Insights from gene effects on agronomic, oleic acid and oil content using generation mean analysis in sunflower (Helianthus annuus L.)

Authors

  • Sampath Lavudya Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India https://orcid.org/0000-0001-6438-550X
  • Kalaimagal Thiyagarajan Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India https://orcid.org/0000-0002-5718-1725
  • Sasikala Ramasamy Department of Oilseeds, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India https://orcid.org/0000-0002-4382-1808
  • Harish Sankarasubramanian Department of Oilseeds, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India https://orcid.org/0000-0001-5703-9887
  • Senthivelu Muniyandi Department of Oilseeds, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India https://orcid.org/0000-0001-5259-8444
  • Anita Bellie Department of Nematology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India https://orcid.org/0000-0001-7392-1087
  • Gopi Venkatesh Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India https://orcid.org/0009-0001-7537-9073
  • Anvesh Ellandula Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India https://orcid.org/0009-0008-5144-3908

DOI:

https://doi.org/10.14719/pst.6030

Keywords:

additive interactions, gene actions, GMA, oil content, oleic acid content

Abstract

Plant hybridization produces hybrids with desirable traits such as high oil content, oleic acid and yield, enhancing the significance of crops. Understanding genetic dominance is essential for studying gene action in breeding programs. Using four parental lines, this study assessed gene action, genetic advance with heritability and heterosis for oleic acid, oil content, agronomic and yield traits in sunflowers. The IR6 × HO-5-29 (P1 × P2) cross I population demonstrated superior performance, while the CMSB825B × COSF6B (P3 × P4) cross II population also performed well based on mean performance. Generation mean analysis revealed that additive and dominance gene actions influenced trait inheritance, with dominance effects being more pronounced. Additive × additive interactions played a key role in traits like days to flowering and maturity, palmitic acid content and oleic acid content in cross I and head diameter in cross II. Additive × dominance interactions significantly influenced head diameter, 100-seed weight and oleic acid content in cross I and plant height in cross II. Dominance × dominance interactions strongly influenced seed and oil yield per plant, oil content and linoleic acid content in cross I and seed and oil yield per plant and volume weight in cross II. Duplicate gene action was observed for head diameter and 100-seed weight, whereas complementary gene action was observed for seed and oil yield per plant in both crosses. These findings offer valuable insights for plant breeders and farmers, supporting the development of sunflower varieties and hybrids with enhanced oleic content, oil content and yield.

Downloads

Download data is not yet available.

References

USDA. Production – Sunflowerseed [intenet]. United States Department of Agriculture; 2024 [cited 2024 Sept 18]. Available from: https://fas.usda.gov/data/production/commodity/2224000

UPAg. Unified Portal for Agricultural Statistics [internet]. New Delhi:Department of Agriculture and Farmer's Welfare. 2024 [cited 2024 Sept 18]. Available from: https://upag.gov.in/

Sampath L, Sasikala R, Kalaimagal T, Santhiya V, Antony B. Genetic diversity analysis in sunflower (Helianthus annuus L.) germplasms. J Oilseeds Res; 2023,38(3):244-50. https://doi.org/10.56739/jor.v40iSpecialissue.145374

Lavudya S, Thiyagarajan K, Ramasamy S, Sankarasubramanian H, Muniyandi S, Bellie A, Kumar S, Dhanapal S. Assessing population structure and morpho-molecular characterization of sunflower (Helianthus annuus L.) for elite germplasm identification. PeerJ. 2024;12:e18205.https://doi.org/10.7717/peerj.18205

Soldatov KI. Chemical mutagenesis in sunflower breeding. In: Proc. 7th Int. Sunflower Conf., Krasnodar, USSR ;1976 Jun 27 Vlaardingen, the Netherlands: Int. Sunflower Assoc; 1976 [cited 2024 Sep 18 ]. p. 352–7). Available from: https://www.scirp.org

