Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Exploring genetic diversity in Indian ginger (Zingiber officinale Rosc.) through microsatellite markers

DOI
https://doi.org/10.14719/pst.5552
Submitted
5 October 2024
Published
24-12-2024

Abstract

Ginger (Zingiber officinale Rosc.) holds significant value as a rhizomatous spice known for its distinct taste and aroma. India is the worlds' largest producer, exporter, and consumer of ginger. Local names commonly know many ginger cultivars, and since the crop is propagated vegetatively, the chances of mixing are very high. This complicates the maintenance of purity and distinct characteristics of each variety. In the present study, thirty-two ginger genotypes were procured from various regions nationwide and assessed using 49 SSR (Simple Sequence Repeats) markers to evaluate their genetic diversity patterns. Among the 49 markers, 19 primers were amplified and produced 23 polymorphic bands, resulting in a polymorphism percentage of 52.63%. Additionally, the unweighted pair group method (UPGMA) cluster analysis grouped the genotypes into five distinct clusters, with similarity coefficients ranging from 0.31 to 1.00. This suggests that each genotype exhibits substantial variability. Genotypes Maran and Acc. 581 showed a similarity value 1.00, indicating perfect similarity (100%) in their genetic characteristics. These findings emphasize the critical role of SSR markers in germplasm conservation and highlight the potential for utilizing genetic diversity in breeding programs to develop improved ginger varieties with desirable traits.

