Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 11 No. 4 (2024)

Phytomicrobiome-Resilience to climate change

DOI
https://doi.org/10.14719/pst.4342
Submitted
14 July 2024
Published
21-11-2024 — Updated on 26-11-2024
Versions

Abstract

The abnormal change in weather has resulted in rise in global temperature and the frequency as well as intensity of abiotic factors like drought has a negative influence on agricultural production in many areas. These aspects are mainly related to nutrient acquisition and stress tolerance. Changing the phytomicrobiome or its interactions can improve both of these parameters. "Phytomicrobiome" refers to the microbes that are associated with plants, including bacteria, archaebacteria, fungi, and viruses. It is a community of microorganisms that establish essential ecological relationships with the host plant. This community has the potential to protect the plant against abiotic stresses such as drought, heat, and salinity by producing antioxidant enzymes, plant growth hormones, bioactive compounds, and by detoxifying harmful chemicals, Reactive Oxygen Species (ROS), and free radicals. The abiotic factors have significantly impacted the diversity of microbiome in rhizosphere, phyllosphere and endophytes. To cope with adverse condi- tions, phytomicrobiomes enables the plants to develop sophisticated mech- anisms to sense the stress signals to ensure optimal growth responses. The phytomicrobiome has played a crucial role in creating new bioinoculants, Plant Growth Promoting Rhizobacteria (PGPR) formulations, biofertilizers, biostimulants and biocontrol agents being effective alternatives to chemical fertilizers in future for specific crops, contributing to sustainable agricultural productivity for farmers and society. This article mainly emphasizes on the phytomicrobiome interactions for plant health and how environmentally friendly methods can be used to maximize the agricultural productivity as well as how the phytomicrobiome can be used to reduce the effect of drought stress on plants and boost crop productivity.

References

  1. Koneswaran G, Nierenberg D. Global farm animal production and global warming: impacting and mitigating climate change. Environmental Health Perspectives. 2008;116: 578-582.
  2. https://ehp.niehs.nih.gov/doi/10.1289/ehp.11034
  3. Zandalinas SI,. Fritschi FB, Mittler R.Global warming, climate change, and environmental
  4. pollution: recipe for a multifactorial stress combination disaster.Trends Plant Sci. 2021;126 :588-599, 10.1016/j.tplants.2021.02.011
  5. Reddy AS, Ali GS, Celesnik H, Day IS. Coping with stresses: roles of calcium and
  6. calcium/calmodulin-regulated gene expression. Plant Cell. 2011;23(6): 2010–32.
  7. https://doi.org/10.1105/tpc.111.084988
  8. Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress. Plant Physiol.
  9. ;133(3):481–9. https://doi.org/10.1111/j.1399-3054.2008.01090.x
  10. Trivedi P, Batista BD, Bazany KE, & Singh BK. Plant–microbiome interactions under a changing world: Responses, consequences and perspectives. New Phytologist, 2022;234(6): 1951–1959. https://doi.org/10.1111/nph.18016
  11. Trivedi P, Jan E. Leach, Susannah G. Tringe, Tongmin Sa & Brajesh K. Singh . Plant–microbiome interactions: from community assembly to plant health Nature Reviews Microbiology .2020; 18: p 607–621. https://doi.org/10.1038/s41579-020-0412-1
  12. Leach AG, Ward DH, Sedinger JS, Lindberg M S, Boyd WS, Hupp JW, & Ritchie RJ. Declining
  13. survival of black brant from subarctic and arctic breeding areas. The Journal of Wildlife Management. 2017; 81(7): 1210–1218. https://doi.org/10.1002/jwmg.21284
  14. Chouhan GK, Verman J P, Jaiswal DK, Mukherjee A, Singh S, De Araujo Pereira A P, Liu H,
  15. Abd_Allah EF, & Singh B K. Phytomicrobiome for promoting sustainable agriculture and food
  16. security: Opportunities, challenges, and solutions. Microbiological Research.2021; 248: 126763.
  17. https://doi.org/10.1016/j.micres.2021;126763
  18. Afridi, Farzana , Mahajan, Kanika , Sangwan, Nikita. "The gendered effects of droughts:
  19. Production shocks and labor response in agriculture," Labour Economics: Elsevier.2022;78(C). https://doi.org/10.1016/j.labeco.2022.102227
  20. Pang Z, Chen J, Wang T, Gao C, Li Z, Guo L, Xu J, Cheng Y. Linking plant secondary metabolites and plant microbiomes: a Review. Front. Plant Sci. 2021;12:621276,10.3389/fpls.2021.621276
  21. Khanna K , Kohli S K , Sharma N, Kour J , Devi K, Bhardwaj T , Dhiman S , Singh A D ,
  22. Sharma N , Sharma A , Ohri P , Bhardwaj R , Ahmad P, Alam P, & Albalawi TH. Phytomicrobiome communications: Novel implications for stress resistance in plants. Frontiers in
  23. Microbiology. 2022; 13: 912701. https://doi.org/10.3389/fmicb.2022.912701
  24. Bandyopadhyay P , Bhuyan SK , Yadava PK , Varma A , Tuteja N. Emergence of plant and
  25. rhizospheric microbiota as stable interactomes. Protoplasma .2017; 254: 617–626. doi:
  26. 1007/s00709-016-1003-x
  27. Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J. Selection on soil microbiomes
  28. reveals reproducible impacts on plant function. ISME J. 2015; 9: 980-989. https://doi.org/10.1038/ismej.2014.196
  29. Rich MK, Nouri PE, Courty D, Reinhardt. Diet of arbuscular mycorrhizal fungi: bread and
  30. butter? Trends Plant Sci.2017; 22:652-660. https://doi.org/10.1016/j.tplants.2017.05.008
  31. Dastogeer KMG, Tumpa FH, Sultana A, Akter MA, Chakrabort A. Plant microbiome an
  32. account of the factors that shape community composition and diversity. Curr. Plant Biol.
