Impact of salt stress on physiological traits in tomato (Lycopersicon esculentum Mill.)

Authors

DOI:

https://doi.org/10.14719/pst.4282

Keywords:

electrolyte leakage, Na and K content, proline, RWC, SOD, tomato (Lycopersicon esculentum Mill.)

Abstract

Salt stress is a major abiotic factor that limits plant growth and development globally, primarily due to the use of low-quality irrigation water and soil salinization caused by seawater intrusion. This study examines physiological parameters, antioxidant enzymes and the K/Na ratio in response to salt stress in various tomato genotypes at a salinity level of 8 dS m-1 during the vegetative stage. Specifically, it investigates superoxide dismutase activity, relative water content, electrolyte leakage, proline content, chlorophyll fluorescence and potassium and sodium ion content in roots, shoots and leaves. The results revealed significant variation in salt tolerance among the different genotypes. Genotypes LE-14 and LE-1 demonstrated superior performance under salt stress, displaying higher relative water content, reduced electrolyte leakage, increased superoxide dismutase activity, elevated proline content and favorable K/Na ratios. Principal component analysis showed significant eigenvalues, accounting for 72.5% of the total variability. These findings provide valuable insights into the mechanisms of salt tolerance in tomato crops and highlight the potential of LE-14 and LE-1 for cultivation in saline environments. The study emphasizes the importance of conducting field trials to validate these results for sustainable production in saltaffected areas.

Downloads

References

Amini F, Ehsanpour AA. Soluble proteins, proline, carbohydrates and Na+/K+ changes in two tomato (Lycopersicon esculentum Mill.) cultivars under in vitro salt stress. Ameri J Biochem Biotechnol. 2005;1(4):204-08. https://doi.org/10.3844/ajbbsp.2005.204.208.

Bongi G, Loreto F. Gas-exchange properties of salt stressed olive (Olea europea L.) leaves. Plant Physiol. 1989;90(4):1408-16. https:// doi.org/10.1104/pp.90.4.1408

Munns R, Gilliham M. Salinity tolerance of crops-what is the cost. New Phytol. 2015;208:668-73. https://doi.org/10.1111/nph.13519

Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI. Plant salt-tolerance mechanisms. Trends Plant Sci. 2014;19(6):371-79. https://doi.org/10.1016/j.tplants.2014.02.001

Cuartero J, Fernandez MR. Tomato and salinity. Scientia Hortic. 1999;78:83-125. https://doi.org/10.1016/S0304-4238(98)00191-5.

Kumar M, Vanitha K. Influence of salinity levels on seedling parameters of different tomato genotypes. Bangladesh Journal of Botany. 2023;52(2):307-14. https://doi.org/10.3329/bjb.v52i2.67028

Sanchez FJ, Andres EF, Tenorio JL, Ayerbe L. Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress. Field Crop Res. 2004;86:81-90. https://doi.org/10.1016/S0378-4290(03)00121-7

Szalai G, Janda T, Padi E, Szigeti Z. Role of light in post-chilling symptoms in maize. J Plant Physiol. 1996;148:378-83. https://doi.org/10.1016/S0176-1617(96)80269-0

Schreiber U. Pulse-amplitude (RAM) fluorometry and saturation pulse method in chlorophyll fluorescence: A signature of photosynthesis. Papageorgiou G, Govindjee, editors. Springer: Dordrecht, The Netherlands. 2004;279-319. https://doi.org/10.1007/978-1-4020-3218-9

Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39:205-07. https://link.springer.com/article/10.1007/BF00018060

Gomez KA, Gomez AA. Statistical procedure for agricultural research. John Wiley and Sons, New York. 680. p.

Maggio A, Raimondi G, Martino A. Salt stress response in tomato beyond the salinity tolerance threshold. Environmental and Experimental Botany. 2007;59(3):276-82. https://doi.org/10.1016/j.envexpbot.2006.02.002

Kongsri S, Boonprakob U, Byrne DH. Assessment of morphological and physiological responses of peach rootstocks under drought and aluminium stress. Acta Horticulturae. 2014;1059:229-36. https://doi.org/10.17660/ActaHortic.2014.1059.30

Sairam RK, Rao KV, Srivastava GC. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 2002;163(5):1037-46. https://doi.org/10.1016/S0168-9452(02)00278-9

Neocleous D, Vasilakakis M. Effects of NaCl stress on red raspberry (Rubus idaeus L.). Scientia Horticulturae. 2007;112(3):282-89. https://doi.org/10.1016/j.scienta.2006.12.025

Ashraf M, Ali Q. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environmental and Experimental Botany. 2008;63(1-3):266-73. https://doi.org/10.1016/j.envexpbot.2007.11.008

Mahmoudi H, Kaddour R, Huang J, Nasri N, Olfa B, Rah S, et al. Varied tolerance to NaCl salinity is related to biochemical changes in two contrasting lettuce genotypes. Acta Physiologiae Plantarum. 2011;33:1613-22.

