Positive and negative effects of nanoparticles on plants and their applications in agriculture

Authors

  • Pooja Goswami Department of Bioscience and Biotechnology, Banasthali University, P.O. Banasthali Vidyapith, Rajasthan 304 022, India
  • Sonali yadav Department of Bioscience and Biotechnology, Banasthali University, P.O. Banasthali Vidyapith, Rajasthan 304 022, India
  • Jyoti Mathur Department of Bioscience and Biotechnology, Banasthali University, P.O. Banasthali Vidyapith, Rajasthan 304 022, India

DOI:

https://doi.org/10.14719/pst.2019.6.2.502

Keywords:

Nanoparticles, Nano-fertilizers, Nano-pesticides, Nano-herbicides, Silver NPs

Abstract

Nanotechnology is the promising field with its wide applications in biotechnology, pharmaceutical science, drug targeting, nano-medicine and other research areas. This review highlights the positive and negative impact of nanoparticles on plants and its wide applications in agricultural sciences. Effect of NPs in terms of seed germination, growth promotion and enhancement of metabolic rate has been evaluated by several scientific researches. However, NPs also exert their negative effects such as suppression of plant growth, inhibition of chlorophyll synthesis, photosynthetic efficiency etc. Effects of NPs can be either positive or negative it depending upon the plant species and type of nanoparticles used & its concentration. Modern nano-biotechnological tools have a great potential to increase food quality, global food production, plant protection, detection of plant and animal diseases, monitoring of plant growth nano-fertilizers, nano-pesticide, nano-herbicides and nano-fungicides.

Downloads

Download data is not yet available.

References

1. Hao Y, Zhang Z, Rui Y, Ren J. Effect of different nanoparticles on seed germination and seedling growth in rice. Annual International Conference on Advanced Material Engineering 2016;1-8. https://doi.org/10.2991/ame-16.2016.28

2. Siddiqui MH, Al-Whaibi MH. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi. J. Biol. Sci. 2014;21(1):13–7. https://doi.org/10.1016/j.sjbs.2013.04.005

3. Farooqui AR, Tabassum HE, Ahmad AS, Mabood AB, Ahmad AD, Ahmad IZ. Role of nanoparticles in growth and development of plant. ?Int. J. Pharma. Bio. Sci.  2016; 7(4):22-37.

4. Husein A, Siddiqi KS. Carbon and fullerene nanomaterials in plant system. J. Nanobiotechnology. 2014;12(1):16. https://doi.org/10.1186/1477-3155-12-16

5. Mirshekali H, Hadi HA, Amirnia R, Khodaverdiloo H. Effect of zinc toxicity on plant productivity, chlorophyll and Zn contents of sorghum (Sorghum bicolor) and common lambsquarter (Chenopodium album) Int. J. Agr. Sci. 2012; 2(3):247-54.

6. Gottschalk F, Sonderer T, Scholz RW, Nowack B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, and Fullerenes) for different regions. Environ. Sci. Technol. 2009; 43(24):9216–22. https://doi.org/10.1021/es9015553

7. Ingale AG, Chaudhari AN. Biogenic synthesis of nanoparticles and potential applications: An eco-friendly approach. J. Nanomed. Nanotechnol.  2013;4:165. https://doi.org/10.4172/2157-7439.1000165

8. Rai M, Ingle A. Role of nanotechnology in agriculture with special reference to management of insect pests. Appl. Microbiol. Biotechnol.  2012;94(2):287-93. https://doi.org/10.1007/s00253-012-3969-4

9. Mohd NK, Wee NN, Azmi AA. Green synthesis of silica nanoparticles using sugarcane bagasse. AIP Conference Proceedings. 2017;1885(1). https://doi.org/10.1063/1.5002317

10. Karimi J, Mohsenzadeh S. Rapid green and eco-friendly biosynthesis of copper nanoparticles using lower extract of Aloe vera. Synth. React. Inorg. M. 2014;45:(6):895-8. https://doi.org/10.1080/15533174.2013.862644

11. Rastogi L, Arunachalam J. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Mater. Chem. Phys. 2011;129(1-2):558–63. https://doi.org/10.1016/j.matchemphys.2011.04.068

12. Sheny DS, Philip D, Mathew J. Rapid green synthesis of palladium nanoparticles using the dried leaf of Anacardium occidentale. Philip. Spectrochim. Acta A. 2012; 91:35-8. https://doi.org/10.1016/j.saa.2012.01.063

13. Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid. Interface. Sci. 2004;275(2):496-502. https://doi.org/10.1016/j.jcis.2004.03.003

14. Dwivedi AD, Gopal K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A. 2010;369(1-3):27-33. https://doi.org/10.1016/j.colsurfa.2010.07.020

15. Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K. Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim. Acta A. 2011; 79(3):594-8. https://doi.org/10.1016/j.saa.2011.03.040

16. Rajakumar G,  Rahuman AA. Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop. 2011;118(3):196-203.  https://doi.org/10.1016/j.actatropica.2011.03.003

17. Kumar V, Yadav SK. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol. 2009;84(2):151-7. https://doi.org/10.1002/jctb.2023

18. Prabhu D, Arulvasu C, Babu G, Manikandan R, Srinivasan P. Biologically synthesized silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem. 2013;48(2):317–24. https://doi.org/10.1016/j.procbio.2012.12.013

19. Yang N, Wei Hong, Hao. Biosynthesis of Au nanoparticles using agricultural waste mango peel extract and its in vitro cytotoxic effect on two normal cells. Mater. Lett. 2014; 134:67–70. https://doi.org/10.1016/j.matlet.2014.07.025

20. Manickam S, Venkatachalam M, Parthasarathy. Green Synthesis of Nano Particles from Aloe vera Extract – Review Paper. Imp. J. Interdiscip. Res. 2016; 2(10):1570-5.

21. Sutradhar P, Saha M. Green synthesis of zinc oxide nanoparticles using tomato (Lycopersicon esculentum) extract and its photovoltaic application. J. Exp. Nanosci. 2016;11(5):314-27. https://doi.org/10.1080/17458080.2015.1059504

22. Petla RK, Vivekanandhan S, Misra M, Mohanty AK, Satyanarayana N. Soybean (Glycine max) leaf extract based green synthesis of palladium nanoparticles. J. Biomater. Nanobiotechnol. 2012;3(1):14-19. https://doi.org/10.4236/jbnb.2012.31003

23. Loo YY, Chieng BW, Nishibuchi M, Radu S. Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis. Int. J. Nanomedicine. 2012;7:4263-7. https://doi.org/10.2147/IJN.S33344

24. Devi PS, Banerjee S, Chowdhury SR, Kumar GS. Eggshell membrane: a natural biotemplate to synthesize fluorescent gold nanoparticles. RSC Adv. 2012;2(30):11578-85. https://doi.org/10.1039/C2RA21053C.s

25. Bankar A, Joshi B, Kumar AR, Zinjarde S. Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf. B. 2010;80(1):45-50. https://doi.org/10.1016/j.colsurfb.2010.05.029

26. Jain D, Daima HK, Kachhwaha S, Kothari SL. Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities Dig. J. Nanomater. Bios. 2009; 4(3):557–63.

27. Krishnaswamy K, Vali H, Orsat V. Value-adding to grape waste: green synthesis of gold nanoparticles. Int. J. Food Eng. 2014;142:210–20. https://doi.org/10.1016/j.jfoodeng.2014.06.014

28. Gottimukkala KSV, Harika P, Zamare D. Green synthesis of iron nanoparticles using green tea leaves extract. J. Nanomedine Biotherapeutic Discov. 2017;7:151. https://doi.org/10.4172/2155-983X.1000151

29. Eichert T, Goldbach HE. Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and leaf surfaces–further evidence for a stomatal pathway. Physiol. Plant. 2008; 132(4):491-502. https://doi.org/10.1111/j.1399-3054.2007.01023.x

30. Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants. Nanotoxicology. 2016;10(3):257-78. https://doi.org/10.3109/17435390.2015.1048326

31. Feng Y, Cui X, He S, Dong G, Chen M, Wang J, Lin X. The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ. Sci. Technol. 2013; 47(16):9496-504.  https://doi.org/10.1021/es402109n

32. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ. Sci. Technol. 2012; 46(8):4434-41. https://doi.org/10.1021/es204212z

33. Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA. Uptake and distribution of ultrasmall anatase TiO2 alizarin red. S nanoconjugates in Arabidopsis thaliana. Nano. Lett. 2010; 10(7):2296-302.  https://doi.org/10.1021/nl903518f

34. Ma X, Geisler-Lee J, Deng Y and Kolmakov A. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci. Total Environ. 2010;408(16):3053-61. https://doi.org/10.1016/j.scitotenv.2010.03.031

35. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS. Nanoparticulate material delivery to plants. Plant. Physiol. 2010;179(3):154–63. https://doi.org/10.1016/j.plantsci.2010.04.012

