Sustainable encapsulation of bio-active agents and microorganisms in electrospun nanofibers: A comprehensive review

Authors

  • AKA Masillamani Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625 104, Tamil Nadu, India https://orcid.org/0009-0006-1351-7182
  • KG Sabarinathan Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625 104, Tamil Nadu, India https://orcid.org/0000-0002-8659-6479
  • M Gomathy Department of Soil Science & Agricultural Chemistry, V.O.C. Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam 628 252, Tamil Nadu, India https://orcid.org/0000-0001-8826-3339
  • K Kumutha Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625 104, Tamil Nadu, India https://orcid.org/0000-0003-2529-532X
  • M Prasanthrajan Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India https://orcid.org/0000-0002-5156-7563
  • J Kannan Department of Environmental Science, Indian Council of Agricultural Research, Krishi Vigyan Kendra, Aruppukkottai 626 107, Tamil Nadu, India https://orcid.org/0000-0001-7053-8402
  • P Aishwarya Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625 104, Tamil Nadu, India https://orcid.org/0009-0005-2648-3324

DOI:

https://doi.org/10.14719/pst.5590

Keywords:

cell viability, electrospinning, encapsulation, microbes, nanofiber

Abstract

Nanotechnology is a technological discipline focused on the design, fabrication, and utilization of structures, systems, and devices through the manipulation of atoms and molecules at the nanoscale. A significant advancement in this field is the development of a nanocarrier system for microbe encapsulation using electrospun nanofibers. These nanofibers, characterized by their diameters in the nanometric range, are produced through nanotechnology. The electrospinning technique is a versatile method that fabricates these nanofibers from polymer solutions, including polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene oxide, polyethylene glycol, and chitosan, using high voltage. Nanofibers play a crucial role in various fields, including environmental remediation, medicine, agriculture, and textiles. Beneficial microorganisms are microbial cells that aid crops by protecting them from pathogens, supplying essential nutrients, and alleviating both biotic and abiotic stresses. Several techniques have been developed to encapsulate microorganisms within nanofibers, with electrospinning being the most widely applied method. This technique effectively traps microbial cells while preserving their viability for extended periods without causing harm. Microorganisms such as bacteria, fungi, and viruses, as well as fertilizers, pesticides, and growth hormones, can be successfully encapsulated within nanofibers. This review provides a comprehensive overview of nanofibers, including their characterization, the polymers utilized (such as chitosan, polyvinyl alcohol (PVA), polyethylene oxide (PEO), polyethylene glycol (PEG), and alginate), and the electrospinning process with its variations. It also discusses techniques for encapsulating microbial cells within nanofibers and their applications in agriculture in the current context.

Downloads

Download data is not yet available.

References

Krishnamoorthy V, Rajiv S. Potential seed coatings fabricated from electrospinning hexaaminocyclotriphosphazene and cobalt nanoparticles incorporated polyvinylpyrrolidone for sustainable agriculture. ACS Sustainable Chem Eng. 2017;5(1):146-52. https://doi.org/10.1021/acssuschemeng.6b01088

Lesueur D, Deaker R, Herrmann L, Bräu L, Jansa J. The production and potential of biofertilizers to improve crop yields. In: Arora N, Mehnaz S, Balestrini R. (eds). Bioformulations: For Sustainable Agriculture.Springer, New Delhi. 2016;71-92. https://doi.org/10.1007/978-81-322-2779-3_4

Chaudhary T, Dixit M, Gera R, Shukla AK, Prakash A, Gupta G, Shukla P. Techniques for improving formulations of bioinoculants. 3 Biotech. 2020;10:199. https://doi.org/10.1007/s13205-020-02182-9

Vassilev N, Vassileva M, Lopez A, Martos V, Reyes A, Maksimovic I, et al. Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Appl Microbiol Biotechnol. 2015;99:4983-96. https://doi.org/10.1007/s00253-015-6656-4

Rocha I, Ma Y, Souza-Alonso P, Vosátka M, Freitas H, Oliveira RS. Seed coating: a tool for delivering beneficial microbes to agricultural crops. Front Plant Sci. 2019;10:1357. https://doi.org/10.3389/fpls.2019.01357

Guan N, Li J, Shin HD, Du G, Chen J, Liu L. Microbial response to environmental stresses: from fundamental mechanisms to practical applications. Appl Microbiol Biotechnol. 2017;101:3991-4008. https://doi.org/10.1007/s00253-017-8264-y

John RP, Tyagi RD, Brar SK, Surampalli RY, Prévost D. Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol. 2011;31(3):211-26. https://doi.org/10.3109/07388551.2010.513327.

Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A. Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules. 2016;21(5):573. https://doi.org/10.3390/molecules21050573.

Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil. 2014;378:1-33. https://doi.org/10.1007/s11104-013-1956-x.

Badgar K, Prokisch J, El-Ramady H. Nanofibers for sustainable agriculture: A short communication. Egypt J Soil Sci. 2021;61(3):373-80. https://doi.org/10.21608/ejss.2021.105877.1477 .

Damasceno R, Roggia I, Pereira C, de Sá E. Rhizobia survival in seeds coated with polyvinyl alcohol (PVA) electrospun nanofibres. Can J Microbiol. 2013;59(11):716-19. https://doi.org/10.1139/cjm-2013-0508

Chanratana M, Han GH, Melvin Joe M, Roy Choudhury A, Sundaram S, Halim MA, Sa T. Evaluation of chitosan and alginate immobilized Methylobacterium oryzae CBMB20 on tomato plant growth. Arch Agron Soil Sci. 2018;64(11):1489-502. https://doi.org/10.1080/03650340.2018.1440390

Vassilev N, Vassileva M, Martos V, Garcia del Moral LF, Kowalska J, Tylkowski B, Malusá E. Formulation of microbial inoculants by encapsulation in natural polysaccharides: focus on beneficial properties of carrier additives and derivatives. Front Plant Sci. 2020;11:270. https://doi.org/10.3389/fpls.2020.00270

Qu B, Luo Y. Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors–A review. Int J Biol Macromol. 2020;152:437-48. https://doi.org/10.1016/j.ijbiomac.2020.02.240

Belš?ak-Cvitanovi? A, Komes D, Karlovi? S, Djakovi? S, Špoljari? I, Mrši? G, Ježek D. Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium. Food Chem. 2015;167:378-86. https://doi.org/10.1016/j.foodchem.2014.07.011

Dobrin?i? A, Balbino S, Zori? Z, Pedisi? S, Bursa? Kova?evi? D, Elez Garofuli? I, Dragovi?-Uzelac V. Advanced technologies for the extraction of marine brown algal polysaccharides. Marine Drugs. 2020;18(3):168. https://doi.org/10.3390/md18030168

Simó G, Fernández?Fernández E, Vila?Crespo J, Ruipérez V, Rodríguez?Nogales JM. Research progress in coating techniques of alginate gel polymer for cell encapsulation. Carbohydr Polym. 2017;170:1-4. https://doi.org/10.1016/j.carbpol.2017.04.013

Bhattarai DP, Aguilar LE, Park CH, Kim CS. A review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering. Membranes. 2018;8(3):62. https://doi.org/10.3390/membranes8030062

Mojaveri SJ, Hosseini SF, Gharsallaoui A. Viability improvement of Bifidobacterium animalis Bb12 by encapsulation in chitosan/poly (vinyl alcohol) hybrid electrospun fiber mats. Carbohydr Polym. 2020;241:116278. https://doi.org/10.1016/j.carbpol.2020.116278

Greiner A, Wendorff JH, Yarin AL, Zussman E. Biohybrid nanosystems with polymer nanofibers and nanotubes. Appl Microbiol Biotechnol. 2006;71:387-93. .https://doi.org/10.1007/s00253-006-0356-z

Agrahari V, Agrahari V, Meng J, Mitra AK. Electrospun nanofibers in drug delivery: fabrication, advances and biomedical applications. In: Mitra AK, Cholkar K, Mondal A. (Eds). Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices. Elsevier. 2017;189-215. https://doi.org/10.1016/B978-0-323-42978-8.00009-7

Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release. 2014;185:12-21. https://doi.org/10.1016/j.jconrel.2014.04.018