Cveji? S, Miladinovi? D, Joci? S. Mutation breeding for changed oil quality in sunflower. In: Tomlekova NB, Kozgar NI, Wani MR, Editors. Mutagenesis: exploring genetic diversity of crops. Leiden, The Netherlands: Wageningen Academic 2014. p. 77-96. https://doi.org/10.3920/9789086867967_006

Premnath A, Narayana M, Ramakrishnan C, Kuppusamy S, Chockalingam V. Mapping quantitative trait loci controlling oil content, oleic acid and linoleic acid content in sunflower (Helianthus annuus L.). Mol Breed. 2016;36:1-7. https://doi.org/10.1007/s11032-016-0527-2

Vannozzi GP. The perspectives of use of high oleic sunflower for oleochemistry and energy raws/perspectivas en la utilización de girasol de alto contenido oleico en la industria de procesamiento y como materia prima para la producción de energía/perspectives de l’utilisation du tournesol à haute teneur oléique dans l’industrie de transformation et comme base de production d’énergie. Helia. 2006;29(44):1-24. https://doi.org/10.2298/hel0644001v

Regitano A, Miguel AM, Mourad AL, Henriques EA, Alves RM. Environmental effect on sunflower oil quality. Crop Breed Appl Biotechnol. 2016;16 (3):197-204. https://doi.org/10.1590/1984-70332016v16n3a30

Fick GN. Inheritance of high oleic acid in the seed oil of sunflower. In: Proceedings of Sunflower Research Workshop Bismarck, USA:Workshop. Natl. Sunflower Assooc., 1984 [cited 2024 18 Sept]. p. 1-8.

Urie AL. Inheritance of very high oleic acid content in sunflower. In: Proc. 6th Sunflower Res Bismarck, USA:Workshop. Natl. Sunflower Assooc., 1984 [cited 2024 18 Sept]. p. 9-10.

Joksimovi? J, Atlagi? J, Marinkovi? R, Jovanovi? D. Genetic control of oleic and linoleic acid contents in sunflower/control genético del contenido de aceite oleico y linólico en girasol/contrôle génétique des contenus d’acide oléique et linoléique chez le tournesol. Helia. 2006;29(44):33-40. https://doi.org/10.2298/hel0644033j

Lacombe S, Kaan F, Griveau Y, Bervillé A. The pervenets high oleic mutation: methodological studies/mutación altamente oleica pervenets: investigaciones metodológicas/mutation d’acides oléiques gras pervenets: recherches méthodologiques. Helia. 2004;27(40):41-54. https://doi.org/10.2298/hel0440041l

Berville A. Oil composition variations. In: Jinguo Hu, Gerald S, Kole C, editors. Genetics, genomics and breeding of sunflower. Boca Raton: Routledge; 2010. p. 253-77. https://doi.org/10.1201/b10192

Ferfuia C, Vannozzi GP. Maternal effect on seed fatty acid composition in a reciprocal cross of high oleic sunflower (Helianthus annuus L.). Euphytica. 2015;205:325–36. https://doi.org/10.1007/s10681-015-1378-3

Ganapati RK, Rasul MG, Sarker U, Singha A, Faruquee M. Gene action of yield and yield contributing traits of submergence tolerant rice (Oryza sativa L.) in Bangladesh. Bull Nat Res Centre. 2020;44:1-7. https://doi.org/10.1186/s42269-019-0261-0

Patel DK, Patel A, Patel CJ, Jat AL. Generation Mean Analysis for Seed Yield and Wilt Resistance in Castor (Ricinus communis L.). Ind J Agric Res. 2024;58(2). https://doi.org/10.18805/IJARe.A-5685

Sandhu R, Singh B, Delvadiya IR, Pandey MK, Rai SK, Attri M. Genetic analysis of grain yield and its contributing traits in four bread wheat (Triticum aestivum L.) crosses using six parameter model. Elect J Pl Breed. 2023;14(1):154-9. https://doi.org/10.37992/2023.1401.032