  33. ;20:100161. 10.1016/j.cpb.2020.100161
  34. Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM,Murphy D. Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol. 2015; 205:1537-1551.
  35. https://doi.org/10.1111/nph.13138
  36. Miransari M. Abrishamchi A, Khoshbakht K, Niknam V. Plant hormones as signals in arbuscular mycorrhizal symbiosis. Crit. Rev. Biotechnol. 2014; 34:123-133. https://doi.org/10.3109/07388551.2012.731684
  37. Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva, S. The role of soil microorganisms
  38. in plant mineral nutrition current knowledge and future directions. Front. Plant Sci. 2017;8
  39. :1617. 10.3389/fpls.2017.01617/pdf. https://doi.org/10.3389/fpls.2017.01617
  40. Ling N, Wang T, & Kuzyakov Y. Rhizosphere bacteriome structure and functions. Nat
  41. Commun. 2022;13: 836. https://doi.org/10.1038/s41467-022-28448-9
  42. Dastogeer KM, Tumpa FH, Sultana A, Akter M A, Chakraborty A. Plant microbiome–an
  43. account of the factors that shape community composition and diversity. Curr. Plant Biol. 2020;100161. 10.1016/j.cpb.2020.100161.
  44. Roman-Reyna V, Pinili D, Borja FN, Quibod IL, Groen SC, Alexandrov N, Mauleon R, Oliva R.
  45. Characterization of the Leaf Microbiome from Whole-Genome Sequencing Data of the 3000
  46. Rice Genomes Project. Rice (N Y). 2020 Oct 9;13(1):72. doi: 10.1186/s12284-020-00432-1.
  47. PMID: 33034758; PMCID: PMC7547056.
  48. Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T, Host genotype
  49. and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 2016;7:
  50. –15. https://doi.org/10.1038/ncomms12151
  51. Alori T, Glick BR, Babalola OO. Microbial phosphorus solubilization and its potential for use in
  52. sustainable agriculture. Front. Microbiol., 2017;8. https://doi.org/10.3389/fmicb.2017.00971
  53. Laforest-Lapointe C, Messier SW, Kembel. Host species identity, site and time drive temperate
  54. tree phyllosphere bacterial community structure. Microbiome. 2016 ;4:Article 27, 10.1186/s40168-016-0174-1
  55. Bourcer A, Guan R, Dorau K, Mansfeldt T, Omidbakhshfard A, Medeiros DB. Maize field study
  56. reveals covaried microbiota and metabolic changes in roots over plant growth. mBio, 2022;13: e0258421. https://doi.org/10.1128/mbio.02584-21
  57. Abadi VAJM, Sepehri M, Rahmani HA, Dolatabad HK, Shamshiripour M, Khatabi B. Diversity
  58. and abundance of culturable nitrogen-fixing bacteria in the phyllosphere of maize. J Appl
  59. Microbiol. 2021 Aug;131(2):898-912. doi: 10.1111/jam.14975. Epub 2021 Jan 4. PMID:
  60. Stanton DE, Batterman SA, Von Fischer JC, Hedin LO. Rapid nitrogen fixation by canopy microbiome in tropical forest determined by both phosphorus and molybdenum.Ecology. 2019;100 (9). https://doi.org/10.1002/ecy.2795
  61. Fürnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A. Nitrogen fixation by
  62. phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa rica. ISME J., 2008;2 (5) : pp. 561-570.
  63. https://doi.org/10.1038/ismej.2008.14
  64. Freiberg E. Microclimatic parameters influencing nitrogen fixation in the phyllosphere in a
  65. Costa Rican premontane rain forest. Oecologia.1998; 117 (1-2): 9–18.
  66. https://doi.org/10.1007/s004420050625
  67. Bao L, Gu L, Sun B, Cai W, Zhang S, Zhuang G. Seasonal variation of epiphytic bacteria in the
  68. phyllosphere of Gingko biloba, Pinus bungeana and Sabina chinensis. FEMS Microbiol.
  69. Ecol., 2020;96 (3): fiaa017. https://doi.org/10.1093/femsec/fiaa017
  70. Carrell AA, Frank AC. Pinus flexilis and Picea engelmannii share a simple and consistent
  71. needle endophyte microbiota with a potential role in nitrogen fixation. Front.Microbiol., 2014;5 : p. 333. https://doi.org/10.3389/fmicb.2014.00333
  72. Whipps JM, Hand P, Pink DAC, Bending G.D. Phyllosphere microbiology with special
  73. reference to diversity and plant genotype.Appl. Microbiol. 2008 ;105 (6) :1744-1755.
  74. https://doi.org/10.1111/j.1365-2672.2008.03906.x
  75. Miyamoto T, Kawahara M, Minamisawa K. Novel endophytic nitrogen-fixing clostridia from
  76. the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism
  77. analysis. Appl. Environ. Microbiol., 2004;70 (11) : 6580-6586.
  78. https://doi.org/10.1128/aem.70.11.6580-6586.2004
  79. Panchal S, Roy D, Chitrakar R, Price L, Breitbach ZS, Armstrong DW. Coronatine facilitates
  80. Pseudomonas syringae infection of Arabidiopsis leaves at night. Front. Plant Sci.2016; 7: 880.
  81. https://doi.org/10.3389/fpls.2016.00880
  82. Liu H, Brettell LE, Qiu Z, Singh BK. Microbiome-mediated stress resistance in plants. Trends
  83. Plant Sci.2020;25: 733–743. doi: 10.1016/j.tplants.2020.03.014
  84. Jacobs JL, Carroll TL, Sundin GW. The role of pigmentation, ultraviolet radiation tolerance, and
  85. leaf colonization strategies in the epiphytic survival of phyllosphere bacteria. Microb
  86. Ecol. 2005;49:104–113. doi: 10.1007/s00248-003-1061-4.
  87. Liu J, Song M, Wei X, Zhang H, Bai Z, Zhuang X. Responses of Phyllosphere Microbiome to
  88. Ozone Stress: Abundance, Community Compositions and Functions.Microorganisms.2022;10(4):680.doi: 10.3390 / microorganisms10040680. PMID:
  89. ; PMCID: PMC9024792.