Hnilickova H, Hnilicka F, Orsak M, Hejnak V. Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant Soil and Environment. 2019;65:90-96. https://doi.org/10.17221/620/2018-PSE

Huang B, DaCosta M, Jiang Y. Research advances in mechanisms of grass tolerance to abiotic stress from physiology to molecular biology. Crit Rev Plant Sci. 2014;33:141-89. https://doi.org/10.1080/07352689.2014.870411

Wu W, Zhang Q, Ervin EH, Yang Z, Zhang X. Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Front Plant Sci. 2017;8:1017. https://doi.org/10.3389/fpls.2017.01017

Nur-Ichik A. Effect of NaCl stress on antioxidant defense system in lentil. Master of Science [Thesis]. Istanbul University, Turkey; 2004

RiosRios-Gonzalez K, Erdei L, Lips SH. Activity of antioxidant enzymes in maize and sunflower seedling as affected by salinity and different nitrogen sources. Plant Sci. 2002;162(6):923-30. https://doi.org/10.1016/S0168-9452(02)00040-7

Ashraf M, Harris PJC. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 2004;166(1):3-16. https://doi.org/10.1016/j.plantsci.2003.10.024

Kim J, Liu Y, Zhang X, Zhao B, Childs K. Analysis of salt-induced physiological and proline changes in 46 switchgrass (Panicum virgatum) lines indicates multiple responses modes. Plant Physiol Biochem. 2016;105:203-12. https://doi.org/10.1016/j.plaphy.2016.04.020

Sannada Y, Ueda H, Kuribayashi K, Andoh T, Hayashi F, Tamai N et al. Novel light-dark change of proline levels in halophyte (Mesembranthemum crystallinum L.), glycophytes (Hordeum vulgare L and Triticum aestivum L.) leaves and roots under salt stress. Plant Cell. 1995;36:965-70.

Belkhodja M, Benkablia M. Proline response of faba bean under salt stress. Egypt Journal of Agriculture Research. 2000;78:185-95. https://doi.org/10.21608/EJAR.2000.321519

Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Damsz B, et al. Does proline accumulation play an active role in stress induced growth reduction. Plant J. 2002;31(6):699-712. https://doi.org/10.1046/j.1365-313x.2002.01389.x

Li M, Yang D, Li W. Leaf gas exchange characteristics and chlorophyll fluorescence of three wetland plants in response to long-term soil flooding. Photosynthetica. 2007;45(2):222-28. https://link.springer.com/article/10.1007/s11099-007-0036-y

DeEll JR, van Kooten O, Prange RK, Murr DP. Applications of chlorophyll fluorescence techniques in postharvest physiology. Horticulture Revue. 1999;23:69-107. https://doi.org/10.1002/9780470650752.ch2

Munns R. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Envir. 1993;16:15-24. https://doi.org/10.1111/j.1365-3040.1993.tb00840.x

Fariduddin Q, Khalil RRAE, Mir BA, Yusuf M, Ahmad A. 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environ Monit Assess. 2013;185:7845-56. https://doi.org/10.1007/s10661-013-3139-x

Sun S, An M, Han L, Yin S. Foliar application of 24-epibrassinolide improved salt stress tolerance of perennial ryegrass. HortScience. 2015;50:1518-23. https://doi.org/10.21273/HORTSCI.50.10.1518

Rus AM, Estan MT, Gisbert C, Garcia Garcia-Sogo B, Serrano R, Caro M, et al. Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na+ selectivity under salt stress. Plant Cell Environ. 2001;24:875-80. https://doi.org/10.1046/j.1365-3040.2001.00719.x

Aktas H, Abak K, Cakmak I. Genotypic variation in the response of pepper to salinity. Sci Hortic. 2006;110(3):260-66. https://doi.org/10.1016/j.scienta.2006.07.017.

Grattan SR, Grieve CM. Salinity–mineral nutrient relations in horticultural crops. Sci Hortic. 1999;78:127-57. https://doi.org/10.1016/S0304-4238(98)00192-7

Sivritepe N, Sivritepe HO, Eris A. The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Sci Hortic. 2003;97:229-37. https://doi.org/10.1016/S0304-4238(02)00198-X

Savvas D, Lenz F. Effect of NaCl or nutrient-induced salinity on growth, yield and composition of eggplant grown in rock wool. Sci Hort. 2000;84:37-47. https://doi.org/10.1016/S0304-4238(99)00117-X

Yildirim E, Taylor AG, Spittler TD. Ameliorative effects of biological treatments on growth of squash plants under salt stress. Sci Hortic. 2006;111(1):1-6. https://doi.org/10.1016/j.scienta.2006.08.003

Neocleous D, Savvas D. NaCl accumulation and macronutrient uptake by a melon crop in a closed hydroponic system in relation to water uptake. Agric Water Manage. 2016;165:22-32.

Published

06-02-2025 — Updated on 13-02-2025

Versions

How to Cite

1.
Kumar M, Vanitha K, Sankari A. Impact of salt stress on physiological traits in tomato (Lycopersicon esculentum Mill.). Plant Sci. Today [Internet]. 2025 Feb. 13 [cited 2025 Mar. 30];12(1). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/4282

Issue

Section

Research Articles

Most read articles by the same author(s)

1 2 > >>