Chandra D, Islam MA, Barma NC. Variability and interrelationship of nine quantitative characters in F5 bulks of five wheat crosses. Pak J Biol Sci. 2004;7(6):1040-5. https://doi.org/10.3923/pjbs.2004.1040.1045

Khaled M. Estimation of genetic variance for yield and yield components in two bread wheat (Triticum aestivum L.) crosses. J Plant Prod. 2007;32(10):8043-53. https://doi.org/10.21608/jpp.2007.220889

Singh CM, Singh AK, Mishra SB, Pandey A. Generation mean analysis to estimate the genetic parameters for yield improvement and inheritance of seed colour and lusture in mungbean [Vigna radiata (L.) Wilczek]. Legume Res. 2016;39(4):494-501. https://doi.org/10.18805/lr.v0iOF.10762

Pathak S, Pant U, Yadav VN, Mishra A. Analysis of genetic architecture through generation mean analysis for yield and yield contributing traits in crosses of Indian Mustard (Brassica juncea). J Adv Biol Biotech. 2024;27(8):462-70. https://doi.org/10.9734/jabb/2024/v27i81158

Anuradha B, Manivannan N, Sasikala R, Harish S, Senthivelu M. Genetic variability and association studies in BC 3 F 1 population of sunflower (Helianthus annuus L.). Electronic Journal of Plant Breeding. 2023;14(3):923-7. https://doi.org/10.37992/2023.1403.104

Mather K, Jinks JL, Mather K, Jinks JL. Components of means: additive and dominance effects. In: Kenneth M, John LJ, editors. Biometrical genetics: The study of continuous variation. Boston, MA:Springer; 1971. p. 65-82. https://doi.org/10.1007/978-1-4899-3404-8_4

Singh RK, Chaudhary BD. Biometrical methods in quantitative genetic analysis. Lucknow: Kalyani Publisher; 1981

Hayman BI. The separation of epistatic from additive and dominance variation in generation means. Heredity;1958:371-90

Manivannan N. TNAUSTAT-Statistical package [internet].Coimbatore:TNAU; 2018 [cited 2024 Sept 18] Available from: https: //sites.google.com/site/tnaustat

Fonseca S, Patterson FL. Hybrid vigor in a seven?parent diallel cross in common winter wheat (Triticum aestivum L.). Crop Sci. 1968;8(1):85-8. https://doi.org/10.2135/cropsci1968.0011183X000800010025x

Rao, N. Statistics for Agricultural Sciences. New Delhi: Oxford and IBH Publishing; 1980.

Robinson HF, Comstock RE, Harvey PH. Estimates of heritability and the degree of dominance in corn. Agron J; 1949:353-9.

Kempthorne O. An introduction to genetic statistics. New York: John Wiley and Sons, Inc.; 1957.

Warner JN. A method for estimating heritability. Agron J. 1952;44:427-30.

Johnson HW, Robinson HF, Comstock RE. Estimates of genetic and environmental variability in soybeans. Agron J. 1955;314-8.

Gaoh BS, Gangashetty PI, Mohammed R, Dzidzienyo DK, Tongoona P. Generation mean analysis of pearl millet [Pennisetum glaucum (L.) R. Br.] grain iron and zinc contents and agronomic traits in West Africa. J Cereal Sci. 2020;96:103066. https://doi.org/10.1016/j.jcs.2020.103066

Yadav S, Singh SP, Singhal T, Anju-Mahendru S, Bhargavi HA, Aavula N, Goswami S, Satyavathi CT. Genetic elucidations of grain iron, zinc and agronomic traits by generation mean analysis in pearl millet [Pennisetum glaucum (L.) R. Br.]. J Cereal Sci. 2023;113:103751 https://doi.org/10.1016/j.jcs.2023.103751

Labroo MR, Studer AJ, Rutkoski JE. Heterosis and hybrid crop breeding: a multidisciplinary review. Front Gene. 2021;12:643761. https://doi.org/10.3389/fgene.2021.643761