  90. Liu, X., Matsumoto, H., Lv, T. et al. Phyllosphere microbiome induces host metabolic defence
  91. against rice false-smut disease. Nat Microbiol. 2023;8:1419–1433
  92. https://doi.org/10.1038/s41564-023-01379-x
  93. Sivakumar N, Sathishkumar R, Selvakumar G, Shyamkumar R, Arjunekumar K. Phyllospheric
  94. Microbiomes: Diversity, Ecological Significance, and Biotechnological Applications. Springer
  95. International Publishing; 2020. 10.1007/978-3-030-38453-1_5.
  96. Lindow SE, Brandl MT.. Microbiology of the phyllosphere. Appl Environ Microb 69: 1875-
  97. ; 2003 69(4):1875-83 DOI:10.1007/BF02887579
  98. D.A. Kumar, K.G. Sabarinathan, R. Kannan, D. Balachandar, M. Gomathy. Isolation and
  99. characterization of drought tolerant Bacteria from rice phyllosphere. Int. J. Curr. Microbiol.
  100. Appl. Sci., 8 (2019), pp. 2655-2664. https://doi.org/10.20546/ijcmas.2019.806.319
  101. Aydogan EL, Budich O, Hardt M, Choi YH, Jansen-Willems AB, Moser G, Müller C, Kämpfer
  102. P, Glaeser SP (2020) Global warming shifts the composition of the abundant bacterial
  103. phyllosphere microbiota as indicated by a cultivation-dependent and -independent study of the
  104. grassland phyllosphere of a long-term warming field experiment. FEMS Microbiol Ecol
  105. (8):faa087. https://doi.org/10.1093/femsec/faa087
  106. Facicov M, Abdelfattah A, Roslin T, Vacher C, Hambäck P, Blanchet FG, Lindahl BD, Tack AJ
  107. (2021) Climate warming dominates over plant genotype in shaping the seasonal trajectory of
  108. foliar fungal communities on oak. New Phytol 231(5):1770–1783.
  109. https://doi.org/10.1111/nph.17434
  110. Debray R, Socolar Y, Kaulbach G, Guzman A, Hernandez CA, Curley R, Dhond A, Bowles T,
  111. Koskella B (2021) Water stress and disruption of mycorrhizas induce parallel shifts in
  112. phyllosphere microbiome composition. New Phytol 234(6):2018–2031. https://
  113. doi.org/10.1111/nph.17817
  114. Dighton J. 2003. Fungi in ecosystem processes, vol 17. Marcel Dekker, New York, NY.
  115. doi:10.1017/S095375620421927X
  116. Chapin FS, Matson PA, Vitousek PM, Chapin MC. 2011. Principles of terrestrial ecosystem
  117. ecology, 2nd ed. Springer, New York, NY. http://dx.doi.org/10.1007/978-1-4419-9504-9
  118. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-
  119. Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE.Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49 –56. http:
  120. //dx.doi.org/10.1038/nature10386.
  121. Sinsabaugh RL. Enzymatic analysis of microbial pattern and process. Biol Fertil Soils.
  122. ;17:69 –74. http://dx.doi.org/10.1007/BF00418675.
  123. Waring BG, Averill C, Hawkes CV. Differences in fungal and bacterial physiology alter soil
  124. carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecol Lett.
  125. ; 16:887– 894. http://dx .doi.org/10.1111/ele.12125.
  126. Taylor DL, Hollingsworth TN, McFarland J, Lennon NJ, Nusbaum C, Ruess RW. A first
  127. comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche
  128. partitioning. Ecol Monogr. 2014;84: 3–20. http://dx.doi.org/10.1890/12-1693.1.
  129. Blackwell M. The fungi: 1, 2, 3. . .5.1 million species? Am J Bot. 2011; 98:426 – 438.
  130. http://dx.doi.org/10.3732/ajb.1000298
  131. Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kirk P, Nilsson RH. Progress in molecular and
  132. morphological taxon discovery in fungi and options for formal classification of environmental
  133. sequences. Fungal Biol Rev. 2011; 25:38 – 47. http://dx.doi.org/10.1016/j.fbr.2011.01.001.
  134. Starmer WT, Lachance M. 2011. Yeast ecology, p 65– 83. In Kurtzman CP, Fell JW, Boekhout
  135. T (ed), The yeasts, a taxonomic study, vol 1. Elsevier, Amsterdam, Netherlands. 21. eBook
  136. ISBN: 9780080931272
  137. Smith SE, Read DJ. 2008. Mycorrhizal symbiosis, 3rd ed. Academic Press, San Diego, CA.
  138. http://dx.doi.org/10.2136/sssaj2008.0015br
  139. Allison SD. 2012. A trait-based approach for modelling microbial litter decomposition. Ecol Lett
  140. :1058 –1070. http://dx.doi.org/10.1111/j .1461-0248.2012.01807.x
  141. Moorhead DL, Sinsabaugh RL. A theoretical model of litter decay and microbial interaction. Ecol
  142. Monogr. 2006;76:151–174.http://dx.doi.org/10.1890/0012-9615 (2006) 076 [0151:ATMOLD]
  143. 0.CO;2.
  144. Orwin KH, Kirschbaum MUF, St John MG, Dickie IA. Organic nutrient uptake by mycorrhizal
  145. fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett 2011;14:493–502. http://dx.doi.org /10.1111/j.1461-0248.2011.01611.x.
  146. Wang G, Jagadamma S, Mayes MA, Schadt CW, Steinweg JM, Gu L, Post WM. Microbial
  147. dormancy improves development and experimental validation of ecosystem model. ISME J 2015;9:226 –237. http://dx.doi .org/10.1038/ismej.2014.120
  148. Klemm D, Heublein B, Fink H-P, Bohn A. Cellulose: fascinating biopolymer and sustainable
  149. raw material. Angew Chem Int Ed Engl. 2005;.36: 3358 –3393.