Fatih Canbolat M, Tang C, Bernacki SH, Pourdeyhimi B, Khan S. Mammalian cell viability in electrospun composite nanofiber structures. Macromolecular Bioscience. 2011;11(10):1346-56. https://doi.org/10.1002/mabi.201100108

Lee S, Jin G, Jang JH. Electrospun nanofibers as versatile interfaces for efficient gene delivery. J Biol Eng. 2014;8:30. https://doi.org/10.1186/1754-1611-8-30

Spasova M, Manolova N, Naydenov M, Kuzmanova J, Rashkov I. Electrospun biohybrid materials for plant biocontrol containing chitosan and Trichoderma viride spores. J Bioact. Compat Polym. 2011;26(1):48-55. https://doi.org/10.1177/0883911510391446

Letnik I, Avrahami R, Rokem JS, Greiner A, Zussman E, Greenblatt C. Living composites of electrospun yeast cells for bioremediation and ethanol production. Biomacromolecules. 2015;16(10):3322-28. https://doi.org/10.1021/acs.biomac.5b00970

Zussman E. Encapsulation of cells within electrospun fibers. Polymers for Advanced Technologies. 2011;22(3):366-71.https://doi.org/10.1002/pat.1812

Persano L, Camposeo A, Tekmen C, Pisignano D. Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromolecular Materials and Engineering. 2013;298(5):504-20. https://doi.org/10.1002/mame.201200290

Thyavihalli Girijappa YG, Mavinkere Rangappa S, Parameswaranpillai J, Siengchin S. Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Front. Mater. 2019;6:226. https://doi.org/10.3389/fmats.2019.00226.

Krishnamoorthy V, Elumalai G, Rajiv S. Environment friendly synthesis of polyvinylpyrrolidone nanofibers and their potential use as seed coats. New J Chem. 2016;40:3268-76. DOI https://doi.org/10.1039/C5NJ03008K

Farias BV, Pirzada T, Mathew R, Sit TL, Opperman C, Khan SA. Electrospun polymer nanofibers as seed coatings for crop protection. ACS Sustainable Chem Eng. 2019;7(24):19848-56. https://doi.org/10.1021/acssuschemeng.9b05200.

Espinoza Márquez E, Soto Zarazúa GM, Pérez Bueno JD. Prospects for the use of electrooxidation and electrocoagulation techniques for membrane filtration of irrigation water. Environ Process. 2020;7:391-420. https://doi.org/10.1007/s40710-020-00439-2.

Ma J, Yu Z, Liu S, Chen Y, Lv Y, Liu Y, et al. Efficient extraction of trace organochlorine pesticides from environmental samples by a polyacrylonitrile electrospun nanofiber membrane modified with covalent organic framework. J Hazard Mater. 2022;424(B):127455. https://doi.org/10.1016/j.jhazmat.2021.127455.

Lim CT. Nanofiber technology: current status and emerging developments. Prog Polym Sci. 2017;70:1-7. https://doi.org/10.1016/j.progpolymsci.2017.03.002.

Vincekovic? M, Juric? S, ?ermic? E, Topolovec-Pintaric? S. Kinetics and mechanisms of chemical and biological agents release from biopolymeric microcapsules. J Agric Food Chem. 2017;65(44):9608-17. https://doi.org/10.1021/acs.jafc.7b04075.

Vemmer M, Patel AV. Review of encapsulation methods suitable for microbial biological control agents. Biol Control. 2013;67(3):380-89. https://doi.org/10.1016/j.biocontrol.2013.09.003.

Vejan P, Khadiran T, Abdullah R, Ismail S, Dadrasnia A. Encapsulation of plant growth promoting Rhizobacteria—prospects and potential in agricultural sector: a review. J Plant Nutr. 2019;42(19):2600-23. https://doi.org/10.1080/01904167.2019.1659330

Schoebitz M, López Belchí MD. Encapsulation techniques for plant growth-promoting rhizobacteria.In: Arora N, Mehnaz S, Balestrini R. (eds). Bioformulations: For Sustainable Agriculture.Springer, New Delhi. 2016;251-65. https://doi.org/10.1007/978-81-322-2779-3_14

Saberi Riseh R, Skorik YA, Thakur VK, Moradi Pour M, Tamanadar E, Noghabi SS. Encapsulation of plant biocontrol bacteria with alginate as a main polymer material. Int J Mol Sci. 2021;22(20):11165. https://doi.org/10.3390/ijms222011165.

