Dobhal N. Nutritional composition, health benefits, production, processing and marketing of finger millet. Indian J of Fert. 2023;19(10):1036-46.

Yankah N, Intiful FD, Tette EM. Comparative study of the nutritional composition of local brown rice, maize and millet—A baseline research for varietal complementary feeding. Food Sci and Nutr. 2020;8(6):2692-98. https://doi.org/10.1002/fsn3.1556

Rodiansah A, Puspita MI, Irawati. In vitro polyploidy induction of foxtail millet (Setaria italica (L) beauv) cv. buru hotong using colchicine treatment. In: IOP Conference Series: Earth and Env Sci. IOP Publishing; 2020. p. 012031.

Gao H, Gadlage MJ, Lafitte HR, Lenderts B, Yang M, Schroder M, Meeley RB. Superior field performance of waxy corn engineered using CRISPR–Cas9. Nat Biotechnol. 2020; 38(5):579-81. https://doi.org/10.1038/s41587-020-0444-0

Cheng Z, Sun Y, Yang S, Zhi H, Yin T, Ma X, Sui Y. Establishing in planta haploid inducer line by edited SiMTL in foxtail millet (Setaria italica). Plant Biotechnol J. 2021; 19(6):1089. https://doi.org/10.1111%2Fpbi.13584

Pillay M. Genome editing technologies for crop improvement. In: Quantitative Genetics, Genomics and Plant Breeding. 2nd ed. CABI: Boston, MA, USA; 2020. p. 33-44. https://doi.org/10.1079/9781789240214.0033

Numan M, Serba DD, Ligaba-Osena A. Alternative strategies for multi-stress tolerance and yield improvement in millets. Genes. 2021;12(5):739. https://doi.org/10.3390/genes12050739

Latha AM, Rao KV, Reddy VD. Production of transgenic plants resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn.). Plant Sci. 2005;169(4):657-67. http://dx.doi.org/10.1016/j.plantsci.2005.05.009

Ignacimuthu S, Ceasar SA. Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. J Biosci. 2012;37:135-47. https://doi.org/10.1007/s12038-011-9178-y

Hema R, Vemanna RS, Sreeramulu S, Reddy CP, Senthil-Kumar M, Udayakumar M. Stable expression of mtlD gene imparts multiple stress tolerance in finger millet. PLoS one. 2014;9(6):e99110. https://doi.org/10.1371/journal.pone.0099110

Ramegowda Y, Venkategowda R, Jagadish P, Govind G, Hanumanthareddy RR, Makarla U, Guligowda SA. Expression of a rice Zn transporter, OsZIP1, increases Zn concentration in tobacco and finger millet transgenic plants. Plant Biotechnol Rep. 2013;7:309-19. https://doi.org/10.1007/s11816-012-0264-x

Bhatt R, Asopa PP, Jain R, Kothari-Chajer A, Kothari SL, Kachhwaha S. Optimization of Agrobacterium mediated genetic transformation in Paspalum scrobiculatum L.(Kodo Millet). Agronomy. 2021;11(6):1104. https://doi.org/10.3390/agronomy11061104

Kadapa S, Gunturi A, Gundreddy R, Kalwala SR, Mogallapu UB. Agronomicbiofortification of millets: New way to alleviate malnutrition. In: Yadav L, Upasna, editors. Millets-Rediscover Ancient gains. Intechopen; 2023. p. 1-21. https://doi.org/10.5772/intechopen.110805

Sherman RM, Salzberg SL. Pan-genomics in the human genome era. Nat Rev Genet. 2020;21(4):243-54. https://doi.org/10.1038/s41576-020-0210-7

Kumar S, Babu C, Revathi S, Sumathi P. Genetic variation delineation among fodder pearl millet accessions and Napier grass germplasm using SSR markers. Indian J Ecol. 2017;44:186-89.

