Phytomicrobiome-Resilience to climate change
DOI:
https://doi.org/10.14719/pst.4342Keywords:
Climate change, stress resistance, nutrients, phytomicrobiome, bioinoculantsAbstract
The abnormal change in weather has resulted in rise in global temperature and the frequency as well as intensity of abiotic factors like drought has a negative influence on agricultural production in many areas. These aspects are mainly related to nutrient acquisition and stress tolerance. Changing the phytomicrobiome or its interactions can improve both of these parameters. "Phytomicrobiome" refers to the microbes that are associated with plants, including bacteria, archaebacteria, fungi, and viruses. It is a community of microorganisms that establish essential ecological relationships with the host plant. This community has the potential to protect the plant against abiotic stresses such as drought, heat, and salinity by producing antioxidant enzymes, plant growth hormones, bioactive compounds, and by detoxifying harmful chemicals, Reactive Oxygen Species (ROS), and free radicals. The abiotic factors have significantly impacted the diversity of microbiome in rhizosphere, phyllosphere and endophytes. To cope with adverse condi- tions, phytomicrobiomes enables the plants to develop sophisticated mech- anisms to sense the stress signals to ensure optimal growth responses. The phytomicrobiome has played a crucial role in creating new bioinoculants, Plant Growth Promoting Rhizobacteria (PGPR) formulations, biofertilizers, biostimulants and biocontrol agents being effective alternatives to chemical fertilizers in future for specific crops, contributing to sustainable agricultural productivity for farmers and society. This article mainly emphasizes on the phytomicrobiome interactions for plant health and how environmentally friendly methods can be used to maximize the agricultural productivity as well as how the phytomicrobiome can be used to reduce the effect of drought stress on plants and boost crop productivity.
Downloads
References
Koneswaran G, Nierenberg D. Global farm animal production and global warming: impacting and mitigating climate change. Environmental Health Perspectives. 2008;116: 578-582.
https://ehp.niehs.nih.gov/doi/10.1289/ehp.11034
Zandalinas SI,. Fritschi FB, Mittler R.Global warming, climate change, and environmental
pollution: recipe for a multifactorial stress combination disaster.Trends Plant Sci. 2021;126 :588-599, 10.1016/j.tplants.2021.02.011
Reddy AS, Ali GS, Celesnik H, Day IS. Coping with stresses: roles of calcium and
calcium/calmodulin-regulated gene expression. Plant Cell. 2011;23(6): 2010–32.
https://doi.org/10.1105/tpc.111.084988
Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress. Plant Physiol.
;133(3):481–9. https://doi.org/10.1111/j.1399-3054.2008.01090.x
Trivedi P, Batista BD, Bazany KE, & Singh BK. Plant–microbiome interactions under a changing world: Responses, consequences and perspectives. New Phytologist, 2022;234(6): 1951–1959. https://doi.org/10.1111/nph.18016
Trivedi P, Jan E. Leach, Susannah G. Tringe, Tongmin Sa & Brajesh K. Singh . Plant–microbiome interactions: from community assembly to plant health Nature Reviews Microbiology .2020; 18: p 607–621. https://doi.org/10.1038/s41579-020-0412-1
Leach AG, Ward DH, Sedinger JS, Lindberg M S, Boyd WS, Hupp JW, & Ritchie RJ. Declining
survival of black brant from subarctic and arctic breeding areas. The Journal of Wildlife Management. 2017; 81(7): 1210–1218. https://doi.org/10.1002/jwmg.21284
Chouhan GK, Verman J P, Jaiswal DK, Mukherjee A, Singh S, De Araujo Pereira A P, Liu H,
Abd_Allah EF, & Singh B K. Phytomicrobiome for promoting sustainable agriculture and food
security: Opportunities, challenges, and solutions. Microbiological Research.2021; 248: 126763.
https://doi.org/10.1016/j.micres.2021;126763
Afridi, Farzana , Mahajan, Kanika , Sangwan, Nikita. "The gendered effects of droughts:
Production shocks and labor response in agriculture," Labour Economics: Elsevier.2022;78(C). https://doi.org/10.1016/j.labeco.2022.102227
Pang Z, Chen J, Wang T, Gao C, Li Z, Guo L, Xu J, Cheng Y. Linking plant secondary metabolites and plant microbiomes: a Review. Front. Plant Sci. 2021;12:621276,10.3389/fpls.2021.621276
Khanna K , Kohli S K , Sharma N, Kour J , Devi K, Bhardwaj T , Dhiman S , Singh A D ,
Sharma N , Sharma A , Ohri P , Bhardwaj R , Ahmad P, Alam P, & Albalawi TH. Phytomicrobiome communications: Novel implications for stress resistance in plants. Frontiers in
Microbiology. 2022; 13: 912701. https://doi.org/10.3389/fmicb.2022.912701
Bandyopadhyay P , Bhuyan SK , Yadava PK , Varma A , Tuteja N. Emergence of plant and
rhizospheric microbiota as stable interactomes. Protoplasma .2017; 254: 617–626. doi:
1007/s00709-016-1003-x
Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J. Selection on soil microbiomes
reveals reproducible impacts on plant function. ISME J. 2015; 9: 980-989. https://doi.org/10.1038/ismej.2014.196
Rich MK, Nouri PE, Courty D, Reinhardt. Diet of arbuscular mycorrhizal fungi: bread and
butter? Trends Plant Sci.2017; 22:652-660. https://doi.org/10.1016/j.tplants.2017.05.008
Dastogeer KMG, Tumpa FH, Sultana A, Akter MA, Chakrabort A. Plant microbiome an
account of the factors that shape community composition and diversity. Curr. Plant Biol.
