Molecular insights driving oleic acid improvement in groundnut: A review

Authors

DOI:

https://doi.org/10.14719/pst.5602

Keywords:

CRISPR Cas, Groundnut, integromics, molecular approaches, oleic acid

Abstract

Groundnut (Arachis hypogea L.) plays a prominent role in the global food and oil industries. Its nutritional value and shelf life are significantly influenced by oleic acid which is the primary constituent of groundnut oil. Given the industrial applications and health benefits, increasing its levels in groundnut has become a central breeding objective. The genetics of oleic acid content in groundnuts involves intricate quantitative trait loci (QTL) and multiple genes governing fatty acid biosynthesis. Breakthroughs with high-throughput sequencing and genotyping techniques have made it easier to identify and characterize key genes and regulatory elements that affect oleic acid synthesis. These insights underscore the importance of molecular approaches in enhancing oleic acid content in groundnuts, offering prospects for improved nutritional quality and industrial utility. By targeting crucial enzymes like fatty acid desaturase (FAD) and stearoyl-ACP desaturase (SAD), genetic manipulation is employed to enhance oleic acid levels. Techniques, notably, CRISPR-Cas9 gene editing and transgenic methods offer precisely increasing oleic acid content with minimal off-target effects. Transcriptomics, proteomics, and metabolomics collectively referred to as integromics, provide a comprehensive understanding of groundnut molecular responses to increased oleic acid levels. Advancements in raising oleic acid levels in groundnuts, driven by molecular breakthroughs in genetic research, biochemical investigations, and omics technologies, are sustainably meeting the demand for healthier, higher-quality groundnut oil. This review summarizes the importance of oleic acid and in-depth overview of the molecular advancements driving the enhancement of oleic acid content in groundnut, with a focus on key genetic and breeding strategies, omics insights, and their implications for developing high-oleic peanut cultivars.

Downloads

Download data is not yet available.

References

Husted L. Cytological studies an the peanut, arachis. II chromosome number, morphology and behavior and their application to the problem of the origin of the cultivated forms. Cytologia. 1936;7(3):396-423. https://doi.org/10.1508/cytologia.7.396

Kochert G, Stalker HT, Gimenes M, Galgaro L, Lopes CR, Moore K. RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). American Journal of Botany. 1996 Oct;83(10):1282-91. https://doi.org/10.1002/j.1537-2197.1996.tb13912.x

Bertioli DJ, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, et al. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature genetics. 2019 May;51(5):877-84. https://doi.org/10.1038/s41588-019-0405-z

Seijo JG, Lavia GI, Fernández A, Krapovickas A, Ducasse D, Moscone EA. Physical mapping of the 5S and 18S–25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). American Journal of Botany. 2004 Sep;91(9):1294-303. https://doi.org/10.3732/ajb.91.9.1294

Seijo G, Lavia GI, Fernández A, Krapovickas A, Ducasse DA, Bertioli DJ, Moscone EA. Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. American Journal of Botany. 2007 Dec;94(12):1963-71. https://doi.org/10.3732/ajb.94.12.1963

Ramos ML, Fleming G, Chu Y, Akiyama Y, Gallo M, Ozias-Akins P. Chromosomal and phylogenetic context for conglutin genes in Arachis based on genomic sequence. Molecular Genetics and Genomics. 2006 Jun;275:578-92. https://doi.org/10.1007/s00438-006-0114-z

Robledo G, Lavia GI, Seijo G. Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theoretical and Applied Genetics. 2009 May;118(7):1295-307. https://doi.org/10.1007/s00122-009-0981-x

Lavia GI, Ortiz AM, Robledo G, Fernández A, Seijo G. Origin of triploid Arachis pintoi (Leguminosae) by autopolyploidy evidenced by FISH and meiotic behaviour. Annals of Botany. 2011 Jul 1;108(1):103-11. https://doi.org/10.1093/aob/mcr108

Grabiele M, Chalup L, Robledo G, Seijo G. Genetic and geographic origin of domesticated peanut as evidenced by 5S rDNA and chloroplast DNA sequences. Plant Systematics and evolution. 2012 Jun;298(6):1151-65. https://doi.org/10.1007/s00606-012-0627-3

Moretzsohn MC, Gouvea EG, Inglis PW, Leal-Bertioli SC, Valls JF, Bertioli DJ. A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Annals of Botany. 2013 Jan 1;111(1):113-26. https://doi.org/10.1093/aob/mcs237

Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics. 2016 Apr;48(4):438-46. https://doi.org/10.1038/ng.3517