  150. http://dx.doi.org/10.1002/anie.200460587
  151. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R,
  152. Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de
  153. Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C,
  154. Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TKA, Kuo A,
  155. LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R,
  156. McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA,Patyshakuliyeva Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot
  157. JC, St John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A,
  158. Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science. 2012; 336:1715–1719. http://dx.doi.org /10.1126/science.1221748.
  159. Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R.Pathways for degradation of lignin in
  160. bacteria and fungi.Nat Prod Rep.2011;28:1883–1896. http://dx.doi.org/10.1039/c1np00042j.
  161. Schlesinger WH. Carbon balance in terrestrial detritus. Annu Rev Ecol Evol Syst. 1977;8:51–
  162. http://dx.doi.org/10.1146/annurev.es.08.110177 .000411.
  163. Martínez ÁT, Ruiz-Dueñas FJ, Martínez MJ, del Río JC, Gutiérrez A. Enzymatic delignification
  164. of plant cell wall: from nature to mill. Curr Opin Biotechnol. 2009; 20:348 –357.
  165. http://dx.doi.org/10.1016/j.copbio .2009.05.002.
  166. Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT. Substrate oxidation
  167. sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 2009; 60:441– 452.
  168. http://dx.doi.org/10 .1093/jxb/ern261.
  169. Castagno LN, Sannazzaro AI, Gonzalez ME, Pieckenstain FL, and Estrella MJ. Phosphobacteria as key actors to overcome phosphorus deficiency in plants. Ann. Appl. Biol.2021;178: 256–267. doi: 10.1111/aab.12673
  170. Unnikrishnan BV and Binitha NK. Positive effect of inoculation with an Aspergillus strain on
  171. phosphorus and iron nutrition plus volatile organic compounds in rice. Folia Microbiol.
  172. ;1–10. doi: 10.1007/s12223-024-01129-4
  173. Hakim S, NaqqashT, Nawaz MS, Laraib I, Siddique MJ, Zia R. Rhizosphere engineering with
  174. plant growth-promoting microorganisms for agriculture and ecological sustainability. Front.
  175. Sustain. Food Syst. 2021; 5:617157. doi: 10.3389/ fsufs.2021.617157
  176. Rawat P, Das S, Shankhdhar D, and Shankhdhar S. Phosphate-solubilizing microorganisms:
  177. mechanism and their role in phosphate solubilization and uptake. J. Soil Sci. Plant Nutr.
  178. ;21: 49–68. doi: 10.1007/s42729-020-00342-7
  179. Kumawat KC, Sharma P, Nagpal S, Gupta R, Sirari A, Nair RM.Dual microbial inoculation, a
  180. game changer?—bacterial biostimulants with multifunctional growth promoting traits to
  181. mitigate salinity stress in spring mungbean. Front. Microbiol. 2021;11:600576. doi:
  182. 3389/fmicb.2020.600576
  183. Toscano-Verduzco FA, Cedeño-Valdivia PA, Chan-Cupul W, Hernández-Ortega HA, Ruiz-
  184. Sánchez E, Galindo-Velasco E.Phosphates solubilization, indol-3-acetic acid and siderophores
  185. production by Beauveria brongniartii and its effect on growth and fruit quality of Capsicum
  186. chinense. J. Hortic. Sci. Biotechnol. 2020;95:235–246. doi: 10.1080/14620316.2019.1662737
  187. Rizvi A, Ahmed B, Khan MS, Umar S, and Lee J. Psychrophilic bacterial phosphate-biofertilizers: a novel extremophile for sustainable crop production under cold environment.Microorganisms 2021;9:2451. doi: 10.3390/microorganisms9122451
  188. Aliyat FZ, Maldani M, El Guilli M, Nassiri L, and Ibijbijen J. Phosphate solubilizing bacteria isolated from phosphate solid sludge and their ability to solubilize three inorganic phosphate
  189. forms: calcium, iron, and aluminum phosphates. Microorganisms. 2022;10:980. doi:
  190. 3390/microorganisms10050980
  191. Divjot K, Rana KL, Tanvir K, Yadav N, Yadav AN, Kumar M. . Biodiversity, current
  192. developments and potential biotechnological applications of phosphorus-solubilizing and-
  193. mobilizing microbes: a review. Pedosphere .202;131:43–75. doi: 10.1016/S1002-
  194. (20)60057-1
  195. Li C, Li Q, Wang Z, Ji G, Zhao H, Gao F.Environmental fungi and bacteria facilitate lecithin
  196. decomposition and the transformation of phosphorus to apatite. Sci. Rep. 2019;9:15291. doi:
  197. 1038/s41598-019-51804-7
  198. Li H, Song,C. Yang, L,Qin H, Cao X, and Zhou Y. Nutrients regeneration pathway, release potential, transformation pattern and algal utilization strategies jointly drove cyanobacterial
  199. growth and their succession. J. Environ. Sci. 2021;103: 255–267. doi:10.1016/j.jes.2020.11.010
  200. Rasul M, Yasmin S, Yahya M, Breitkreuz C, Tarkka M, and Reitz T. The wheat growth-
  201. promoting traits of Ochrobactrum and Pantoea species, responsible for solubilization of
  202. different P sources, are ensured by genes encoding enzymes of multiple P-releasing pathways.
