Forthcoming

Latent concepts for area enhancement of mangrove forest: A novel approach through geospatial studies

Authors

DOI:

https://doi.org/10.14719/pst.6011

Keywords:

geospatial techniques, mangrove, modelling, potential areas

Abstract

Despite their vital roles in carbon sequestration, biodiversity conservation and coastal protection, mangrove ecosystems have historically faced degradation from pollution, deforestation and human activity. Mangrove restoration faces several challenges, including deforestation due to unsustainable logging for timber and fuelwood, as well as habitat loss from coastal development projects such as ports and resorts. The expansion of aquaculture, particularly shrimp farming, has led to the large-scale conversion of mangrove areas into degraded or unproductive land. Huge restoration projects have been started all over the world to deal with these issues. Geospatial technologies such as GIS (Geographic Information System), GPS (Global Positioning System), remote sensing and satellite imagery have made it easier to find suitable sites for restoration, which was a challenging task in the past. These technologies also enable the acquisition of large amounts of data. Topography, soil quality, land use and biodiversity are some of the factors that influence the process of identifying possible restoration sites. Although obstacles like ecosystem complexity, lack of data and methodological constraints still exist, developments in machine learning and radar remote sensing provide promising paths to obtaining vital information. Conservation efforts are being bolstered by data integration and predictive modeling-driven evidence-based rehabilitation strategies. This review examines the cutting-edge geospatial technologies and their critical role in surmounting obstacles and promoting the rehabilitation and re-establishment of mangrove habitats.

Downloads

References

Kathiresan K. Importance of mangrove ecosystem. Int J Mar Sci. 2012;2(10). https://doi.org/10.5376/ijms.2012.02.0010

Alongi DM. Carbon cycling and storage in mangrove forests. Annu Rev Mar Sci. 2014;6(1):195– 219. https://doi.org/10.1146/annurev-marine-010213-135020

Chow J. Mangrove management for climate change adaptation and sustainable development in coastal zones. J Sustain For. 2018;37(2):139–56. https://doi.org/10.1080/10549811.2017.1339615

Soper FM, MacKenzie RA, Sharma S, Cole TG, Litton CM, Sparks JP. Non-native mangroves support carbon storage, sediment carbon burial, and accretion of coastal ecosystems. Glob Change Biol. 2019;25(12):4315–26. https://doi.org/10.1111/gcb.14813

Duke NC. Mangrove floristics and biogeography. Trop Mangrove Ecosyst. 1992;41:63–100. https://doi.org/10.1029/CE041

Ellison JC. Long-term retrospection on mangrove development using sediment cores and pollen analysis: a review. Aquat Bot. 2008;89(2):93–104. https://doi.org/10.1016/j.aquabot.2008.02.007

Primavera J, Rollon R, Samson M. 10.10 The pressing challenges of mangrove rehabilitation: pond reversion and coastal protection. Biologica (Santiago). 2011;50:232.

Feller IC, Friess DA, Krauss KW, Lewis III RR. The state of the world’s mangroves in the 21st century under climate change. Hydrobiologia. 2017;803(1):1–12.

Hamilton SE, Casey D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob Ecol Biogeogr. 2016;25(6):729–38. https://doi.org/10.1111/geb.12449

Friess DA, Webb EL. Variability in mangrove change estimates and implications for the assessment of ecosystem service provision. Glob Ecol Biogeogr. 2014;23(7):715–25. https://doi.org/10.1111/geb.12140

Hashim J. Human resource management practices on organisational commitment: The Islamic perspective. Pers Rev. 2010;39(6):785–99.

Green EP, Clark C, Mumby P, Edwards A, Ellis A. Remote sensing techniques for mangrove mapping. Int J Remote Sens. 1998;19(5):935–56. https://doi.org/10.1080/014311698215801

Justice C, Townshend J. Data sets for global remote sensing: lessons learnt. Int J Remote Sens. 1994;15(17):3621–39. https://doi.org/10.1080/01431169408954347

Shrestha S, Miranda I, Kumar A, Pardo MLE, Dahal S, Rashid T, et al. Identifying and forecasting potential biophysical risk areas within a tropical mangrove ecosystem using multi-sensor data. Int J Appl Earth Obs Geoinformation. 2019;74:281–94. https://doi.org/10.1016/j.jag.2018.09.017

Worthington T, Spalding M. Mangrove Restoration Potential: A global map highlighting a critical opportunity. 201. https://doi.org/10.17863/CAM.39153

Abd-El Monsef H, Hassan MA, Shata S. Using spatial data analysis for delineating existing mangroves stands and siting suitable locations for mangroves plantation. Comput Electron Agric. 2017;141:310–26. https://doi.org/10.1016/j.compag.2017.08.002

Ruwaimana M, Satyanarayana B, Otero V, M. Muslim A, Syafiq A M, Ibrahim S, et al. The advantages of using drones over space-borne imagery in the mapping of mangrove forests. PloS One. 2018;13(7):e0200288. https://doi.org/10.1371/journal.pone.0200288

Xia Q, Qin CZ, Li H, Huang C, Su FZ. Mapping mangrove forests based on multi-tidal high-resolution satellite imagery. Remote Sens. 2018;10(9):1343. https://doi.org/10.3390/rs10091343

Zheng L, Xu W. An improved adaptive spatial preprocessing method for remote sensing images. Sensors. 2021;21(17):5684. https://doi.org/10.3390/s21175684

Sowmya D, Shenoy PD, Venugopal K. Remote sensing satellite image processing techniques for image classification: a comprehensive survey. Int J Comput Appl. 2017;161(11):24–37.