;20:100161. 10.1016/j.cpb.2020.100161
Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM,Murphy D. Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol. 2015; 205:1537-1551.
https://doi.org/10.1111/nph.13138
Miransari M. Abrishamchi A, Khoshbakht K, Niknam V. Plant hormones as signals in arbuscular mycorrhizal symbiosis. Crit. Rev. Biotechnol. 2014; 34:123-133. https://doi.org/10.3109/07388551.2012.731684
Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva, S. The role of soil microorganisms
in plant mineral nutrition current knowledge and future directions. Front. Plant Sci. 2017;8
:1617. 10.3389/fpls.2017.01617/pdf. https://doi.org/10.3389/fpls.2017.01617
Ling N, Wang T, & Kuzyakov Y. Rhizosphere bacteriome structure and functions. Nat
Commun. 2022;13: 836. https://doi.org/10.1038/s41467-022-28448-9
Dastogeer KM, Tumpa FH, Sultana A, Akter M A, Chakraborty A. Plant microbiome–an
account of the factors that shape community composition and diversity. Curr. Plant Biol. 2020;100161. 10.1016/j.cpb.2020.100161.
Roman-Reyna V, Pinili D, Borja FN, Quibod IL, Groen SC, Alexandrov N, Mauleon R, Oliva R.
Characterization of the Leaf Microbiome from Whole-Genome Sequencing Data of the 3000
Rice Genomes Project. Rice (N Y). 2020 Oct 9;13(1):72. doi: 10.1186/s12284-020-00432-1.
PMID: 33034758; PMCID: PMC7547056.
Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T, Host genotype
and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 2016;7:
–15. https://doi.org/10.1038/ncomms12151
Alori T, Glick BR, Babalola OO. Microbial phosphorus solubilization and its potential for use in
sustainable agriculture. Front. Microbiol., 2017;8. https://doi.org/10.3389/fmicb.2017.00971
Laforest-Lapointe C, Messier SW, Kembel. Host species identity, site and time drive temperate
tree phyllosphere bacterial community structure. Microbiome. 2016 ;4:Article 27, 10.1186/s40168-016-0174-1
Bourcer A, Guan R, Dorau K, Mansfeldt T, Omidbakhshfard A, Medeiros DB. Maize field study
reveals covaried microbiota and metabolic changes in roots over plant growth. mBio, 2022;13: e0258421. https://doi.org/10.1128/mbio.02584-21
Abadi VAJM, Sepehri M, Rahmani HA, Dolatabad HK, Shamshiripour M, Khatabi B. Diversity
and abundance of culturable nitrogen-fixing bacteria in the phyllosphere of maize. J Appl
Microbiol. 2021 Aug;131(2):898-912. doi: 10.1111/jam.14975. Epub 2021 Jan 4. PMID:
Stanton DE, Batterman SA, Von Fischer JC, Hedin LO. Rapid nitrogen fixation by canopy microbiome in tropical forest determined by both phosphorus and molybdenum.Ecology. 2019;100 (9). https://doi.org/10.1002/ecy.2795
Fürnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A. Nitrogen fixation by
phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa rica. ISME J., 2008;2 (5) : pp. 561-570.
https://doi.org/10.1038/ismej.2008.14
Freiberg E. Microclimatic parameters influencing nitrogen fixation in the phyllosphere in a
Costa Rican premontane rain forest. Oecologia.1998; 117 (1-2): 9–18.
https://doi.org/10.1007/s004420050625
Bao L, Gu L, Sun B, Cai W, Zhang S, Zhuang G. Seasonal variation of epiphytic bacteria in the
phyllosphere of Gingko biloba, Pinus bungeana and Sabina chinensis. FEMS Microbiol.
Ecol., 2020;96 (3): fiaa017. https://doi.org/10.1093/femsec/fiaa017
Carrell AA, Frank AC. Pinus flexilis and Picea engelmannii share a simple and consistent
needle endophyte microbiota with a potential role in nitrogen fixation. Front.Microbiol., 2014;5 : p. 333. https://doi.org/10.3389/fmicb.2014.00333
Whipps JM, Hand P, Pink DAC, Bending G.D. Phyllosphere microbiology with special
reference to diversity and plant genotype.Appl. Microbiol. 2008 ;105 (6) :1744-1755.
https://doi.org/10.1111/j.1365-2672.2008.03906.x
Miyamoto T, Kawahara M, Minamisawa K. Novel endophytic nitrogen-fixing clostridia from
the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism
analysis. Appl. Environ. Microbiol., 2004;70 (11) : 6580-6586.
https://doi.org/10.1128/aem.70.11.6580-6586.2004
Panchal S, Roy D, Chitrakar R, Price L, Breitbach ZS, Armstrong DW. Coronatine facilitates
Pseudomonas syringae infection of Arabidiopsis leaves at night. Front. Plant Sci.2016; 7: 880.
https://doi.org/10.3389/fpls.2016.00880
Liu H, Brettell LE, Qiu Z, Singh BK. Microbiome-mediated stress resistance in plants. Trends
Plant Sci.2020;25: 733–743. doi: 10.1016/j.tplants.2020.03.014
Jacobs JL, Carroll TL, Sundin GW. The role of pigmentation, ultraviolet radiation tolerance, and
leaf colonization strategies in the epiphytic survival of phyllosphere bacteria. Microb
Ecol. 2005;49:104–113. doi: 10.1007/s00248-003-1061-4.