  203. Microbiol. Res. 2021;246:126703. doi: 10.1016/j.micres.2021.126703
  204. Zuluaga MYA, De Oliveira ALM, Valentinuzzi F, Jayme NS, Monterisi S, Fattorini R. An insight into the role of the organic acids produced by Enterobacter sp. strain 15S in solubilizing tricalcium phosphate: in situ study on cucumber. BMC Microbiol. 2023; 23:184. doi:10.1186/s12866-023-02918-6
  205. Bononi L, Chiaramonte JB, Pansa CC, Moitinho MA, and Melo IS. Phosphorus-solubilizing
  206. Trichoderma spp. from Amazon soils improve soybean plant growth. Sci. Rep. 2020;10:2858.
  207. doi: 10.1038/s41598-020-59793-8
  208. Kaur C. Selvakumar G, and Upreti K K . Organic acid profiles of phosphate solubilizing
  209. bacterial strains in the presence of different insoluble phosphatic sources under. J. Pure Appl.
  210. Microbiol. 2021;15: 1006–1015. doi: 10.22207/JPAM.15.2.59
  211. Jaiswal S K, Mohammed M, Ibny FY, and Dakora FD. Rhizobia as a source of plant growth-
  212. promoting molecules: potential applications and possible operational mechanisms. Front.Sustain. Food Syst. 2021;4:619676. doi: 10.3389/ fsufs.2020.619676
  213. Wang L, Zhou F, Zhou J, Harvey PR, Yu H, Zhang G. Genomic analysis of Pseudomonas asiatica JP233: An efficient phosphate-solubilizing bacterium. Genes 2022;13:2290. doi: 10.3390/genes13122290
  214. Rai A, Sharma NK, Singh VK, Dwivedi BS, Singh JS, and Rai PK. Study of phosphate
  215. solubilizing fluorescent Pseudomonas recovered from rhizosphere and endorhizosphere of Aloe
  216. barbadensis (L.). Geomicrobiol J. 2023;40: 347–359. doi: 10.1080/01490451.2023.2171165
  217. Prabhu N, Borkar S, and Garg S. “Chapter 11—Phosphate solubilization by microorganisms:
  218. overview, mechanisms, applications and advances” in Advances in biological science research.
  219. eds. S. N. Meena and M. M. Naik (London: Academic Press). 2019;161–176.DOI:
  220. 1016/B978-0-12-817497-5.00011-2
  221. Borges B, Gallo G, Coelho C, Negri N, Maiello F, Hardy L. Dynamic cross correlation analysis
  222. of Thermus thermophilus alkaline phosphatase and determinants of thermostability. Biochim.
  223. Biophys. Acta 2021;1865:129895. doi: 10.1016/j. bbagen.2021.129895
  224. Cheng Y, Narayanan M, Shi X, Chen X, Li Z, and Ma Y. . Phosphate solubilizing bacteria: their
  225. agroecological function and optimistic application for enhancing agro-productivity. Sci. Total
  226. Environ. 2023; 901:166468. doi: 10.1016/j. scitotenv.2023.166468
  227. Jiang S, Lu H, Liu J, Lin Y, Dai M, and Yan C. Influence of seasonal variation and anthropogenic activity on phosphorus cycling and retention in mangrove sediments: a case study in China. Estuar. Coast. Shelf Sci. 2018; 202: 134–144. doi: 10.1016/j. ecss.2017.12.011
  228. Chen A, and Arai Y.A review of the reactivity of phosphatase controlled by clays and clay minerals: implications for understanding phosphorus mineralization in soils. Clay Clay Miner.
  229. ;71: 119–142. doi: 10.1007/s42860-023-00243-7
  230. Zaborowska M, Wyszkowska J, and Kucharski J. Soil enzyme response to bisphenol F
  231. contamination in the soil bioaugmented using bacterial and mould fungal consortium. Environ.
  232. Monit. Assess. 2020;192:20. doi: 10.1007/s10661-019-7999-6
  233. Jiang Y, Tian J, and Ge F. New insight into carboxylic acid metabolisms and pH regulations
  234. during insoluble phosphate solubilisation process by Penicillium oxalicum PSF-4. Curr. Microbiol.2020; 77: 4095–4103. doi: 10.1007/s00284-020-02238-2
  235. Begum N, Qin C, Ahanger MA, Raza S, Khan M I, Ashraf M. Role of arbuscular mycorrhizal
  236. fungi in plant growth regulation: implications in abiotic stress tolerance. Front. Plant Sci.2019; 10:1068. doi: 10.3389/fpls.2019.01068
  237. Gooday GW. The ecology of chitin degradation. Adv Microb Ecol. 1990; 11:387– 430.
  238. http://dx.doi.org/10.1007/978-1-4684-7612-5_10.
  239. Read DJ, Perez-Moreno J. Mycorrhizas and nutrient cycling in ecosystems—a journey towards
  240. relevance? New Phytol. 2003;157:475– 492. http://dx.doi.org/10.1046/j.1469-8137.2003.00704.x.
  241. Schulten HR, Schnitzer M. The chemistry of soil organic nitrogen: a review. Biol Fertil Soils.
  242. ;26:1–15. http://dx.doi.org/10.1007 /s003740050335.
  243. Jones DL, Shannon D, Murphy DV, Farrar J. Role of dissolved organic nitrogen (DON) in soil N
  244. cycling in grassland soils. Soil Biol Biochem.2004;36:749–756. http://dx.doi.org/10.1016/j.soilbio.2004.01.003.
  245. Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A. Dissolved organic nitrogen uptake by
  246. plants—an important N uptake pathway? Soil Biol Biochem. 2005; 37:413– 423.
  247. http://dx.doi.org/10.1016/j.soilbio.2004 .08.008.
  248. Wipf D, Benjdia M, Tegeder M, Frommer WB. Characterization of a general amino acid
  249. permease from Hebeloma cylindrosporum. FEBS Lett. 2002;528:119–124.
  250. http://dx.doi.org/10.1016/S0014-5793(02)03271-4.
  251. Lavorel S, Garnier E. 2002. Predicting changes in community composition and ecosystem
  252. functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556.
  253. http://dx.doi.org/10.1046/j.1365-2435.2002 .00664.x.
  254. Simpson AJ, Simpson MJ, Smith E, Kelleher BP. 2007. Microbially derived inputs to soil organic matter: are current estimates too low? Environ Sci Technol 41:8070 – 8076.