References

  1. Purseglove JW, Brown EG, Green CL, Robbins SRJ. Ginger. In: Purseglove JW, editor. Spices. New York: Longman Inc; 1981. p. 447-532.
  2. Nandi S, Rahman MZ, Siraj S, Ahmed S, Ahsan MA, Sultana N, Roy SK. Quality composition and biological significance of the Bangladeshi and China ginger (Zingiber officinale Rosc). J Microbiol Biotech Food Sci. 2013;2(5):2283-90. https://office2.jmbfs.org/index.php/JMBFS/article/view/7109
  3. Rattan RS. Improvement of ginger. In: Chadha KL, Rethinam P, editors. Advances in Horticulture. Plantation in spice crops. New Delhi: Malhotra Publishing House; 1994. p.333-34.
  4. Kumari M, Kumar M, Solankey SS. Zingiber officinale Rosc Ginger. In: Novak J, Bluthner WD, editors. Medicinal, aromatic and stimulant plants-handbook of plant breeding. Switzerland: Springer Cham; 2020. p. 12-16. https://doi.org/10.1007/978-3-030-38792-1_20
  5. Das A, Gaur M, Barik DP, Subudhi E. Genetic diversity analysis of 60 ginger germplasm core accessions using ISSR and SSR markers. Plant Biosys. 2017;151(5):822-32. https://doi.org/10.1080/11263504.2016.1211197
  6. Ismail NA, Rafii MY, Mahmud TMM, Hanafi MM, Miah G. Genetic diversity of torch ginger (Etlingera elatior) germplasm revealed by ISSR and SSR markers. Biomed Res Int. 2019;1:5904804. https://doi.org/10.1155/2019/5904804
  7. Akshitha HJ, Prasath D, Umesha K, Mohammad Faisal P, Venkataravanappa V. Molecular characterization of ginger genotypes using RAPD and SSR markers. J Hort Sci. 2022;17:95-106. https://doi.org/10.24154/jhs.v17i1.1052
  8. Bardakci F. Random amplified polymorphic DNA (RAPD) markers. Turkish J Biol. 2001; 25:185-96.
  9. Ansari AM, Singh YV. Molecular diversity of brinjal (Solanum melongena L. and S. aethiopicum L.) genotypes revealed by SSR markers. Electron J Plant Breed. 2014;5(4):722-28.
  10. Pomper KW, Lowe JD, Lu L, Crabtree SB, Dutta S. Characterization and identification of pawpaw cultivars and advanced selections by simple sequence repeat markers. J American Society Hort Sci. 2010;135:143-49. https://doi.org/10.21273/jashs.135.2.143
  11. Nas MN, Bolek Y Bardak A. Genetic diversity and phylogenetic relationships of Prunus microcarpa C.A. Mey. subsp. tortusa analyzed by simple sequence repeats (SSRs). Sci Hortic. 2011;127:220-27. https://doi.org/10.1016/j.scienta.2010.09.018
  12. Ismail NA, Rafii MY, Mahmud TMM, Hanafi MM, Miah G. Molecular markers: a potential resource for ginger genetic diversity studies. Mol Bio Rep. 2016;43:1347-58. https://doi.org/10.1007/s11033-016-4070-3
  13. Adato A, Sharon D, Lavi U. Application of DNA fingerprints for identification and genetic analyses of mango (Mangifera indica) genotypes. J American Society Hort Sci. 1995;120:259-64. https://doi.org/10.21273/jashs.120.2.259
  14. Gandhi SG, Awasthi P, Bedi YS. Analysis of SSR dynamics in chloroplast genomes of Brassicaceae family. Bioinform. 2010;5(1):16. https://doi.org/10.6026/97320630005016
  15. Awasthi P, Singh A, Sheikh G, Mahajan V, Gupta AP, Gupta S, et al. Mining and characterization of EST-SSR markers for Zingiber officinale Roscoe with transferability to other species of Zingiberaceae. Physiology Mol Bio Plants. 2017;23:925-31. https://doi.org/10.1007/s12298-017-0472-5
  16. Gezahegn G, Rezene Y, Feyissa T. Genetic diversity analysis of Ethiopian ginger (Zingiber officinale Rosc) accessions using simple sequence repeat (SSR) markers. Gen Res Crop Evol. 2024;1-12. https://doi.org/10.1007/s10722-024-01972-x
  17. Das A, Sahoo RK, Barik DP. Identification of duplicates in ginger germplasm collection from Odisha using morphological and molecular characterization. Proc Natl Acad Sci India Sect B Biol Sci. 2020;90:1057-66. https://doi.org/10.1007/s40011-020-01178-y
  18. Akshitha HJ. Molecular and chemo-profiling of ginger (Zingiber officinale Rosc) genotypes. PhD Dissertation. Bagalkot: University of Horticultural Sciences Press; 2018.
  19. Lee SY, Fai WK, Zakaria M, Ibrahim H, Othman RY, Gwag JG, et al. Characterization of polymorphic microsatellite markers isolated from ginger (Zingiber officinale Rosc). Mol Ecol Notes. 2007;7(6):1009-11. https://doi.org/10.1111/j.1471-8286.2007.01757.x
  20. Anu C. Development of microsatellite markers for small cardamom (Elettaria cardamomum Maton.). PhD Dissertation. India: Mangalore University; 2010
  21. Siju S, Dhanya K, Syamkumar S, Sheeja TE, Sasikumar B, Bhat AI, Parthasarathy VA. Development, characterization and utilization of genomic microsatellite markers in turmeric (Curcuma longa L.). Biochem Syst Ecol. 2010;38:641-46. https://doi.org/10.1016/j.bse.2010.08.006
  22. Nandkangre H, Konate MNG, Kambou DJ, Ouoba A, Zida WPFMS, Bado S, et al. Comparative study of genetic diversity parameters within ginger ecotypes from Burkina Faso using microsatellite markers developed on rice and ginger. Afr J Biol Sci. 2022;4(4):62-69. 10.33472/AFJBS.4.4.2022.62-69.
  23. Rohlf FJ. NTSYS-pc numerical taxonomy and multivariate analysis system. New York. Appl Biostat Inc. 1992.
  24. Anderson JA, Churchill, GA, Autrique JE, Tanksley SD, Sorrels ME. Optimizing parental selection for genetic linkage maps. Genome. 1993;36:181-86. https://doi.org/10.1139/g93-024
  25. Jatoi SA, Kikuchi A, San SY, Naing KW, Yamanaka S, Watanabe JA, Watanabe KN. Use of rice SSR markers as RAPD markers for genetic diversity analysis in Zingiberaceae. Breed Sci. 2006;56(2):107-11. https://doi.org/10.1270/jsbbs.56.107
  26. Ashraf K, Ahmad A, Chaudhary A, Mujeeb M, Ahmad S, Amir M, Mallick N. Genetic diversity analysis of Zingiber officinale Rosc by RAPD collected from subcontinent of India. Saudi J Biol Sci. 2014;21(2):159-65. https://doi.org/10.1016/j.sjbs.2013.09.005

Downloads

Download data is not yet available.