Liu J, Song M, Wei X, Zhang H, Bai Z, Zhuang X. Responses of Phyllosphere Microbiome to
Ozone Stress: Abundance, Community Compositions and Functions.Microorganisms.2022;10(4):680.doi: 10.3390 / microorganisms10040680. PMID:
; PMCID: PMC9024792.
Liu, X., Matsumoto, H., Lv, T. et al. Phyllosphere microbiome induces host metabolic defence
against rice false-smut disease. Nat Microbiol. 2023;8:1419–1433
https://doi.org/10.1038/s41564-023-01379-x
Sivakumar N, Sathishkumar R, Selvakumar G, Shyamkumar R, Arjunekumar K. Phyllospheric
Microbiomes: Diversity, Ecological Significance, and Biotechnological Applications. Springer
International Publishing; 2020. 10.1007/978-3-030-38453-1_5.
Lindow SE, Brandl MT.. Microbiology of the phyllosphere. Appl Environ Microb 69: 1875-
; 2003 69(4):1875-83 DOI:10.1007/BF02887579
D.A. Kumar, K.G. Sabarinathan, R. Kannan, D. Balachandar, M. Gomathy. Isolation and
characterization of drought tolerant Bacteria from rice phyllosphere. Int. J. Curr. Microbiol.
Appl. Sci., 8 (2019), pp. 2655-2664. https://doi.org/10.20546/ijcmas.2019.806.319
Aydogan EL, Budich O, Hardt M, Choi YH, Jansen-Willems AB, Moser G, Müller C, Kämpfer
P, Glaeser SP (2020) Global warming shifts the composition of the abundant bacterial
phyllosphere microbiota as indicated by a cultivation-dependent and -independent study of the
grassland phyllosphere of a long-term warming field experiment. FEMS Microbiol Ecol
(8):faa087. https://doi.org/10.1093/femsec/faa087
Facicov M, Abdelfattah A, Roslin T, Vacher C, Hambäck P, Blanchet FG, Lindahl BD, Tack AJ
(2021) Climate warming dominates over plant genotype in shaping the seasonal trajectory of
foliar fungal communities on oak. New Phytol 231(5):1770–1783.
https://doi.org/10.1111/nph.17434
Debray R, Socolar Y, Kaulbach G, Guzman A, Hernandez CA, Curley R, Dhond A, Bowles T,
Koskella B (2021) Water stress and disruption of mycorrhizas induce parallel shifts in
phyllosphere microbiome composition. New Phytol 234(6):2018–2031. https://
doi.org/10.1111/nph.17817
Dighton J. 2003. Fungi in ecosystem processes, vol 17. Marcel Dekker, New York, NY.
doi:10.1017/S095375620421927X
Chapin FS, Matson PA, Vitousek PM, Chapin MC. 2011. Principles of terrestrial ecosystem
ecology, 2nd ed. Springer, New York, NY. http://dx.doi.org/10.1007/978-1-4419-9504-9
Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-
Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE.Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49 –56. http:
//dx.doi.org/10.1038/nature10386.
Sinsabaugh RL. Enzymatic analysis of microbial pattern and process. Biol Fertil Soils.
;17:69 –74. http://dx.doi.org/10.1007/BF00418675.
Waring BG, Averill C, Hawkes CV. Differences in fungal and bacterial physiology alter soil
carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecol Lett.
; 16:887– 894. http://dx .doi.org/10.1111/ele.12125.
Taylor DL, Hollingsworth TN, McFarland J, Lennon NJ, Nusbaum C, Ruess RW. A first
comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche
partitioning. Ecol Monogr. 2014;84: 3–20. http://dx.doi.org/10.1890/12-1693.1.
Blackwell M. The fungi: 1, 2, 3. . .5.1 million species? Am J Bot. 2011; 98:426 – 438.
http://dx.doi.org/10.3732/ajb.1000298
Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kirk P, Nilsson RH. Progress in molecular and
morphological taxon discovery in fungi and options for formal classification of environmental
sequences. Fungal Biol Rev. 2011; 25:38 – 47. http://dx.doi.org/10.1016/j.fbr.2011.01.001.
Starmer WT, Lachance M. 2011. Yeast ecology, p 65– 83. In Kurtzman CP, Fell JW, Boekhout
T (ed), The yeasts, a taxonomic study, vol 1. Elsevier, Amsterdam, Netherlands. 21. eBook
ISBN: 9780080931272
Smith SE, Read DJ. 2008. Mycorrhizal symbiosis, 3rd ed. Academic Press, San Diego, CA.
http://dx.doi.org/10.2136/sssaj2008.0015br
Allison SD. 2012. A trait-based approach for modelling microbial litter decomposition. Ecol Lett
:1058 –1070. http://dx.doi.org/10.1111/j .1461-0248.2012.01807.x
Moorhead DL, Sinsabaugh RL. A theoretical model of litter decay and microbial interaction. Ecol
Monogr. 2006;76:151–174.http://dx.doi.org/10.1890/0012-9615 (2006) 076 [0151:ATMOLD]
0.CO;2.
Orwin KH, Kirschbaum MUF, St John MG, Dickie IA. Organic nutrient uptake by mycorrhizal
fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett 2011;14:493–502. http://dx.doi.org /10.1111/j.1461-0248.2011.01611.x.