  255. http://dx.doi.org/10.1021/es071217x
  256. Xie XF, Lipke PN. On the evolution of fungal and yeast cell walls. Yeast. 2010; 27:479 – 488.
  257. http://dx.doi.org/10.1002/yea.1787.
  258. Cabib E. Two novel techniques for determination of polysaccharide cross-links show that
  259. Saccharomyces cerevisiae Crh1p and Crh2p attach chitin to both beta (16) - and beta (1-3)
  260. glucan in the Saccharomyces cerevisiae cell wall. Eukaryot Cell. 2009; 8:1626 –1636.
  261. http://dx.doi.org/10.1128/EC.00228-09
  262. Tibbett M, Sanders FE, Cairney JWG. Low-temperatureinduced changes in trehalose, mannitol
  263. and arabitol associated with enhanced tolerance to freezing in ectomycorrhizal basidiomycetes
  264. (Hebeloma spp.). Mycorrhiza. 2002; 12:249 –255. http://dx.doi.org/10.1007 /s00572-002-0183-
  265. Singer MA, Lindquist S. Multiple effects of trehalose on protein folding in vitro and in vivo.
  266. Mol Cell 1998;1:639 – 648. http://dx.doi.org/10 .1016/S1097-2765(00)80064-7.
  267. Hare PD, Cress WA, Van Staden J. Dissecting the roles of osmolyte accumulation during
  268. stress. Plant Cell Environ. 1998; 21:535–553. http: //dx.doi.org/10.1046/j.1365-3040.1998.00309.x.
  269. Francois J, Parrou JL. Reserve carbohydrates metabolism in the yeast . FEMS Microbiol Rev
  270. ; 25:125–145. http: //dx.doi.org/10.1111/j.1574-6976.2001.tb00574.x.
  271. Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its
  272. implications for ecosystem function. Ecology.2007; 88: 1386 –1394.
  273. http://dx.doi.org/10.1890/06-0219
  274. Owttrim GW. RNA helicases and abiotic stress. Nucleic Acids Res. 2006;34:3220 –3230.
  275. http://dx.doi.org/10.1093/nar/gkl408
  276. Ellison CE, Hall C, Kowbel D, Welch J, Brem RB, Glass NL, Taylor JW. Population genomics
  277. and local adaptation in wild isolates of a model microbial eukaryote. Proc Natl Acad SciUSA.
  278. ;108: 2831–2836. http://dx.doi.org/10.1073/pnas.1014971108.
  279. Schade B, Jansen G, Whiteway M, Entian KD, Thomas DY. Cold adaptation in budding yeast.
  280. Mol Biol Cell. 2004;15:5492–5502. http://dx.doi .org/10.1091/mbc.E04-03-0167.
  281. Onofri S, Seltimann L, de Hoog GS, Grube M, Barreca D, Ruisi S, Zucconi L. Evolution and
  282. adaptation of fungi at boundaries of life. Adv Space Res. 2007; 40:1657–1664.
  283. http://dx.doi.org/10.1016/j.asr .2007.06.004.
  284. de Hoog GS. Ecology and phylogeny of black yeast-like fungi: diversity in unexplored habitats.
  285. Fungal Divers. 2014;65:1–2. http://dx.doi.org /10.1007/s13225-014-0284-7.
  286. Gunde-Cimerman N, Grube M, de Hoog GS. The emerging potential of melanized fungi: black
  287. yeast between beauty and the beast. Fungal Biol. 2011; 115:935–936.
  288. http://dx.doi.org/10.1016/j.funbio .2011.05.003.
  289. Koide RT, Fernandez C, Malcolm G. Determining place and process: functional traits of
  290. ectomycorrhizal fungi that affect both community structure and ecosystem function. New
  291. Phytol. 2014;201:433– 439. http://dx.doi.org/10.1111/nph.12538
  292. Free SJ. Fungal cell wall organization and biosynthesis. Adv Genet. 2013; 81:33–82.
  293. http://dx.doi.org/10.1016/B978-0-12-407677-8.00002-6.
  294. Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG. Phylogenomic analysis of type I
  295. polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci USA.
  296. ; 100:15670 –15675. http://dx.doi.org/10.1073/pnas.2532165100
  297. Wilson D. Endophyte: The evolution of a term, and clarification of its use and definition. Oikos
  298. .1995; 73: 274–276. doi: 10.2307/3545919
  299. Rodriguez R J , White J F , Arnold Jr, Redman, A E. Fungal endophytes: diversity and
  300. functional roles. New Phytol. 2009; 182, 314–330. doi: 10.1111/j.1469-8137.2009.02773.x
  301. Bright M, Bulgheresi S. A complex journey: transmission of microbial symbionts. Nat. Rev.
  302. Microbiol. 2010; 8:218–230. doi: 10.1038/nrmicro2262
  303. Abdelfattah A, Tack AJ, Lobato M C, Wassermann B , Berg G. From seed to seed: the role
  304. of microbial inheritance in the assembly of the plant microbiome. Trends Microbiol. 2022; 31:
  305. –355. doi: 10.1016/j.tim.2022.10.009
  306. Baron NC, Rigobelo EC. Endophytic fungi: a tool for plant growth promotion and sustainable
  307. agriculture. Mycology .2022;13: 39–55. doi: 10.1080/21501203.2021.1945699
  308. Verma A, Shameem N, Jatav HS, Sathyanarayana E, Parray JA, Poczai P. Fungal endophytes
  309. to combat biotic and abiotic stresses for climate-smart and sustainable agriculture. Front. Plant
  310. Sci. 2022; 13: doi: 10.3389/fpls.2022.953836
  311. Lugtenberg BJJ, Caradus JR, Johnson LJ. Fungal endophytes for sustainable crop production.
  312. FEMS Microbiol. Ecol. 2016; 92: fiw194. doi: 10.1093/femsec/fiw194
  313. Kovtun Y, Chiu WL, Tena G, Sheen J. Functional analysis of oxidative stressactivated
  314. mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A.