Pour MM, Saberi-Riseh R, Mohammadinejad R, Hosseini A. Investigating the formulation of alginate-gelatin encapsulated Pseudomonas fluorescens (VUPF5 and T17-4 strains) for controlling Fusarium solani on potato. Int J Biol Macromol. 2019;133:603-13. https://doi.org/10.1016/j.ijbiomac.2019.04.071

Liffourrena AS, Lucchesi GI. Alginate-perlite encapsulated Pseudomonas putida A (ATCC 12633) cells: Preparation, characterization and potential use as plant inoculants. J Biotechnol. 2018;278:28-33. https://doi.org/10.1016/j.jbiotec.2018.04.019.

Chaudhary SA, Patel DM, Patel JK, Patel DH. Solvent emulsification evaporation and solvent emulsification diffusion techniques for nanoparticles. In: Patel JK, Pathak YV.(Eds). Emerging Technologies for Nanoparticle Manufacturing. Cham: Springer International Publishing; 2021.287-300. https://doi.org/10.1007/978-3-030-50703-9_12

Zuidam NJ, Shimoni E. Overview of microencapsulates for use in food products or processes and methods to make them. In: Zuidam N, Nedovic V. (eds). Encapsulation Technologies for Active Food Ingredients and Food Processing. Springer, New York, NY.2010;3-29. https://doi.org/10.1007/978-1-4419-1008-0_2

Zhang R, Hoffmann T, Tsotsas E. Novel technique for coating of fine particles using fluidized bed and aerosol atomizer. Processes. 2020;8(12):1525. https://doi.org/10.3390/pr8121525

Tarrés Q, Oliver-Ortega H, Boufi S, Pèlach MÀ, Delgado-Aguilar M, Mutjé P. Evaluation of the fibrillation method on lignocellulosic nanofibers production from eucalyptus sawdust: A comparative study between high-pressure homogenization and grinding. Int J Biol Macromol. 2020;145:1199-207. https://doi.org/10.1016/j.ijbiomac.2019.10.046.

Li Y, Yu J, Ding B. Facile and ultrasensitive sensors based on electrospinning-netting nanofibers/nets.In: Macagnano A, Zampetti E, Kny, E. (eds). Electrospinning for High Performance Sensors. Springer, Cham. 2015;1-34. https://doi.org/10.1007/978-3-319-14406-1_1.

Kumuthan MS, Lakshmanan A, Sabarinathan KG, Subramanian KS, Raja K, Balachandar D, Gomathi M. Immobilization and characterization of Bacillus subtilis in PVA-chitosan composite Nanofiber. Pharma Innovation. 2021;10(12):1541-45. https://doi.org/10.22271/tpi.2021.v10.i12v.9616.

Wen P, Zong MH, Linhardt RJ, Feng K, Wu H. Electrospinning: A novel nano-encapsulation approach for bioactive compounds. Trends Food Sci Technol . 2017;70:56-68. https://doi.org/10.1016/j.tifs.2017.10.009

Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: Methods, materials and applications. Chem Rev. 2019;119(8):5298-415. https://doi.org/10.1021/acs.chemrev.8b00593

Noruzi M. Electrospun nanofibres in agriculture and the food industry: a review. J Sci Food Agric. 2016;96(14):4663-78. https://doi.org/10.1002/jsfa.7737.

Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49(26):5603-21. https://doi.org/10.1016/j.polymer.2008.09.014

Shahriar SS, Mondal J, Hasan MN, Revuri V, Lee DY, Lee YK. Electrospinning nanofibers for therapeutics delivery. Nanomaterials. 2019;9(4):532. https://doi.org/10.3390/nano9040532.