Wang G, Jagadamma S, Mayes MA, Schadt CW, Steinweg JM, Gu L, Post WM. Microbial
dormancy improves development and experimental validation of ecosystem model. ISME J 2015;9:226 –237. http://dx.doi .org/10.1038/ismej.2014.120
Klemm D, Heublein B, Fink H-P, Bohn A. Cellulose: fascinating biopolymer and sustainable
raw material. Angew Chem Int Ed Engl. 2005;.36: 3358 –3393.
http://dx.doi.org/10.1002/anie.200460587
Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R,
Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de
Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C,
Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TKA, Kuo A,
LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R,
McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA,Patyshakuliyeva Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot
JC, St John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A,
Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science. 2012; 336:1715–1719. http://dx.doi.org /10.1126/science.1221748.
Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R.Pathways for degradation of lignin in
bacteria and fungi.Nat Prod Rep.2011;28:1883–1896. http://dx.doi.org/10.1039/c1np00042j.
Schlesinger WH. Carbon balance in terrestrial detritus. Annu Rev Ecol Evol Syst. 1977;8:51–
http://dx.doi.org/10.1146/annurev.es.08.110177 .000411.
Martínez ÁT, Ruiz-Dueñas FJ, Martínez MJ, del Río JC, Gutiérrez A. Enzymatic delignification
of plant cell wall: from nature to mill. Curr Opin Biotechnol. 2009; 20:348 –357.
http://dx.doi.org/10.1016/j.copbio .2009.05.002.
Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT. Substrate oxidation
sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 2009; 60:441– 452.
http://dx.doi.org/10 .1093/jxb/ern261.
Castagno LN, Sannazzaro AI, Gonzalez ME, Pieckenstain FL, and Estrella MJ. Phosphobacteria as key actors to overcome phosphorus deficiency in plants. Ann. Appl. Biol.2021;178: 256–267. doi: 10.1111/aab.12673
Unnikrishnan BV and Binitha NK. Positive effect of inoculation with an Aspergillus strain on
phosphorus and iron nutrition plus volatile organic compounds in rice. Folia Microbiol.
;1–10. doi: 10.1007/s12223-024-01129-4
Hakim S, NaqqashT, Nawaz MS, Laraib I, Siddique MJ, Zia R. Rhizosphere engineering with
plant growth-promoting microorganisms for agriculture and ecological sustainability. Front.
Sustain. Food Syst. 2021; 5:617157. doi: 10.3389/ fsufs.2021.617157
Rawat P, Das S, Shankhdhar D, and Shankhdhar S. Phosphate-solubilizing microorganisms:
mechanism and their role in phosphate solubilization and uptake. J. Soil Sci. Plant Nutr.
;21: 49–68. doi: 10.1007/s42729-020-00342-7
Kumawat KC, Sharma P, Nagpal S, Gupta R, Sirari A, Nair RM.Dual microbial inoculation, a
game changer?—bacterial biostimulants with multifunctional growth promoting traits to
mitigate salinity stress in spring mungbean. Front. Microbiol. 2021;11:600576. doi:
3389/fmicb.2020.600576
Toscano-Verduzco FA, Cedeño-Valdivia PA, Chan-Cupul W, Hernández-Ortega HA, Ruiz-
Sánchez E, Galindo-Velasco E.Phosphates solubilization, indol-3-acetic acid and siderophores
production by Beauveria brongniartii and its effect on growth and fruit quality of Capsicum
chinense. J. Hortic. Sci. Biotechnol. 2020;95:235–246. doi: 10.1080/14620316.2019.1662737
Rizvi A, Ahmed B, Khan MS, Umar S, and Lee J. Psychrophilic bacterial phosphate-biofertilizers: a novel extremophile for sustainable crop production under cold environment.Microorganisms 2021;9:2451. doi: 10.3390/microorganisms9122451
Aliyat FZ, Maldani M, El Guilli M, Nassiri L, and Ibijbijen J. Phosphate solubilizing bacteria isolated from phosphate solid sludge and their ability to solubilize three inorganic phosphate
forms: calcium, iron, and aluminum phosphates. Microorganisms. 2022;10:980. doi:
3390/microorganisms10050980
Divjot K, Rana KL, Tanvir K, Yadav N, Yadav AN, Kumar M. . Biodiversity, current
developments and potential biotechnological applications of phosphorus-solubilizing and-
mobilizing microbes: a review. Pedosphere .202;131:43–75. doi: 10.1016/S1002-
(20)60057-1
Li C, Li Q, Wang Z, Ji G, Zhao H, Gao F.Environmental fungi and bacteria facilitate lecithin
decomposition and the transformation of phosphorus to apatite. Sci. Rep. 2019;9:15291. doi:
1038/s41598-019-51804-7
Li H, Song,C. Yang, L,Qin H, Cao X, and Zhou Y. Nutrients regeneration pathway, release potential, transformation pattern and algal utilization strategies jointly drove cyanobacterial
growth and their succession. J. Environ. Sci. 2021;103: 255–267. doi:10.1016/j.jes.2020.11.010
Rasul M, Yasmin S, Yahya M, Breitkreuz C, Tarkka M, and Reitz T. The wheat growth-
promoting traits of Ochrobactrum and Pantoea species, responsible for solubilization of
different P sources, are ensured by genes encoding enzymes of multiple P-releasing pathways.
Microbiol. Res. 2021;246:126703. doi: 10.1016/j.micres.2021.126703
Zuluaga MYA, De Oliveira ALM, Valentinuzzi F, Jayme NS, Monterisi S, Fattorini R. An insight into the role of the organic acids produced by Enterobacter sp. strain 15S in solubilizing tricalcium phosphate: in situ study on cucumber. BMC Microbiol. 2023; 23:184. doi:10.1186/s12866-023-02918-6
Bononi L, Chiaramonte JB, Pansa CC, Moitinho MA, and Melo IS. Phosphorus-solubilizing
Trichoderma spp. from Amazon soils improve soybean plant growth. Sci. Rep. 2020;10:2858.
doi: 10.1038/s41598-020-59793-8
Kaur C. Selvakumar G, and Upreti K K . Organic acid profiles of phosphate solubilizing
bacterial strains in the presence of different insoluble phosphatic sources under. J. Pure Appl.