  315. ;97(6):2940–5. https://doi.org/10.1073/pnas.97.6.2940
  316. Nakashima K, Yamaguchi-Shinozaki K. ABA signaling in stress-response and seed
  317. development. Plant Cell Rep. 2013; 32(7):959–70. https://doi.org/10.1007/s00299-013-1418-1
  318. Kennedy J, Morice C, Parker D, Kendon M. Global and regional climate in 2015. Weather.
  319. John Wiley & Sons, Ltd; 2016; 71: 185–192. doi: 10.1002/wea.2760 [Google Scholar]
  320. Twardosz R, Kossowska-Cezak U, Pe?ech S. Extremely Cold Winter Months in Europe
  321. (1951–2010). Acta Geophys. 2016; doi: 10.1515/acgeo-2016-0083 [Google Scholar]
  322. Hasanuzzaman M, Nahar K, Fujita M. Extreme temperature responses, oxidative stress and
  323. antioxidant defense in plants. Plants, Abiotic Stress—Plant Responses Appl Agric. 2013;
  324. –205. doi: 10.5772/54833
  325. Song Y, Chen Q, Ci D, Shao X, Zhang D. Effects of high temperature on photosynthesis and
  326. related gene expression in poplar. BMC Plant Biol. 2014;14: 111 doi: 10.1186/1471-2229-14-111
  327. Tubiello FN, Salvatore M, Rossi S, Ferrara A, Fitton N, Smith P. The FAOSTAT database of
  328. greenhouse gas emissions from agriculture. Environ. Res. Lett. 2013; 8(1) :13. DOI 10.1088/1748-9326/8/1/015009.
  329. Lohar D, Peat W. Floral characteristics of heat-tolerant and heat-sensitive tomato
  330. (Lycopersicon esculentum Mill.) cultivars at high temperature. Sci. Hortic. 1998; 73(1):53–60.
  331. https://doi.org/10.1016/S0304-4238(97)00056-3
  332. Rhodes D, Hanson A. Quaternary ammonium and tertiary sulfonium compounds in higher
  333. plants. Annu. Rev. Plant Biol. 1993; 44 (1):357–384 https://doi.org/10.1146/annurev.pp.44.060193.002041
  334. Chen TH, Murata N. Enhancement of tolerance of abiotic stress by metabolic engineering of
  335. betaines and other compatible solutes. Curr. Opin. Plant Biol. 2002;5(3):250–257.
  336. https://doi.org/10.1016/s1369-5266(02)00255-8
  337. Larkindale J, Hall JD, Knight MR, Vierling E. Heat stress phenotypes of Arabidopsis
  338. mutants implicate multiple signaling pathways in the acquisition of thermotolerance.Plant
  339. Physiol., 2005; 138 (2) : 882-897. https://doi.org/10.1104/pp.105.062257
  340. Rivero RM, Ruiz JM, Garc?a PC, Lopez-Lefebre LR, Sánchez E, Romero L. Resistance to
  341. cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants.
  342. Plant Sci. 2001; 160 (2): 315-321. https://doi.org/10.1016/s0168-9452(00)00395-2
  343. Bouchereau A, Aziz A, Larher F, Martin-Tanguy J. Polyamines and environmental
  344. challenges: recent development Plant Sci.1999;140 (2) :103-125.
  345. https://doi.org/10.1016/S0168-9452(98)00218-0
  346. Yang XX, Wen H, Gong Q, Lu Z, Yang Y,Tang. Lu Genetic engineering of the biosynthesis of
  347. glycine betaine enhances thermotolerance of photosystem II in tobacco plants Planta. 2007;
  348. (3):719-733. https://doi.org/10.1007/s00425-006-0380-3
  349. Kim, K. Portis .Temperature dependence of photosynthesis in Arabidiopsis plants with
  350. modifications in Rubisco activase and membrane fluidity.Plant Cell Physiol.2005; 46 (3):522-
  351. https://doi.org/10.1093/pcp/pci052
  352. Diamant S, Rosenthal D, Azem A, Eliahu N, Ben-Zvi AP, Goloubinoff P.Dicarboxylic amino acids and glycine-betaine regulate chaperone-mediated protein disaggregation under
  353. stress Mol. Microbiol. 2003; 49 (2):401-410. https://doi.org/10.1046/j.1365-
  354. 2003.03553.x
  355. Dat JF, Lopez-Delgado H, Foyer CH, Scott IM. Effects of salicylic acid on oxidative stress
  356. and thermotolerance in tobacco J. Plant Physiol. 2000; 156 (5): 659-665. https://doi.org/10.1016/S0176-1617 (00)80228-X
  357. Raskin I. Salicylate, a new plant hormone.Plant physiol. 1992; 99(3):799.
  358. https://doi.org/10.1104/pp.99.3.799
  359. Conrath U, Chen Z, Ricigliano JR, Klessig DF. Two inducers of plant defense responses, 2, 6-
  360. dichloroisonicotinec acid and salicylic acid, inhibit catalase activity in tobacco. Proc. Natl.
  361. Acad. Sci. 1995 ;92(16):7143–7147. https://doi.org/10.1073/pnas.92.16.7143
  362. Dong J, Wan G, Liang Z. Accumulation of salicylic acid-induced phenolic compounds and
  363. raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell
  364. culture J. Biotechnol. 2010; 148 (2): 99-104. https://doi.org/10.1016/j.jbiotec.2010.05.009
  365. Kang J, Peng Y, Xu W. Crop root responses to drought stress: molecular mechanisms, nutrient
  366. regulations, and interactions with microorganisms in the rhizosphere. Int. J. Mol. Sci. 2022;
  367. : 9310. doi: 10.3390/ijms23169310
  368. Mosaad IS, Ayman M, Moustafa-Farag HIS, Seadh M. Effect of exogenous proline application
  369. on maize yield and the optimum rate of mineral nitrogen under salinity stress, J. Plant Nutr.