Tipduangta P, Belton P, Fabian L, Wang LY, Tang H, Eddleston M, Qi S. Electrospun polymer blend nanofibers for tunable drug delivery: the role of transformative phase separation on controlling the release rate. Mol Pharmaceutics. 2016;13(1):25-39. https://doi.org/10.1021/acs.molpharmaceut.5b00359

Lu Y, Huang J, Yu G, Cardenas R, Wei S, Wujcik EK, Guo Z. Coaxial electrospun fibers: applications in drug delivery and tissue engineering. Wiley Interdiscip Rev: Nanomed Nanobiotechnology. 2016;8(5):654-77. https://doi.org/10.1002/wnan.1391

Lian H, Meng Z. Melt electrospinning vs. solution electrospinning: A comparative study of drug-loaded poly (?-caprolactone) fibres. Mater Sci Eng C: 2017;74:117-23. https://doi.org/10.1016/j.msec.2017.02.024

Lin Y, Yao Y, Yang X, Wei N, Li X, Gong P, Li R, Wu D. Preparation of poly (ether sulfone) nanofibers by gas?jet/electrospinning. J Appl Polym Sci. 2008;107(2):909-17. https://doi.org/10.1002/app.26445

Zhang C, Feng F, Zhang H. Emulsion electrospinning: Fundamentals, food applications and prospects. Trends Food Sci Technol. 2018;80:175-86. https://doi.org/10.1016/j.tifs.2018.08.005

Kim YC, Kim YH, Kim JW, Ha KY. Transplantation of mesenchymal stem cells for acute spinal cord injury in rats: comparative study between intralesional injection and scaffold-based transplantation. J Korean Med Sci. 2016;31(9):1373. https://doi.org/10.3346/jkms.2016.31.9.1373

De Gregorio PR, Michavila G, Ricciardi Muller L, de Souza Borges C, Pomares MF, Saccol de Sá EL, Pereira C, Vincent PA. Beneficial rhizobacteria immobilized in nanofibers for potential application as soybean seed bioinoculants. Plos One. 2017;12(5):e0176930. https://doi.org/10.1371/journal.pone.0176930

Gordegir M, Oz S, Yezer I, Buhur M, Unal B, Demirkol DO. Cells-on-nanofibers: Effect of polyethyleneimine on hydrophobicity of poly-?-caprolacton electrospun nanofibers and immobilization of bacteria. Enzyme Microb Technol. 2019;126:24-31. https://doi.org/10.1016/j.enzmictec.2019.03.002

de Morais MG, Stillings C, Dersch R, Rudisile M, Pranke P, Costa JA, Wendorff J. Preparation of nanofibers containing the microalga Spirulina (Arthrospira). Bioresour Technol. 2010;101(8):2872-76. https://doi.org/10.1016/j.biortech.2009.11.059

Kuntzler SG, de Almeida ACA, Costa JAV, de Morais MG. Polyhydroxybutyrate and phenolic compounds microalgae electrospun nanofibers: A novel nanomaterial with antibacterial activity. Int J Biol Macromol. 2018;113:1008-14. https://doi.org/10.1016/j.ijbiomac.2018.03.002

Moustafa M, Taha T, Elnouby M, El-Deeb N, Hamad G, Abusaied MA, Alrumman S. Potential detoxification of aflatoxin B2 using Kluyveromyces lactis and Saccharomyces cerevisiae integrated nanofibers. Biocell. 2017;41(2&3):67. https://doi.org/10.32604/biocell.2017.41.067

Badrinath N, Jeong YI, Woo HY, Bang SY, Kim C, Heo J, Kang DG, Yo SY. Local delivery of a cancer-favoring oncolytic vaccinia virus via poly (lactic-co-glycolic acid) nanofiber for theranostic purposes. Int J Pharm. 2018;552(1-2):437-42.https://doi.org/10.1016/j.ijpharm.2018.10.020

Salalha W, Kuhn J, Dror Y, Zussman E. Encapsulation of bacteria and viruses in electrospun nanofibres. Nanotechnology. 2006;17(18):4675. https://doi.org/10.1088/0957-4484/17/18/025

Fung WY, Yuen KH, Liong MT. Agrowaste-based nanofibers as a probiotic encapsulant: Fabrication and characterization. J Agric Food Chem. 2011;59(15):8140-47. https://doi.org/10.1021/jf2009342