Microbiol. 2021;15: 1006–1015. doi: 10.22207/JPAM.15.2.59
Jaiswal S K, Mohammed M, Ibny FY, and Dakora FD. Rhizobia as a source of plant growth-
promoting molecules: potential applications and possible operational mechanisms. Front.Sustain. Food Syst. 2021;4:619676. doi: 10.3389/ fsufs.2020.619676
Wang L, Zhou F, Zhou J, Harvey PR, Yu H, Zhang G. Genomic analysis of Pseudomonas asiatica JP233: An efficient phosphate-solubilizing bacterium. Genes 2022;13:2290. doi: 10.3390/genes13122290
Rai A, Sharma NK, Singh VK, Dwivedi BS, Singh JS, and Rai PK. Study of phosphate
solubilizing fluorescent Pseudomonas recovered from rhizosphere and endorhizosphere of Aloe
barbadensis (L.). Geomicrobiol J. 2023;40: 347–359. doi: 10.1080/01490451.2023.2171165
Prabhu N, Borkar S, and Garg S. “Chapter 11—Phosphate solubilization by microorganisms:
overview, mechanisms, applications and advances” in Advances in biological science research.
eds. S. N. Meena and M. M. Naik (London: Academic Press). 2019;161–176.DOI:
1016/B978-0-12-817497-5.00011-2
Borges B, Gallo G, Coelho C, Negri N, Maiello F, Hardy L. Dynamic cross correlation analysis
of Thermus thermophilus alkaline phosphatase and determinants of thermostability. Biochim.
Biophys. Acta 2021;1865:129895. doi: 10.1016/j. bbagen.2021.129895
Cheng Y, Narayanan M, Shi X, Chen X, Li Z, and Ma Y. . Phosphate solubilizing bacteria: their
agroecological function and optimistic application for enhancing agro-productivity. Sci. Total
Environ. 2023; 901:166468. doi: 10.1016/j. scitotenv.2023.166468
Jiang S, Lu H, Liu J, Lin Y, Dai M, and Yan C. Influence of seasonal variation and anthropogenic activity on phosphorus cycling and retention in mangrove sediments: a case study in China. Estuar. Coast. Shelf Sci. 2018; 202: 134–144. doi: 10.1016/j. ecss.2017.12.011
Chen A, and Arai Y.A review of the reactivity of phosphatase controlled by clays and clay minerals: implications for understanding phosphorus mineralization in soils. Clay Clay Miner.
;71: 119–142. doi: 10.1007/s42860-023-00243-7
Zaborowska M, Wyszkowska J, and Kucharski J. Soil enzyme response to bisphenol F
contamination in the soil bioaugmented using bacterial and mould fungal consortium. Environ.
Monit. Assess. 2020;192:20. doi: 10.1007/s10661-019-7999-6
Jiang Y, Tian J, and Ge F. New insight into carboxylic acid metabolisms and pH regulations
during insoluble phosphate solubilisation process by Penicillium oxalicum PSF-4. Curr. Microbiol.2020; 77: 4095–4103. doi: 10.1007/s00284-020-02238-2
Begum N, Qin C, Ahanger MA, Raza S, Khan M I, Ashraf M. Role of arbuscular mycorrhizal
fungi in plant growth regulation: implications in abiotic stress tolerance. Front. Plant Sci.2019; 10:1068. doi: 10.3389/fpls.2019.01068
Gooday GW. The ecology of chitin degradation. Adv Microb Ecol. 1990; 11:387– 430.
http://dx.doi.org/10.1007/978-1-4684-7612-5_10.
Read DJ, Perez-Moreno J. Mycorrhizas and nutrient cycling in ecosystems—a journey towards
relevance? New Phytol. 2003;157:475– 492. http://dx.doi.org/10.1046/j.1469-8137.2003.00704.x.
Schulten HR, Schnitzer M. The chemistry of soil organic nitrogen: a review. Biol Fertil Soils.
;26:1–15. http://dx.doi.org/10.1007 /s003740050335.
Jones DL, Shannon D, Murphy DV, Farrar J. Role of dissolved organic nitrogen (DON) in soil N
cycling in grassland soils. Soil Biol Biochem.2004;36:749–756. http://dx.doi.org/10.1016/j.soilbio.2004.01.003.
Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A. Dissolved organic nitrogen uptake by
plants—an important N uptake pathway? Soil Biol Biochem. 2005; 37:413– 423.
http://dx.doi.org/10.1016/j.soilbio.2004 .08.008.
Wipf D, Benjdia M, Tegeder M, Frommer WB. Characterization of a general amino acid
permease from Hebeloma cylindrosporum. FEBS Lett. 2002;528:119–124.
http://dx.doi.org/10.1016/S0014-5793(02)03271-4.
Lavorel S, Garnier E. 2002. Predicting changes in community composition and ecosystem
functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556.
http://dx.doi.org/10.1046/j.1365-2435.2002 .00664.x.