  370. ; 43: 354–370. doi: 10.1080/01904167.2019.1676901
  371. Ibrahim AA, Mageed AET, Abohamid Y, Abdallah H, El-Saadony, M, AbuQamar S.
  372. Exogenously applied proline enhances morph-physiological responses and yield of drought-stressed maize plants grown under different irrigation systems. Front. Plant Sci. 2022; 13: doi:
  373. 3389/fpls.2022.897027
  374. Ji H , Liu L , Li K , Xie Q, Wang Z, Zhao X. PEG-mediated osmotic stress induces premature differentiation of the root apical meristem and outgrowth of lateral roots in wheat. J.
  375. Exp. Bot. 2014; 65: 4863–4872. doi: 10.1093/jxb/eru255
  376. Rahman M, Mostofa M, Rahman MG , Islam MA, Keya M.R, Das SS. Acetic acid: a cost-
  377. effective agent for mitigation of seawater-induced salt toxicity in mung bean. Sci. Rep. 2019;
  378. : 15186. doi: 10.1038/s41598-019-51178-w
  379. Tan J, Wang C. Xiang B. Han R. Guo Z. Hydrogen peroxide and nitric oxide mediated cold-
  380. and dehydration-induced myo-inositol phosphate synthase that confers multiple resistances to
  381. abiotic stresses. Plant Cell Environ. 2013; 36 (2):288-299. https://doi.org/10.1111/j.1365-
  382. 2012.02573.x
  383. Kinnersley AM, Turano FJ. Gamma aminobutyric acid (GABA) and plant responses to stress
  384. Crit. Rev. Plant Sci.2000; 19 (6):479-509. http://dx.doi.org/10.1080/07352680091139277
  385. Razik ESA, Alharbi BM, Pirzadah TB, Alnusairi GSH, Soliman MH, Hakeem KR.?-
  386. Aminobutyric acid (GABA) mitigates drought and heat stress in sunflower (Helianthus annuus
  387. L.) by regulating its physiological, biochemical and molecular pathways. Physiol. Plant. 2020;
  388. :505–527. doi: 10.1111/ppl.13216.
  389. Krishnan S, Laskowski K, Shukla V, Merewitz EB. Mitigation of Drought Stress Damage by
  390. Exogenous Application of a Non-Protein Amino Acid ?-Aminobutyric Acid on Perennial
  391. Ryegrass. J. Am. Soc. Hort. Sci. 2013; 138:358–366. doi: 10.21273/JASHS.138.5.358.
  392. Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ,
  393. Hernandez JA. Plant responses to salt stress: Adaptive mechanisms. Agronomy. 2017;7:18.
  394. doi: 10.3390/agronomy7010018
  395. Zhao S, Zhang Q, Liu M, Zhou H, Ma C, Wang P. Regulation of plant responses to salt stress.
  396. Int. J. Mol. Sci. 2021; 22:4609. doi: 10.3390/ijms22094609
  397. Munns R, Tester M. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol. 2008;
  398. :651–681. doi: 10.1146/annurev.arplant.59.032607.092911
  399. Hasanuzzaman M, Raihan MRH, Masud AAC, Rahman K, Nowroz F, Rahman M, Nahar K,
  400. Fujita M. Regulation of reactive oxygen species and antioxidant defense in plants under
  401. salinity. Int. J. Mol. Sci. 2021; 22:9326. doi: 10.3390/ijms22179326.
  402. Hawrylak-Nowak B, Dresler S, Stasi?ska-Jakubas M, Wójciak M, Sowa I, Matraszek-Gawron
  403. R. NaCl-induced elicitation alters physiology and increases accumulation of phenolic
  404. compounds in Melissa officinalis L. Int. J. Mol. Sci. 2021;22:6844. doi: 10.3390/ijms22136844.
  405. Mukherjee A, Gaurav AK, Chouhan GK, Jaiswal DK, Verma JP. Plant-specific microbiome
  406. for environmental stress management: issues and challenges . New and Future Developments in
  407. Microbial Biotechnology and Bioengineering. Phytomicrobiome for Sustainable
  408. Agriculture, Elsevier, Amsterdam .2020; pp. 91-101, 10.1016/B978-0-444-64325-4.00009-2
  409. Singh BK, Liu H, Trivedi P. Eco - holobiont: a new concept to identify drivers of host -
  410. associated microorganisms. Environ.Microbiol.,2019a ; 22(2) : pp. 564-567, 10.1111/1462-
  411. 14900
  412. Qiu Z, Egidi E, Liu H, Kaur S, Singh BK. New frontiers in agriculture productivity: optimised
  413. microbial inoculants and in situ microbiome engineering. Biotech. Adv., 2019;37 (6):Article 107371, 10.1016/j.biotechadv.2019.03.010
  414. Singh BK, Trivedi P, Egidi E, Macdonald CA, Delgado-Baquerizo M. Crop microbiome and
  415. sustainable agriculture. Nat.Rev. Microb., 2020;18 (11): pp. 601-602.
  416. https://doi.org/10.1038/s41579-020-00446-y
  417. Liu HC, Macdonald A, Cook J, Anderson IC, Singh BK. An ecological loop: host
  418. microbiomes across multitrophic interactions. Trends Ecol. Evol., 2019;34: pp. 1118-
  419. , 10.1016/j.tree.2019.07.011
  420. Ke J, Wang B, Yoshikuni Y. Microbiome engineering: synthetic biology of plant-associated
  421. microbiomes in sustainable agriculture.Trends in Biotech. 2020; 10.1016/j.tibtech.2020.07.008
  422. Vorholt JA, Vogel C, Carlström CI, Müller DB. Establishing causality: opportunities of
  423. synthetic communities for plant microbiome research. Cell Host Microbe. 2017;22 (2):142-155. https://doi.org/10.1016/j.chom.2017.07.004

Downloads

Download data is not yet available.