Hassan HM, Hadifa AA, El-Leithy SA, Batool M, Sherif A, Al-Ashkar I, Ueda A, Rahman MA, Hossain MA, Elsabagh A. Variable level of genetic dominance controls important agronomic traits in rice populations under water deficit condition. PeerJ. 2023;11:e14833. https://doi.org/10.7717/peerj.14833

Pujar M, Govindaraj M, Gangaprasad S, Kanatti A, Gowda TH, Dushyantha Kumar BM, Satish KM. Generation mean analysis reveals the predominant gene effects for grain iron and zinc contents in pearl millet. Front Pl Sci. 2022;12:693680. https://doi.org/10.3389/fpls.2021.693680

Joci? S, Škori? D. Inheritance of some yield components in sunflower. ). In: Proceedings, 16th International Sunflower Conference; 2004 29 Aug-2 Sept; 2004, Fargo, North Dakota, USA. Paris: International Sunflower Association. 2004 [cited 2024 18 Sept]. p. 503-10 Available from: https://www.isasunflower.org/

Cukadar?Olmedo B, Miller JF. Inheritance of the stay-green trait in sunflower. Crop Sci. 1997;37(1):150. https://doi.org/10.2135/cropsci1997.0011183X003700010026x

Marinkovi? R, Vasi? D, Joksimovi? J, Jovanovi? D, Atlagi? J. Gene actions for seed yield in sunflower (Helianthus annuus). In: Proceedings, 16th International Sunflower Conference; 2004 29 Aug-2 Sept; 2004, Fargo, North Dakota, USA. Paris: International Sunflower Association. 2004 [cited 2024 18 Sept]. p. 511–6 Available from: https://www.isasunflower.org/

Gangappa E, Channakrishnaiah KM, Thakur S, Ramesh S. Genetic architecture of yield and its attributes in sunflower (Helianthus annuus L.). Helia. 1997,85-93.

Lagiso TM, Singh BC, Weyessa B. Evaluation of sunflower (Helianthus annuus L.) genotypes for quantitative traits and character association of seed yield and yield components at Oromia region, Ethiopia. Euphytica. 2021;217(2):27. https://doi.org/10.1007/s10681-020-02743-2

Delen Y, Palali-Delen S, Xu G, Neji M, Yang J, Dweikat I. Dissecting the genetic architecture of morphological traits in sunflower (Helianthus annuus L.). Genes. 2024;15(7). https://doi.org/10.3390/genes15070950

Vivek M, Sasikala R, Thangaraj K, Harish S, Sudha M. Exploring the genetic variability and association for yield and its integrant traits in sunflower (Helianthus annuus L.). Elec J Pl Breed. 2023;14(3):1090-6. https://doi.org/10.37992/2023.1403.123

Dudhe MY, Mulpuri S, Meena HP, Ajjanavara RR, Kodeboyina VS, Adala VR. Genetic variability, diversity and identification of trait-specific accessions from the conserved sunflower germplasm for exploitation in the breeding programme. Agric Res. 2020;9:9-22. https://doi.org/10.1007/s40003-019-00406-w

Izquierdo N, Aguirrezábal L, Andrade F, Pereyra V. Night temperature affects fatty acid composition in sunflower oil depending on the hybrid and the phenological stage. Field Crops Res. 2002;77(2-3):115-26. https://doi.org/10.1016/S0378-4290(02)00060-6

Published

07-02-2025 — Updated on 13-02-2025

Versions

How to Cite

1.
Lavudya S, Thiyagarajan K, Ramasamy S, Sankarasubramanian H, Muniyandi S, Bellie A, Venkatesh G, Ellandula A. Insights from gene effects on agronomic, oleic acid and oil content using generation mean analysis in sunflower (Helianthus annuus L.). Plant Sci. Today [Internet]. 2025 Feb. 13 [cited 2025 Apr. 2];12(sp1). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/6030