Simpson AJ, Simpson MJ, Smith E, Kelleher BP. 2007. Microbially derived inputs to soil organic matter: are current estimates too low? Environ Sci Technol 41:8070 – 8076.
http://dx.doi.org/10.1021/es071217x
Xie XF, Lipke PN. On the evolution of fungal and yeast cell walls. Yeast. 2010; 27:479 – 488.
http://dx.doi.org/10.1002/yea.1787.
Cabib E. Two novel techniques for determination of polysaccharide cross-links show that
Saccharomyces cerevisiae Crh1p and Crh2p attach chitin to both beta (16) - and beta (1-3)
glucan in the Saccharomyces cerevisiae cell wall. Eukaryot Cell. 2009; 8:1626 –1636.
http://dx.doi.org/10.1128/EC.00228-09
Tibbett M, Sanders FE, Cairney JWG. Low-temperatureinduced changes in trehalose, mannitol
and arabitol associated with enhanced tolerance to freezing in ectomycorrhizal basidiomycetes
(Hebeloma spp.). Mycorrhiza. 2002; 12:249 –255. http://dx.doi.org/10.1007 /s00572-002-0183-
Singer MA, Lindquist S. Multiple effects of trehalose on protein folding in vitro and in vivo.
Mol Cell 1998;1:639 – 648. http://dx.doi.org/10 .1016/S1097-2765(00)80064-7.
Hare PD, Cress WA, Van Staden J. Dissecting the roles of osmolyte accumulation during
stress. Plant Cell Environ. 1998; 21:535–553. http: //dx.doi.org/10.1046/j.1365-3040.1998.00309.x.
Francois J, Parrou JL. Reserve carbohydrates metabolism in the yeast . FEMS Microbiol Rev
; 25:125–145. http: //dx.doi.org/10.1111/j.1574-6976.2001.tb00574.x.
Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its
implications for ecosystem function. Ecology.2007; 88: 1386 –1394.
http://dx.doi.org/10.1890/06-0219
Owttrim GW. RNA helicases and abiotic stress. Nucleic Acids Res. 2006;34:3220 –3230.
http://dx.doi.org/10.1093/nar/gkl408
Ellison CE, Hall C, Kowbel D, Welch J, Brem RB, Glass NL, Taylor JW. Population genomics
and local adaptation in wild isolates of a model microbial eukaryote. Proc Natl Acad SciUSA.
;108: 2831–2836. http://dx.doi.org/10.1073/pnas.1014971108.
Schade B, Jansen G, Whiteway M, Entian KD, Thomas DY. Cold adaptation in budding yeast.
Mol Biol Cell. 2004;15:5492–5502. http://dx.doi .org/10.1091/mbc.E04-03-0167.
Onofri S, Seltimann L, de Hoog GS, Grube M, Barreca D, Ruisi S, Zucconi L. Evolution and
adaptation of fungi at boundaries of life. Adv Space Res. 2007; 40:1657–1664.
http://dx.doi.org/10.1016/j.asr .2007.06.004.
de Hoog GS. Ecology and phylogeny of black yeast-like fungi: diversity in unexplored habitats.
Fungal Divers. 2014;65:1–2. http://dx.doi.org /10.1007/s13225-014-0284-7.
Gunde-Cimerman N, Grube M, de Hoog GS. The emerging potential of melanized fungi: black
yeast between beauty and the beast. Fungal Biol. 2011; 115:935–936.
http://dx.doi.org/10.1016/j.funbio .2011.05.003.
Koide RT, Fernandez C, Malcolm G. Determining place and process: functional traits of
ectomycorrhizal fungi that affect both community structure and ecosystem function. New
Phytol. 2014;201:433– 439. http://dx.doi.org/10.1111/nph.12538
Free SJ. Fungal cell wall organization and biosynthesis. Adv Genet. 2013; 81:33–82.
http://dx.doi.org/10.1016/B978-0-12-407677-8.00002-6.
Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG. Phylogenomic analysis of type I
polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci USA.
; 100:15670 –15675. http://dx.doi.org/10.1073/pnas.2532165100
Wilson D. Endophyte: The evolution of a term, and clarification of its use and definition. Oikos
.1995; 73: 274–276. doi: 10.2307/3545919
Rodriguez R J , White J F , Arnold Jr, Redman, A E. Fungal endophytes: diversity and
functional roles. New Phytol. 2009; 182, 314–330. doi: 10.1111/j.1469-8137.2009.02773.x
Bright M, Bulgheresi S. A complex journey: transmission of microbial symbionts. Nat. Rev.
Microbiol. 2010; 8:218–230. doi: 10.1038/nrmicro2262
Abdelfattah A, Tack AJ, Lobato M C, Wassermann B , Berg G. From seed to seed: the role
of microbial inheritance in the assembly of the plant microbiome. Trends Microbiol. 2022; 31:
–355. doi: 10.1016/j.tim.2022.10.009
Baron NC, Rigobelo EC. Endophytic fungi: a tool for plant growth promotion and sustainable
agriculture. Mycology .2022;13: 39–55. doi: 10.1080/21501203.2021.1945699
Verma A, Shameem N, Jatav HS, Sathyanarayana E, Parray JA, Poczai P. Fungal endophytes
to combat biotic and abiotic stresses for climate-smart and sustainable agriculture. Front. Plant
Sci. 2022; 13: doi: 10.3389/fpls.2022.953836
Lugtenberg BJJ, Caradus JR, Johnson LJ. Fungal endophytes for sustainable crop production.
FEMS Microbiol. Ecol. 2016; 92: fiw194. doi: 10.1093/femsec/fiw194
Kovtun Y, Chiu WL, Tena G, Sheen J. Functional analysis of oxidative stressactivated
mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A.