Rasulov BA, Paerhati P, Yarbekov A, Pattaeva MA, Sherimbetov AG, Yili A. Biofabrication of Cu/Cu2O-Nanoparticles and Exopolysaccharide of Azotobacter chroococcum XH2018 Based Nanobiofungicide and Its Characterization. BioNanoScience. 2024;4:1-10. https://doi.org/10.1007/s12668-024-01528-4

Mukiri C, Raja K, Senthilkumar M, Subramanian KS, Govindaraju K, Pradeep D, Ranjan S. Immobilization of beneficial microbe Methylobacterium aminovorans in electrospun nanofibre as potential seed coatings for improving germination and growth of groundnut Arachis hypogaea. Plant Growth Regul. 2022;97:419-427. https://doi.org/10.1007/s10725-021-00737-1

Hussain Z, Khan MA, Iqbal F, Raffi M, Hafeez FY. Electrospun microbial-encapsulated composite-based plasticized seed coat for rhizosphere stabilization and sustainable production of canola (Brassica napus L.). J Agric Food Chem. 2019;67(18):5085-95. https://doi.org/10.1021/acs.jafc.8b06505

Perez JJ, Francois NJ, Maroniche GA, Borrajo MP, Pereyra MA, Creus CM. A novel, green, low-cost chitosan-starch hydrogel as potential delivery system for plant growth-promoting bacteria. Carbohydr Polym. 2018;202:409-17. https://doi.org/10.1016/j.carbpol.2018.07.084

Nagy ZK, Wagner I, Suhajda Á, Tobak T, Harasztos AH, Vigh T, Soti PL, Pataki H, Molnár K, Marosi G. Nanofibrous solid dosage form of living bacteria prepared by electrospinning. Express Polym Lett. 2014;8(5):352-361

Bhutto MA, Bhutto MA, Mangrio GS, Charan TR, Tunio AA. Study on the viability and sustainable release of rice rhizobacteria (Paenibacillus IBGE-MAB1) immobilized in nanofibers for enhanced rice seed coating and germination. BioNanoSci. 2024;14:3274–3285. https://doi.org/10.1007/s12668-024-01460-7

Sivalingam S, Kunhilintakath A, Nagamony P, Paspulathi Parthasarathy V. Fabrication, toxicity and biocompatibility of Sesamum indicum infused graphene oxide nanofiber-a novel green composite method. Appl Nanosci . 2021;11:679-86. https://doi.org/10.1007/s13204-020-01596-4

Osanloo M, Arish J, Sereshti H. Developed methods for the preparation of electrospun nanofibers containing plant-derived oil or essential oil: a systematic review. Polym Bull. 2020;77:6085-104.https://doi.org/10.1007/s00289-019-03042-0

Meraz-Dávila S, Pérez-García CE, Feregrino-Perez AA. Challenges and advantages of electrospun nanofibers in agriculture: a review. Mater Res Express. 2021;8(4):042001.https://doi.org/10.1088/2053-1591/abee55

Mehrani Z, Ebrahimzadeh H, Moradi E. Use of aloin-based and rosin-based electrospun nanofibers as natural nanosorbents for the extraction of polycyclic aromatic hydrocarbons and phenoxyacetic acid herbicides by microextraction in packed syringe method prior to GC-FID detection. Microchim Acta. 2020;187:401. https://link.springer.com/10.1007/s00604-020-04374-9 https://doi.org/10.1007/s00604-020-04374-9

Nooeaid P, Chuysinuan P, Pitakdantham W, Aryuwananon D, Techasakul S, Dechtrirat D. Eco-friendly polyvinyl alcohol/polylactic acid core/shell structured fibers as controlled-release fertilizers for sustainable agriculture. J Polym Environ. 2021;29:552-64.https://doi.org/10.1007/s10924-020-01902-9

Mirheidari F, Hatami M, Ghorbanpour M. Effect of different concentrations of IAA, GA3 and chitosan nano-fiber on physio-morphological characteristics and metabolite contents in roselle (Hibiscus sabdariffa L.). S Afr J Bot. 2022;145:323-33.https://doi.org/10.1016/j.sajb.2021.07.021