36. Hossain Z, Mustafa G, and Komatsu S. Plant responses to nanoparticle stress. Int. J. Mol. Sci. 2015; 16(11):26644–53. https://doi.org/10.3390/ijms161125980

37. Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ. Sci. Technol. 2013;47(2):1082–90. https://doi.org/10.1021/es302973y

38. Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J. Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J. Hazard. Mater. 2013;15(250):318-32. https://doi.org/10.1016/j.jhazmat.2013.01.063

39. Jiang HS, Qiu XN, Li GB, Li W, Yin LY. Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ. Toxicol. Chem. 2014; 33(6):1398-405. https://doi.org/10.1002/etc.2577

40. Pakrashi S, Jain N, Dalai S, Jayakumar J, Chandrasekaran PT, Raichur AM, Chandrasekaran N, Mukherjee A. In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. PLoS One 2014;49(2):877-89. https://doi.org/10.1371/journal.pone.0087789

41. Cvjetko P, Miloši? A, Domijan AM, Vr?ek IV, Toli? S, Štefani? PP, Letofsky-Papst I, Tkalec M, Balen B. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotox. Environ. safe. 2017;137:18–28. https://doi.org/10.1016/j.ecoenv.2016.11.009

42. Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant. Physiol. Biochem. 2010;48(12):909-30. https://doi.org/10.1016/j.plaphy.2010.08.016

43. Van Breusegem F, Dat JF. Reactive oxygen species in plant cell death. Plant Physiol. 2006;141(2):384-90. https://doi.org/10.1104/pp.106.078295

44. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ. Sci. Technol. 2012;46(3):1819–27. https://doi.org/10.1021/es202660k

45. Belava VN, Panyuta OO, Yakovleva GM, Pysmenna YM, Volkogon MV. The effect of silver and copper nanoparticles on the wheat- Pseudocercosporella herpotrichoides patho system. Nanoscale Res. Lett. 2017; 12(1):250.https://doi.org/10.1186/s11671-017-2028-6

46. Saha N, Gupta S. Low-dose toxicity of biogenic silver nanoparticles fabricated by Swertia chirata on root tips and flower buds of Allium cepa. J. Hazard. Mate. 2017; 15:330:18-28. https://doi.org/10.1016/j.jhazmat.2017.01.021

47. Oukarroum A, Barhoumi L, Pirastru L, Dewez D. Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ. Toxicol. Chem. 2013; 32(4):902-7. https://doi.org/10.1002/etc.2131

48. Sharma P, Jha B, Dubey RS and Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Am. J. Bot. 2012;Article ID 217037, 26 pages. http://dx.doi.org/10.1155/2012/217037

49. Thuesombat P, Hannongbua S, Akasit S, Chadchawan S. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth.  Ecotoxicol. Environ. Saf. 2014;104:302–9. http://dx.doi.org/10.1016/j.ecoenv.2014.03.022

50. Vannini C, Domingo G, Onelli E, Prinsi B, Marsoni M, Espen L, Bracale M. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoSONE. 2013;8(7):68752. http://dx.doi.org/10.1371/journal.pone.0068752

51. Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2012; 93:95–99. https://doi.org/10.1016/j.saa.2012.03.002

52. Fageria NK, Baligar VC, and Wright RJ. Iron nutrition of plants: An overview on the chemistry and physiology of its deficiency and toxicity.  Pesqui. Agropecu. bras. 1990; 25(4):553-70.

53. Jasim B, Thomas R, Mathew J, Radhakrishnan EK. Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi.  Pharm. J. 2017;25(3):443–7. https://doi.org/10.1016/j.jsps.2016.09.012

54. Srinivasan C, Saraswathi R. Nano-agriculture-carbon nanotubes enhance tomato seed germination and plant growth. Curr. Sci. 2010; 99(3):273–5. 