;97(6):2940–5. https://doi.org/10.1073/pnas.97.6.2940
Nakashima K, Yamaguchi-Shinozaki K. ABA signaling in stress-response and seed
development. Plant Cell Rep. 2013; 32(7):959–70. https://doi.org/10.1007/s00299-013-1418-1
Kennedy J, Morice C, Parker D, Kendon M. Global and regional climate in 2015. Weather.
John Wiley & Sons, Ltd; 2016; 71: 185–192. doi: 10.1002/wea.2760 [Google Scholar]
Twardosz R, Kossowska-Cezak U, Pe?ech S. Extremely Cold Winter Months in Europe
(1951–2010). Acta Geophys. 2016; doi: 10.1515/acgeo-2016-0083 [Google Scholar]
Hasanuzzaman M, Nahar K, Fujita M. Extreme temperature responses, oxidative stress and
antioxidant defense in plants. Plants, Abiotic Stress—Plant Responses Appl Agric. 2013;
–205. doi: 10.5772/54833
Song Y, Chen Q, Ci D, Shao X, Zhang D. Effects of high temperature on photosynthesis and
related gene expression in poplar. BMC Plant Biol. 2014;14: 111 doi: 10.1186/1471-2229-14-111
Tubiello FN, Salvatore M, Rossi S, Ferrara A, Fitton N, Smith P. The FAOSTAT database of
greenhouse gas emissions from agriculture. Environ. Res. Lett. 2013; 8(1) :13. DOI 10.1088/1748-9326/8/1/015009.
Lohar D, Peat W. Floral characteristics of heat-tolerant and heat-sensitive tomato
(Lycopersicon esculentum Mill.) cultivars at high temperature. Sci. Hortic. 1998; 73(1):53–60.
https://doi.org/10.1016/S0304-4238(97)00056-3
Rhodes D, Hanson A. Quaternary ammonium and tertiary sulfonium compounds in higher
plants. Annu. Rev. Plant Biol. 1993; 44 (1):357–384 https://doi.org/10.1146/annurev.pp.44.060193.002041
Chen TH, Murata N. Enhancement of tolerance of abiotic stress by metabolic engineering of
betaines and other compatible solutes. Curr. Opin. Plant Biol. 2002;5(3):250–257.
https://doi.org/10.1016/s1369-5266(02)00255-8
Larkindale J, Hall JD, Knight MR, Vierling E. Heat stress phenotypes of Arabidopsis
mutants implicate multiple signaling pathways in the acquisition of thermotolerance.Plant
Physiol., 2005; 138 (2) : 882-897. https://doi.org/10.1104/pp.105.062257
Rivero RM, Ruiz JM, Garc?a PC, Lopez-Lefebre LR, Sánchez E, Romero L. Resistance to
cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants.
Plant Sci. 2001; 160 (2): 315-321. https://doi.org/10.1016/s0168-9452(00)00395-2
Bouchereau A, Aziz A, Larher F, Martin-Tanguy J. Polyamines and environmental
challenges: recent development Plant Sci.1999;140 (2) :103-125.
https://doi.org/10.1016/S0168-9452(98)00218-0
Yang XX, Wen H, Gong Q, Lu Z, Yang Y,Tang. Lu Genetic engineering of the biosynthesis of
glycine betaine enhances thermotolerance of photosystem II in tobacco plants Planta. 2007;
(3):719-733. https://doi.org/10.1007/s00425-006-0380-3
Kim, K. Portis .Temperature dependence of photosynthesis in Arabidiopsis plants with
modifications in Rubisco activase and membrane fluidity.Plant Cell Physiol.2005; 46 (3):522-
https://doi.org/10.1093/pcp/pci052
Diamant S, Rosenthal D, Azem A, Eliahu N, Ben-Zvi AP, Goloubinoff P.Dicarboxylic amino acids and glycine-betaine regulate chaperone-mediated protein disaggregation under
stress Mol. Microbiol. 2003; 49 (2):401-410. https://doi.org/10.1046/j.1365-
2003.03553.x
Dat JF, Lopez-Delgado H, Foyer CH, Scott IM. Effects of salicylic acid on oxidative stress
and thermotolerance in tobacco J. Plant Physiol. 2000; 156 (5): 659-665. https://doi.org/10.1016/S0176-1617 (00)80228-X
Raskin I. Salicylate, a new plant hormone.Plant physiol. 1992; 99(3):799.
https://doi.org/10.1104/pp.99.3.799
Conrath U, Chen Z, Ricigliano JR, Klessig DF. Two inducers of plant defense responses, 2, 6-
dichloroisonicotinec acid and salicylic acid, inhibit catalase activity in tobacco. Proc. Natl.
Acad. Sci. 1995 ;92(16):7143–7147. https://doi.org/10.1073/pnas.92.16.7143
Dong J, Wan G, Liang Z. Accumulation of salicylic acid-induced phenolic compounds and
raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell
culture J. Biotechnol. 2010; 148 (2): 99-104. https://doi.org/10.1016/j.jbiotec.2010.05.009
Kang J, Peng Y, Xu W. Crop root responses to drought stress: molecular mechanisms, nutrient
regulations, and interactions with microorganisms in the rhizosphere. Int. J. Mol. Sci. 2022;
: 9310. doi: 10.3390/ijms23169310
Mosaad IS, Ayman M, Moustafa-Farag HIS, Seadh M. Effect of exogenous proline application
on maize yield and the optimum rate of mineral nitrogen under salinity stress, J. Plant Nutr.