Wu M, Liu R, Gao Y, Xiong R, Shi Y, Xiang Y. PheASR2, a novel stress-responsive transcription factor from moso bamboo (Phyllostachys edulis), enhances drought tolerance in transgenic rice via increased sensitivity to abscisic acid. Plant Physiol Biochem. 2020;154:184-94. https://doi.org/10.1016/j.plaphy.2020.06.014

Wu C, Zhang M, Liang Y, Zhang L, Diao X. Salt stress responses in foxtail millet: Physiological and molecular regulation. Crop J. 2023;11(4):1011-21. https://doi.org/10.1016/j.cj.2023.06.001

Bhinda MS, Sanadya SK, Kumari A, Kant L, Debnath A. Omics for abiotic stress tolerance in foxtail millet. In: Omics of Climate Resilient Small Millets. Singapore: Springer Nature Singapore; 2022. p. 27-52. http://dx.doi.org/10.1007/978-981-19-3907-5_2

Ratnawati S, Jannah RM, Dewi YI, Rizqullah R, Suwarno WB, Ardie SW. The genetic variability of Indonesian local foxtail millet accession based on agro-morphological traits and early salinity tolerance evaluation utilizing SiDREB2-based SNAP marker. HAYATI J Biosci. 2024;31(1):82-93. https://doi.org/10.4308/hjb.31.1.82-93

Chellapilla TS, Ambawat S, Gurjar NR. Millets: Role and responses under abiotic stresses. In: Sustainable Remedies for Abiotic Stress in Cereals. Singapore: Springer Nature Singapore; 2022. p. 171-207. http://dx.doi.org/10.1007/978-981-19-5121-3_8

Barthakur S, Bharadwaj N. Exploring genome-wide analysis of heat shock proteins (HSPs) in small millets as potential candidates for development of multistress tolerant crop plants. In: Omics of Climate Resilient Small Millets. Singapore: Springer Nature Singapore; 2022. p. 337-55. https://doi.org/10.1007/978-981-19-3907-5_17

Mahesh HB, Shirke MD, Ghodke I, Raghavendra NR. Role of inducible promoters and transcription factors in conferring abiotic stress-tolerance in small millets. In: Omics of Climate Resilient Small Millets. Singapore: Springer Nature Singapore; 2022. p. 69-86. https://doi.org/10.1007/978-981-19-3907-5_4

Ajeesh Krishna TP, Maharajan T, Ignacimuthu S, Antony Ceasar S. Genomic-assisted breeding in finger millet (Eleusine Coracana (L.) Gaertn.) for abiotic stress tolerance. In: Genomic Designing for Abiotic Stress Resistant Cereal Crops.Springer, Cham. 2021. p. 291-317. http://dx.doi.org/10.1007/978-3-030-75875-2_8

Roch GV, Maharajan T, Krishna TA, Ignacimuthu S, Ceasar SA. Expression of PHT1 family transporter genes contributes for low phosphate stress tolerance in foxtail millet (Setaria italica) genotypes. Planta. 2020;252(6):98. https://doi.org/10.1007/s00425-020-03503-1

Zhu H, Guo J, Ma T, Liu S, Zhou Y, Yang X, Sui J. The sweet potato K+ transporter IbHAK11 regulates K+ deficiency and high salinity stress tolerance by maintaining positive ion homeostasis. Plants. 2023;12(13):2422. https://doi.org/10.3390%2Fplants12132422

Wang J, Miao S, Liu Y, Wang Y. Linking autophagy to potential agronomic trait improvement in crops. Int J Mol Sci. 2022;23(9):4793. https://doi.org/10.3390%2Fijms23094793

Arun M, Vidya N, Saravanan K, Halka J, Kowsalya K, Preetha JSY. Plant regeneration and transgenic approaches for the development of abiotic stress-tolerant small millets. In: Omics of Climate Resilient Small Millets. Singapore: Springer Nature Singapore; 2022. p. 141-83. http://dx.doi.org/10.1007/978-981-19-3907-5_8

Singh S, Chopperla R, Shingote P, Chhapekar SS, Deshmukh R, Khan S, Solanke AU. Overexpression of EcDREB2A transcription factor from finger millet in tobacco enhances tolerance to heat stress through ROS scavenging. J Biotech. 2021;336:10-24. https://doi.org/10.1016/j.jbiotec.2021.06.013