Kongwongjan J, Suwanprasit C, Thongchumnum P. Comparison of vegetation indices for mangrove mapping using THEOS data. Proc Asia-Pac Adv Netw. 2012;33:56–64. http://doi.org/10.7125/APAN.33.6

Muhsoni FF, Sambah A, Mahmudi M, Wiadnya D. Comparison of different vegetation indices for assessing mangrove density using sentinel-2 imagery. Int J Geomate. 2018;14:42–51. https://doi.org/10.21660/2018.45.7177

Kasawani I, Norsaliza U, Mohdhasmadi I. Analysis of spectral vegetation indices related to soil-line for mapping mangrove forests using satellite imagery. 2010.

Xue Z, Qian S. Generalized composite mangrove index for mapping mangroves using Sentinel-2 time series data. IEEE J Sel Top Appl Earth Obs Remote Sens. 2022;15:5131–46. https://doi.org/10.1109/JSTARS.2022.3185078

Ramdani F, Rahman S, Giri C. Principal polar spectral indices for mapping mangroves forest in South East Asia: study case Indonesia. Int J Digit Earth. 2019. https://doi.org/10.1080/17538947.2018.1454516

Kanniah KD, Sheikhi A, Cracknell AP, Goh HC, Tan KP, Ho CS, et al. Satellite images for monitoring mangrove cover changes in a fast growing economic region in southern Peninsular Malaysia. Remote Sens. 2015;7(11):14360–85. https://doi.org/10.3390/rs71114360

Lee TM, Yeh HC. Applying remote sensing techniques to monitor shifting wetland vegetation: A case study of Danshui River estuary mangrove communities, Taiwan. Ecol Eng. 2009;35(4):487–96. https://doi.org/10.1016/j.ecoleng.2008.01.007

Toosi NB, Soffianian AR, Fakheran S, Pourmanafi S, Ginzler C, Waser LT. Comparing different classification algorithms for monitoring mangrove cover changes in southern Iran. Glob Ecol Conserv. 2019;19:e00662. https://doi.org/10.1016/j.gecco.2019.e00662

Burrough P. GIS and geostatistics: Essential partners for spatial analysis. Environ Ecol Stat. 2001;8:361–77.

Ding Y, Fotheringham AS. The integration of spatial analysis and GIS. Comput Environ Urban Syst. 1992;16(1):3–19. https://doi.org/10.1016/0198-9715(92)90050-2

Krivoruchko K, Gotay C. Using spatial statistics in GIS. In: International congress on modelling and simulation. 2003. p. 713–36.

Koldasbayeva D, Tregubova P, Gasanov M, Zaytsev A, Petrovskaia A, Burnaev E. Challenges in data-based geospatial modeling for environmental research and practice. ArXiv Prepr ArXiv231111057. 2023. https://doi.org/10.48550/arXiv.2311.11057

Hu L, Li W, Xu B. The role of remote sensing on studying mangrove forest extent change. Int J Remote Sens. 2018;39(19):6440–62. https://doi.org/10.1007/978-3-319-62206-4_10

Suhardiman A, Tsuyuki S, Sumaryono M, Sulistioadi YB. Geostatistical approach for site suitability mapping of degraded mangrove forest in the Mahakam Delta, Indonesia. J Geogr Inf Syst. 2013.

Shih SS. Spatial habitat suitability models of mangroves with Kandelia obovata. Forests. 2020;11(4):477. https://doi.org/10.3390/f11040477

Liu X, Fatoyinbo TE, Thomas NM, Guan WW, Zhan Y, Mondal P, et al. Large-scale high-resolution coastal mangrove forests mapping across West Africa with machine learning ensemble and satellite big data. Front Earth Sci. 2021;8:560933. https://doi.org/10.3389/feart.2020.560933

Maung WS, Sasaki J. Assessing the natural recovery of mangroves after human disturbance using neural network classification and Sentinel-2 imagery in Wunbaik Mangrove Forest, Myanmar. Remote Sens. 2020;13(1):52. https://doi.org/10.3390/rs13010052

Twilley RR, Rivera-Monroy VH, Chen R, Botero L. Adapting an ecological mangrove model to simulate trajectories in restoration ecology. Mar Pollut Bull. 1999;37(8–12):404–19. https://doi.org/10.1016/S0025-326X(99)00137-X

Rovai AS, Soriano-Sierra EJ, Pagliosa PR, Cintrón G, Schaeffer-Novelli Y, Menghini RP, et al. Secondary succession impairment in restored mangroves. Wetl Ecol Manag. 2012;20:447–59.