; 43: 354–370. doi: 10.1080/01904167.2019.1676901
Ibrahim AA, Mageed AET, Abohamid Y, Abdallah H, El-Saadony, M, AbuQamar S.
Exogenously applied proline enhances morph-physiological responses and yield of drought-stressed maize plants grown under different irrigation systems. Front. Plant Sci. 2022; 13: doi:
3389/fpls.2022.897027
Ji H , Liu L , Li K , Xie Q, Wang Z, Zhao X. PEG-mediated osmotic stress induces premature differentiation of the root apical meristem and outgrowth of lateral roots in wheat. J.
Exp. Bot. 2014; 65: 4863–4872. doi: 10.1093/jxb/eru255
Rahman M, Mostofa M, Rahman MG , Islam MA, Keya M.R, Das SS. Acetic acid: a cost-
effective agent for mitigation of seawater-induced salt toxicity in mung bean. Sci. Rep. 2019;
: 15186. doi: 10.1038/s41598-019-51178-w
Tan J, Wang C. Xiang B. Han R. Guo Z. Hydrogen peroxide and nitric oxide mediated cold-
and dehydration-induced myo-inositol phosphate synthase that confers multiple resistances to
abiotic stresses. Plant Cell Environ. 2013; 36 (2):288-299. https://doi.org/10.1111/j.1365-
2012.02573.x
Kinnersley AM, Turano FJ. Gamma aminobutyric acid (GABA) and plant responses to stress
Crit. Rev. Plant Sci.2000; 19 (6):479-509. http://dx.doi.org/10.1080/07352680091139277
Razik ESA, Alharbi BM, Pirzadah TB, Alnusairi GSH, Soliman MH, Hakeem KR.?-
Aminobutyric acid (GABA) mitigates drought and heat stress in sunflower (Helianthus annuus
L.) by regulating its physiological, biochemical and molecular pathways. Physiol. Plant. 2020;
:505–527. doi: 10.1111/ppl.13216.
Krishnan S, Laskowski K, Shukla V, Merewitz EB. Mitigation of Drought Stress Damage by
Exogenous Application of a Non-Protein Amino Acid ?-Aminobutyric Acid on Perennial
Ryegrass. J. Am. Soc. Hort. Sci. 2013; 138:358–366. doi: 10.21273/JASHS.138.5.358.
Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ,
Hernandez JA. Plant responses to salt stress: Adaptive mechanisms. Agronomy. 2017;7:18.
doi: 10.3390/agronomy7010018
Zhao S, Zhang Q, Liu M, Zhou H, Ma C, Wang P. Regulation of plant responses to salt stress.
Int. J. Mol. Sci. 2021; 22:4609. doi: 10.3390/ijms22094609
Munns R, Tester M. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol. 2008;
:651–681. doi: 10.1146/annurev.arplant.59.032607.092911
Hasanuzzaman M, Raihan MRH, Masud AAC, Rahman K, Nowroz F, Rahman M, Nahar K,
Fujita M. Regulation of reactive oxygen species and antioxidant defense in plants under
salinity. Int. J. Mol. Sci. 2021; 22:9326. doi: 10.3390/ijms22179326.
Hawrylak-Nowak B, Dresler S, Stasi?ska-Jakubas M, Wójciak M, Sowa I, Matraszek-Gawron
R. NaCl-induced elicitation alters physiology and increases accumulation of phenolic
compounds in Melissa officinalis L. Int. J. Mol. Sci. 2021;22:6844. doi: 10.3390/ijms22136844.
Mukherjee A, Gaurav AK, Chouhan GK, Jaiswal DK, Verma JP. Plant-specific microbiome
for environmental stress management: issues and challenges . New and Future Developments in
Microbial Biotechnology and Bioengineering. Phytomicrobiome for Sustainable
Agriculture, Elsevier, Amsterdam .2020; pp. 91-101, 10.1016/B978-0-444-64325-4.00009-2
Singh BK, Liu H, Trivedi P. Eco - holobiont: a new concept to identify drivers of host -
associated microorganisms. Environ.Microbiol.,2019a ; 22(2) : pp. 564-567, 10.1111/1462-
14900
Qiu Z, Egidi E, Liu H, Kaur S, Singh BK. New frontiers in agriculture productivity: optimised
microbial inoculants and in situ microbiome engineering. Biotech. Adv., 2019;37 (6):Article 107371, 10.1016/j.biotechadv.2019.03.010
Singh BK, Trivedi P, Egidi E, Macdonald CA, Delgado-Baquerizo M. Crop microbiome and
sustainable agriculture. Nat.Rev. Microb., 2020;18 (11): pp. 601-602.
https://doi.org/10.1038/s41579-020-00446-y
Liu HC, Macdonald A, Cook J, Anderson IC, Singh BK. An ecological loop: host
microbiomes across multitrophic interactions. Trends Ecol. Evol., 2019;34: pp. 1118-
, 10.1016/j.tree.2019.07.011
Ke J, Wang B, Yoshikuni Y. Microbiome engineering: synthetic biology of plant-associated
microbiomes in sustainable agriculture.Trends in Biotech. 2020; 10.1016/j.tibtech.2020.07.008
Vorholt JA, Vogel C, Carlström CI, Müller DB. Establishing causality: opportunities of
synthetic communities for plant microbiome research. Cell Host Microbe. 2017;22 (2):142-155. https://doi.org/10.1016/j.chom.2017.07.004
Downloads
Published
Versions
- 26-11-2024 (2)
- 21-11-2024 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 U R Sankareswari, J Prabhaharan, T S Devi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).