Understanding carbon fluxes from land-use transitions is vital for climate change mitigation, as activities like deforestation and urban expansion alter carbon storage and emissions. These alterations impact the carbon cycle, affecting the balance between carbon dioxide (CO2) absorption and its emission into the atmosphere. A thorough understanding of land use and land-use change dynamics in a specific region is essential for this analysis. Notably, the growing cultivation of fruit crops on agricultural land greatly enhances carbon sequestration potential. This study found that carbon sequestration in mango orchards increased with age of the trees. On average, 115.57 t C/ha was sequestered in Dhenkanal and 130.48 t C/ha in Rayagada. In these orchards, above-ground carbon constituted 24.45% in Dhenkanal and 27.69% in Rayagada of the total carbon sequestered per hectare, using the recommended 8 m x 8 m tree spacing. Collecting fundamental data on the carbon content of various land-use and land-use change categories at the regional level is crucial for effective climate change mitigation. This study provides novel insights into carbon stocks in mango orchards relative to tree age, enhancing our understanding of the carbon cycle within mango cultivated systems. Subsequent research should encompass mango orchards from many regions around the country, employing higher sample sizes to more accurately measure carbon sequestration in farmed mango orchards countrywide.