Kura AL, Beyene DL. Cellular automata Markov chain model based deforestation modelling in the pastoral and agro-pastoral areas of southern Ethiopia. Remote Sens Appl Soc Environ. 2020;18:100321. https://doi.org/10.1016/j.rsase.2020.100321

Entahabu HH, Minale AS, Birhane E. Modeling and predicting land use/land cover change using the land change modeler in the suluh river basin, northern highlands of Ethiopia. Sustainability. 2023;15(10):8202. https://doi.org/10.3390/su15108202

Syahid LN, Sakti AD, Virtriana R, Wikantika K, Windupranata W, Tsuyuki S, et al. Determining optimal location for mangrove planting using remote sensing and climate model projection in southeast asia. Remote Sens. 2020;12(22):3734. https://doi.org/10.3390/rs12223734

Sahraei R, Ghorbanian A, Kanani-Sadat Y, Jamali S, Homayouni S. Identifying suitable locations for mangrove plantation using geospatial information system and remote sensing. ISPRS Ann Photogramm Remote Sens Spat Inf Sci. 2023;10:669–75. https://doi.org/10.5194/isprs-annals-X-4-W1-2022-669-2023

Pérez-Ceballos R, Zaldívar-Jiménez A, Canales-Delgadillo J, López-Adame H, López-Portillo J, Merino-Ibarra M. Determining hydrological flow paths to enhance restoration in impaired mangrove wetlands. PloS One.2020;15(1):e0227665. https://doi.org/10.1371/journal.pone.0227665

Van Loon AF, Te Brake B, Van Huijgevoort MH, Dijksma R. Hydrological classification, a practical tool for mangrove restoration. PloS One. 2016;11(3):e0150302. https://doi.org/10.1371/journal.pone.0150302

Mazda Y, Wolanski E. Hydrodynamics and modeling of water flow in mangrove areas. Coast Wetl Integr Ecosyst Approach. 2009;8:231–62.

López-Portillo J, Lewis RR, Saenger P, Rovai A, Koedam N, Dahdouh-Guebas F, et al. Mangrove forest restoration and rehabilitation. Mangrove Ecosyst Glob Biogeogr Perspect Struct Funct Serv. 2017;301–45.

Pôças I, Gonçalves J, Marcos B, Alonso J, Castro P, Honrado JP. Evaluating the fitness for use of spatial data sets to promote quality in ecological assessment and monitoring. Int J Geogr Inf Sci. 2014;28(11):2356–71. https://doi.org/10.1080/13658816.2014.924627

Thakur S, Mondal I, Ghosh P, Das P, De T. A review of the application of multispectral remote sensing in the study of mangrove ecosystems with special emphasis on image processing techniques. Spat Inf Res. 2020;28(1):39–51.

Pimple U, Simonetti D, Peters R, Berger U, Podest E, Gond V. Enhancing monitoring of mangrove spatiotemporal tree diversity and distribution patterns. Land Degrad Dev. 2023;34(5):1265–82. https://doi.org/10.1002/ldr.4537

Giri C. Observation and monitoring of mangrove forests using remote sensing: Opportunities and challenges. Remote Sens. 2016;8(9):783. https://doi.org/10.3390/rs8090783

Heumann BW. Satellite remote sensing of mangrove forests: Recent advances and future opportunities. Prog Phys Geogr. 2011;35(1):87–108. https://doi.org/10.1177/0309133310385371

Nascimento Jr WR, Souza-Filho PWM, Proisy C, Lucas RM, Rosenqvist A. Mapping changes in the largest continuous Amazonian mangrove belt using object-based classification of multisensor satellite imagery. Estuar Coast Shelf Sci. 2013;117:83–93. https://doi.org/10.1016/j.ecss.2012.10.005

Field CD. Rehabilitation of mangrove ecosystems: an overview. Mar Pollut Bull. 1999;37(8–12):383–92. https://doi.org/10.1016/S0025-326X(99)00106-X

Rasolofoharinoro M, Blasco F, Bellan M, Aizpuru M, Gauquelin T, Denis J. A remote sensing based methodology for mangrove studies in Madagascar. Int J Remote Sens. 1998;19(10):1873–86. https://doi.org/10.1080/014311698215036

Prasad S, Bruce LM, Chanussot J. Optical remote sensing. Adv Signal Process Exploit Tech. 2011.

Ray RD, Douglas BC. Experiments in reconstructing twentieth-century sea levels. Prog Oceanogr. 2011;91(4):496–515. https://doi.org/10.1016/j.pocean.2011.07.021

Kumar A, Stupp P, Dahal S, Remillard C, Bledsoe R, Stone A, et al. A multi-sensor approach for assessing mangrove biophysical characteristics in coastal Odisha, India. Proc Natl Acad Sci India Sect Phys Sci. 2017;87:679–700.

Published

06-02-2025 — Updated on 07-02-2025

Versions

How to Cite

1.
Gowda SR, Pazhanivelan S, Kumaraperumal R, Raju M, Prabu PC. Latent concepts for area enhancement of mangrove forest: A novel approach through geospatial studies. Plant Sci. Today [Internet]. 2025 Feb. 7 [cited 2025 Mar. 26];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/6011

Issue

Section

Review Articles

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

You may also start an advanced similarity search for this article.