55. Tiwari DK, Dasgupta-Schubert N, Cendejas LV, Villegas J, Montoya LC, García SB. Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl. Nanosci. 2014;4(5):577-91. https://doi.org/10.1007/s13204-013-0236-7

56. Villagarcia H, Dervishi E, de Silva K, Biris AS, Khodakovskaya MV. Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small. 2014; 6-8(15):2328-34. https://doi.org/10.1002/smll.201102661

57. Husein A, Siddiqi KS. Carbon and fullerene nanomaterials in plant system. J. Nanobiotechnology. 2014;12(1):16. https://doi.org/10.1186/1477-3155-12-16

58. Khodakovskaya MV, De Silva K, Biris AS, Dervishi E, Villagarcia H. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano. 2012; 6(3):2128–35. https://doi.org/10.1021/nn204643g

59. Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV. Impact of carbon nanotube exposure to seeds of valuable crops. Appl. Mater. Interfaces. 2013; 5(16):7965–73. https://doi.org/10.1021/am402052x

60. Tripathi S, Sarkar S. Influence of water soluble carbon dots on the growth of wheat plant. Appl. Nanosci. 20151; 5(5):609-16. https://doi.org/10.1007/s13204-014-0355-9

61. Morla S, Rao CR, Chakrapani R. Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions. J. Chem. Biol. Phys. 2011; 1(2):328–34.

62. Lu C, Zhang C, Wen J, Wu G, Tao M. Research on the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science. 2002; 21(3):168-71.

63. Haghighi M, Afifipour Z, Mozafarian M. The effect of N-Si on tomato seed germination under salinity levels. JBES. 2012; 6(16):87-90.

64. Zheng L, Hong F, Lu S, Liu C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace. Elem. Res.  2005;104(1):83-91. https://doi.org/10.1385/BTER:104:1:083

65. Siddiqui MH, Al?Whaibi MH, Faisal M, Al Sahli AA. Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L.  Environ. Toxicol. Chem. 2014; 33(11):2429-37. https://doi.org/10.1002/etc.2697

66. Kalteh M, Alipour ZT, Ashraf S, Marashi Aliabadi M, Falah Nosratabadi A. Effect of silica nanoparticles on Basil (Ocimum basilicum) under salinity stress. Journal of chemical health and risks. 2018;4(3). https://doi.org/10.22034/JCHR.2018.544075

67. Prasad TN, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant. Nut. 2012; 35:(6):905-27. https://doi.org/10.1080/01904167.2012.663443  

68. Ramesh M, Palanisamy K, Babu NK. Effects of bulk and nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. Int. J. Glob. Sci. 2014; 3(2):415-22.

69. Raskar SV and Laware SL. Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int. J. Curr. Microbiol. App. Sci. 2014; 3(2):467-73.

70. de la Rosa G, López-Moreno ML, de Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL. Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure. Appl. Chem. 2013; 85(12):2161–74. https://doi.org/10.1351/pac-con-12-09-05

71. Raliya R and Tarafdar JC. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). J. Agric. 2013;2(1):48–57. https://doi.org/10.1007/s40003-012-0049-z

72. Helaly MN, El-Metwally MA, El-Hoseiny H. Effect of nanoparticles on biological contamination of in-vitro cultures and organogenic regeneration of banana. Aust. J. Crop Sci. 2014; 8(4):612-24.

73. Lee S, Kim S, Kim S, Lee I. Assessment of phytotoxicity of ZnONPs on a medicinal plant Fagopyrum esculentum.  Environ. Sci. Pollut. R. 2013;20(2):848-54. https://doi.org/10.1007/s11356-012-1069-8

74. Faizan M, Faraz A, Yusuf M, Zinc oxide nanoparticles- mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica. 2018; 56;678. https://doi.org/10.1007/s11099-017-0717-0

75. Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MG. Gold-nanoparticles induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 2012;66(3):303-10. https://doi.org/10.1007/s10725-011-9649-z

76. Gopinath K, Gowri S, Karthika V, Arumugam A.Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba.  J. Nanostructure Chem. 2014; 4(3):115. https://doi.org/10.1007/s40097-014-0115-0

77. Ndeh N, Maensiri N, Maensiri D. The effect of green synthesis gold nanoparticles on rice germination and root. Adv Nat Sci-Nanosci. 2017;8:1-10. https://doi.org/10.1088/2043-6254/aa724a

78. Yang FL, Li XG, Zhu F, Lei CL. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera:Tenebrionidae).  J. Agric. Food Chem. 2009; 57(21):10156-62. https://doi.org/10.1021/jf9023118

79. Pérez-de-Luque A. Interaction of Nanomaterials with Plants: What do we need for real applications in agriculture? Front. Environ. Sci. Eng. 2017;5:12. https://doi.org/10.3389/fenvs.2017.00012

80. Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol. Trace Elem. Res. 2005; 05:(1–3):269–79. https://doi.org/10.1385/BTER:105:1-3:269

81. Mahmoodzadeh H, Nabavi M, Kashefi H. Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J. Ornamental Hort. 2013; 3(1):25-32.