Taylor JR, Kruger J. Sorghum and millets: Food and beverage nutritional attributes. In: Sorghum and Millets. AACC International Press; 2019. p. 171-224.https://doi.org/10.1016/B978-0-12-811527-5.00007-1

Samtiya M, Aluko RE, Dhewa T. Plant food anti-nutritional factors and their reduction strategies: an overview. Food Prod Process and Nutr. 2020;2:1-14. https://doi.org/10.1186/s43014-020-0020-5

Tharifkhan SA, Perumal AB, Elumalai A, Moses JA, Anandharamakrishnan C. Improvement of nutrient bioavailability in millets: Emphasis on the application of enzymes. J Sci Food Agric. 2021;101(12):4869-78. https://doi.org/10.1002/jsfa.11228

Aryal JP, Sapkota TB, Khurana R, Khatri-Chhetri A, Rahut DB, Jat ML. Climate change and agriculture in South Asia: Adaptation options in smallholder production systems. Environ Dev Sustain. 2020;22(6):5045-75. https://link.springer.com/article/10.1007/s10668-019-00414-4

Nayaka SC, Hosahatti R, Prakash G, Satyavathi CT, Sharma R, editors. Blast disease of cereal crops. Springer International Publishing; 2021. https://doi.org/10.1007/978-3-030-60585-8.

Gebreyohannes A, Shimelis H, Laing M, Mathew I, Odeny DA, Ojulong H. Finger millet production in Ethiopia: Opportunities, problem diagnosis, key challenges and recommendations for breeding. Sustainability. 2021;13(23):13463. https://doi.org/10.3390/su132313463

Srivastava S, Arya C. Millets: malnutrition and nutrition security. In: Millets and Millet Technology. Springer, Singapore. 2021. p. 81-100. http://dx.doi.org/10.1007/978-981-16-0676-2_4

Patil DA. Agrobiodiversity and advances in the development of millets in changing environment. In: Sustainable Agriculture in the Era of Climate Change.Springer, Cham. 2020. p. 643-73. http://dx.doi.org/10.1007/978-3-030-45669-6_27

Raj S, Chaudhary S, Ghule NS, Baral K, Padhan SR, Gawande KN, Singh V. Sustainable farming and soil health enhancement through millet cultivation: A review. Int J Plant Soil Sci. 2024;36(3):222-33. https://doi.org/10.9734/ijpss/2024/v36i34418

Selladurai M, Pulivarthi MK, Raj AS, Iftikhar M, Prasad PV, Siliveru K. Considerations for gluten free foods-pearl and finger millet processing and market demand. Grain Oil Sci Technol. 2023;6(2):59-70. https://doi.org/10.1016/j.gaost.2022.11.003

Muthamilarasan M, Prasad M. Small millets for enduring food security amidst pandemics. Trends Plant Sci. 2021;26(1):33-40. https://doi.org/10.1016%2Fj.tplants.2020.08.008

Nadipalli SV, Bennur SV. Breeding approaches of improvement in millets. In Book: Millets: The Miracle Grains of 21st Century. Kripa-Drishti Publications; 2024. p. 15-25. https://www.kdpublications.in

Mishra S, Kumar S, Srivastava RC, editors. Genetic improvement of small millets. Springer Nature Singapore. Imprint: Springer. 2024. https://doi.org/10.1007/978-981-99-7232-6

Published

02-11-2024 — Updated on 10-11-2024

Versions

How to Cite

1.
Kumar S, Kumar A, Sen H, Janeja HS, Maity S, Banerjee S, Singh P, Channapur AM. Small millets: A multifunctional crop for achieving sustainable food security under climate change. Plant Sci. Today [Internet]. 2024 Nov. 10 [cited 2024 Nov. 21];11(4). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/4113

Issue

Section

Review Articles

Similar Articles

You may also start an advanced similarity search for this article.