Atila D, Keskin D, Tezcaner A. Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications. Carbohydr. Polym. 2015;133:251-61.https://doi.org/10.1016/j.carbpol.2015.06.109

Avenot HF, Luna M, Michailides TJ. Phenotypic and molecular characterization of resistance to the SDHI fungicide fluopyram in populations of Alternaria alternata from pistachio orchards in California. Crop Prot. 2019;124:104838. https://doi.org/10.1016/j.cropro.2019.05.032

Chawla S, Patel DJ, Patel SH, Kalasariya RL, Shah PG. Behaviour and risk assessment of fluopyram and its metabolite in cucumber (Cucumis sativus) fruit and in soil. Environ Sci Pollut Res. 2018;25:11626-34. https://doi.org/10.1007/s11356-018-1439-y

Devarajan AK, Truu M, Gopalasubramaniam SK, Muthukrishanan G, Truu J. Application of data integration for rice bacterial strain selection by combining their osmotic stress response and plant growth-promoting traits. Front Microbiol. 2022;13:1058772. https://doi.org/10.3389/fmicb.2022.1058772

Dutta P, Kumari A, Mahanta M, Upamanya GK, Heisnam P, Borua S, et al. Nanotechnological approaches for management of soil-borne plant pathogens. Front Plant Sci. 2023;14:1136233. https://doi.org/10.3389/fpls.2023.1136233

Hussain S, Hussain S, Qadir T, Khaliq A, Ashraf U, Parveen A, et al. Drought stress in plants: An overview on implications, tolerance mechanisms and agronomic mitigation strategies. Plant Sci Today. 2019;6(4):389-402. https://doi.org/10.14719/pst.2019.6.4.578

Kumar DA, Sabarinathan KG, Kannan R, Balachandar D, Gomathy M. Isolation and characterization of drought tolerant bacteria from rice phyllosphere. Int J Curr Microbiol App Sci. 2019;8(6):2655-64. https://doi.org/10.20546/ijcmas.2019.806.319

Maswada HF, Mazrou YS, Elzaawely AA, Eldein SM. Nanomaterials. Effective tools for field and horticultural crops to cope with drought stress: A review. Span J Agric Res. 2020;18(2):e08R01. https://doi.org/10.5424/sjar/2020182-16181

Gorim L, Asch F. Effects of composition and share of seed coatings on the mobilization efficiency of cereal seeds during germination. J Agron Crop Sci. 2012;198(2):81-91.https://doi.org/10.1111/j.1439-037X.2011.00490.x

Leinauer B, Serena M, Singh D. Seed coating and seeding rate effects on turfgrass germination and establishment. Horttechnology. 2010;20(1):179-85. https://doi.org/10.21273/HORTTECH.20.1.179

Willenborg CJ, Gulden RH, Johnson EN, Shirtliffe SJ. Germination characteristics of polymer?coated canola (Brassica napus L.) seeds subjected to moisture stress at different temperatures. Agron J. 2004;96(3):786-91. https://doi.org/10.2134/agronj2004.0786

Arun K D, Sabarinathan KG, Gomathy M, Kannan R, Balachandar D. Mitigation of drought stress in rice crop with plant growth?promoting abiotic stress?tolerant rice phyllosphere bacteria. J Basic Microbiol. 2020;60(9):768-86. https://doi.org/10.1002/jobm.202000011

Fu J, Panhuis MiH Hydrogel properties and applications. J Mater Chem B. 2019;7:1523-25. https://doi.org/10.1039/C9TB90023C

Ahmed EM. Hydrogel: Preparation, characterization and applications: A review. J. Adv. Res2015;6(2):105-21. https://doi.org/10.1016/j.jare.2013.07.006

Guilherme MR, Aouada FA, Fajardo AR, Martins AF, Paulino AT, Davi MF, et al. Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. Eur Polym J. 2015;72:365-85. https://doi.org/10.1016/j.eurpolymj.2015.04.017

Hotta M, Kennedy J, Higginbotham C, Morris N, . Durum wheat seed germination response to hydrogel coatings and moisture under drought stress. Am J Agric Biol Sci. . 2016;11(2):67-75. https://doi.org/10.3844/ajabssp.2016.67.75