82. Scott NR, Chen H, Cui H. Nanotechnology applications and implications of agrochemicals towards sustainable agriculture and food systems. J. Agric. Food Chem. 2018; 66(26):6451–56. https://doi.org/10.1021/acs.jafc.8b00964

83. Foy CD, Fleming AL. Aluminium of two wheat genotype related to nitrate reductase activity. J. Plant Nutr. 1982; 5(11):1313–33. https://doi.org/10.1080/01904168209363064

84. Furlani PR, Clark RB. Screening sorghum for aluminium tolerance in nutrient solution. Agron. J.1981; 73(4):587–94.

85. Nosko P, Brassard P, Kramer JR, Kershaw KA. The effect of aluminium on seed germination and early seedling establishment growth and respiration of white spruce (Picea glauca). Can. J. Bot. 1988;66(11):2305-10. https://doi.org/10.1139/b88-313

86. Nicholas DJD. Mineral nutrition of plants. Annual. J. Plant Physiol. 2003;12(1):63-90. https://doi.org/10.1146/annurev.pp12.060161.000431

87. Tombuloglu H, Slimani Y, Tombuloglu G, Almessiere M, Baykal A. Uptake and translocation of magnetite (Fe3O4) nanoparticles and its impact on photosynthetic genes in barley (Hordeum vulgare L.). Chemosphere. 2019. https://doi.org/10.1016/j.chemosphere.2019.03.075

88. Zhu H, Han J, Xiao JQ, Jin Y. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ. Monit. 2008;10(6):713-7. https://doi.org/10.1039/b805998e

89. A farooqui, Tabassum H, Ahmad AS, Mabood AB, Ahmad AD, Ahmad IZ. Role of nanoparticles in growth and development of plants: a review. Int. J. Pharma Bio. Sci. 2016; 7(4):22–37. https://doi.org/10.22376/ijpbs.2016.7.4.p22-37

90. Prakash M. Gopalakrishnan N. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L) seedlings. Chemosphere 2014;112:105-13. https://doi.org/10.1016/j.chemosphere.2014.03.056

91. Nair PM, Chung IM. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere 2014;112:105-13. https://doi.org/10.1016/j.chemosphere.2014.03.056

92. Wang Z, Xu L, Zhao J, Wang X, White JC, Xing B. CuO nanoparticle interaction with Arabidopsis thaliana: toxicity, parent-progeny transfer, and gene expression. Environ. Sci. Technol. 2016;50(11):6008-16. https://doi.org/10.1021/acs.est.6b01017

93. Atha H, Wang H, Petersen J. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ. Sci. Technol. 2012;46(3):1819-27. https://doi.org/10.1021/es202660k

94. Wang L, Li X, Zhang G, Dong J, Eastoe J. Oil-in-water nano emulsions for pesticide formulations. J. Colloid Interface Sci. 2007; 314(1):230-5. https://doi.org/10.1021/jf9023118

95. Yang FL, Li XG, Zhu F, Lei CL. Structural characterization of nanoparticles loaded with garlic essential oil sand their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Agric Food Chem. 2009; 57(21):10156-62. https://doi.org/10.1021/jf9023118

96. Jo YK, Kim BH, Jung G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis. 2009;93(10):1037-43. https://doi.org/10.1094/PDIS-93-10-1037

97. Kumar V, Yadav SK. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol. 2008;84(2):151-7. https://doi.org/10.1002/jctb.2023

98. Swamy VS, Prasad R. Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity. J. Optoelectron. Adv. M. 2012; 4(3):53-59.

99. Park HJ, Kim SH, Kim HJ, Choi SH. A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol. J. 2006; 22(3). https://doi.org/10.5423/PPJ.2006.22.3.295

100. Dhoke SK, Mahajan P, Kamble R, Khanna A. Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedling by foliar spray method. Nanotechnology Devlopment. 2013; 3(1). https://doi.org/10.4081/nd.s

101. Zafar H, Ali A, Ali JS, Haq IU, Zia M. Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants growth dynamics and antioxidative response. Front. Plant Sci. 2016;7:535. https://doi.org/10.3389/fpls.2016.00535

Downloads

Published

30-05-2019

How to Cite

1.
Goswami P, yadav S, Mathur J. Positive and negative effects of nanoparticles on plants and their applications in agriculture. Plant Sci. Today [Internet]. 2019 May 30 [cited 2024 Nov. 19];6(2):232-4. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/502

Issue

Section

Review Articles