Mangold JM, Sheley RL. Effects of soil texture, watering frequency and a hydrogel on the emergence and survival of coated and uncoated crested wheatgrass seeds. Ecological Restoration. 2007;25(1):6-11. https://doi.org/10.3368/er.25.1.6

Gesch RW, Archer DW. Influence of sowing date on emergence characteristics of maize seed coated with a temperature?activated polymer. Agron J. 2005;97(6):1543-50.https://doi.org/10.2134/agronj2005.0054

Serena M, Leinauer B, Sallenave R, Schiavon M, Maier B. Turfgrass establishment from polymer-coated seed under saline irrigation. HortScience. 2012;47(12):1789-94. https://doi.org/10.21273/HORTSCI.47.12.1789

Ghassemi-Golezani K, Nikpour-Rashidabad N. Seed pretreatment and salt tolerance of dill: osmolyte accumulation, antioxidant enzymes activities and essence production. Biocatal Agric Biotechnol . 2017;12:30-35.https://doi.org/10.1016/j.bcab.2017.08.014

Mahdavi B, Rahimi A. Seed priming with chitosan improves the germination and growth performance of ajowan (Carum copticum) under salt stress. Eurasia J Biosci. 2013;7:69-76.

Barrera MC, Jakobs-Schoenwandt D, Gómez MI, Serrato J, Ruppel S, Patel AV. Formulating bacterial endophyte: Pre-conditioning of cells and the encapsulation in amidated pectin beads. Biotechnol Rep. 2020;26:e00463. https://doi.org/10.1016/j.btre.2020.e00463

de Melo BAG, Motta FL, Santana MHA. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater Sci Eng C. 2016;62:967-74. https://doi.org/10.1016/j.msec.2015.12.001

Bhise KK, Dandge PB. Alleviation of salinity stress in rice plant by encapsulated salt tolerant plant growth promoting bacteria Pantoea agglomerans strain KL and its root colonization ability. Arch Agron Soil Sci. 2019;65(14):1955-68. https://doi.org/10.1080/03650340.2019.1584395

Guo L, Wu Z, Rasool A, Li C. Effects of free and encapsulated co-culture bacteria on cotton growth and soil bacterial communities. Eur J Soil Biol. 2012;53:16-22. https://doi.org/10.1016/j.ejsobi.2012.08.003

Zago SL, dos Santos MF, Konrad D, Fiorini A, Rosado FR, Missio RF, Vendruscolo ECG. Shelflife of Azospirillum brasilense in alginate beads enriched with trehalose and humic acid. J Agric Sci. 2019;11(6):269-280. https://doi.org/10.5539/jas.v11n6p269

Chi Y, Wang D, Jiang M, Chu S, Wang B, Zhi Y, et al. Microencapsulation of Bacillus megaterium NCT-2 and its effect on remediation of secondary salinization soil. J Microencapsul. 2020;37(2):134-43. https://doi.org/10.1080/02652048.2019.1705409

John RP, Tyagi RD, Brar SK, Prévost D, Surampalli RY. Effect of emulsion formulation of Sinorhizobium meliloti and pre-inoculated seeds on alfalfa nodulation and growth: a pouch study. J Plant Nutr. 2013;36(2):231-42. https://doi.org/10.1080/01904167.2012.739243

Duraimurugan P, Chandrika KS, Bharathi E, Roy DN. Encapsulation of Bacillus thuringiensis using sodium alginate and chitosan coacervates for insect-pest management. Carbohydr Polym Technol Appl. 2024;8:100540. https://doi.org/10.1016/j.carpta.2024.100540

Published

25-12-2024

How to Cite

1.
Masillamani A, Sabarinathan K, Gomathy M, Kumutha K, Prasanthrajan M, Kannan J, Aishwarya P. Sustainable encapsulation of bio-active agents and microorganisms in electrospun nanofibers: A comprehensive review. Plant Sci. Today [Internet]. 2024 Dec. 25 [cited 2025 Jan. 1];11(sp4). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/5590

Most read articles by the same author(s)

<< < 1 2