Bertioli DJ, Abernathy B, Seijo G, Clevenger J, Cannon SB. Evaluating two different models of peanut’s origin. Nature Genetics. 2020 Jun;52(6):557-59. https://doi.org/10.1038/s41588-020-0626-1

Yin D, Ji C, Song Q, Zhang W, Zhang X, Zhao K, et al. Comparison of Arachis monticola with diploid and cultivated tetraploid genomes reveals asymmetric subgenome evolution and improvement of peanut. Advanced Science. 2020 Feb;7(4):1901672. https://doi.org/10.1002/advs.201901672

Krapovickas A, Gregory WC, Williams DE, Simpson CE. Taxonomy of the genus Arachis (Leguminosae). Bonplandia. 2007 Jan 1;16:7-205. Bonplandia https://www.jstor.org/stable/i40090465

Dwivedi SL, Crouch JH, Nigam SN, Ferguson ME, Paterson AH. Molecular breeding of groundnut for enhanced productivity and food security in the semi-arid tropics: opportunities and challenges. Advances in Agronomy. 2003;80:153-221. http://dx.doi.org/10.1016/S0065-2113(03)80004-4

Nadaf HL. Genetic improvement for yield through induced mutagenesis in groundnut (Arachis hypogaea L.). Legume Research- An International Journal. 2017;40(1):32-35. http://dx.doi.org/10.18805/lr.v0i0.7019

Shasidhar Y, Vishwakarma MK, Pandey MK, Janila P, Variath MT, Manohar SS, et al. Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut (Arachis hypogaea L.). Frontiers in Plant Science. 2017 May 22;8:794. https://doi.org/10.3389/fpls.2017.00794

Rizzo WB, Watkins PA, Phillips MW, Cranin D, Campbell B, Avigan J. Adrenoleukodystrophy: oleic acid lowers fibroblast saturated C22?26 fatty acids. Neurology. 1986 Mar;36(3):357. https://doi.org/10.1212/WNL.36.3.357

Mohan K, Nadaf HL, Hanchinal RR. Genetic improvement for oil quality through induced mutagenesis in groundnut (Arachis hypogaea L.). Indian Journal of Genetics and Plant Breeding. 2013 Nov 25;73(04):378-85. https://doi.org/10.5958/j.0975-6906.73.4.057

Vassiliou EK, Gonzalez A, Garcia C, Tadros JH, Chakraborty G, Toney JH. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-? both in vitro and in vivo systems. Lipids in Health and Disease. 2009 Dec;8:1-0. https://doi.org/10.1186/1476-511X-8-25

Norden AJ, Gorbet DW, Knauft DA, Young CT. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Science. 1987 Jan 1;14(1):7-11. https://doi.org/10.3146/i0095-3679-14-1-3

Davis JP, Price K, Dean LL, Sweigart DS, Cottonaro J, Sanders TH. Peanut oil stability and physical properties across a range of industrially relevant oleic acid/linoleic acid ratios. Peanut Science. 2016 Feb 15. https://doi.org/10.3146/PS14-17.1

Sodamade A, Oyedepo T, Bolaji O. Fatty acids composition of three different vegetable oils (soybean oil, groundnut oil and coconut oil) by high-performance liquid chromatography. Extraction. 2013;3(7):126-78. https://www.academia.edu/download/109618501/6131_8256_1_PB.pdf

Anyasor GN, Ogunwenmo KO, Oyelana OA, Ajayi D, Dangana J. Chemical analyses of groundnut (Arachis hypogaea) oil. Pakistan Journal of Nutrition. 2009 Feb 15;8(3):269-72. https://doi.org/10.3923/pjn.2009.269.272

Clarke SD, Nakamura MT. Fatty acid structure and synthesis. In: Encyclopedia of Biological Chemistry: Second Edition. Elsevier Inc.; 2013 Feb 15. pp. 285-89. https://doi.org/10.1016/B978-0-12-378630-2.00038-4

Los DA, Murata N. Structure and expression of fatty acid desaturases. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism. 1998 Oct 2;1394(1):3-15. https://doi.org/10.1016/S0005-2760(98)00091-5

Gyamfi D, Awuah EO, Owusu S. Lipid metabolism: an overview. The Molecular Nutrition of Fats. 2019 Jan 1;17-32. https://doi.org/10.1016/B978-0-12-811297-7.00002-0

Kazaz S, Miray R, Lepiniec L, Baud S. Plant monounsaturated fatty acids: Diversity, biosynthesis, functions and uses. Progress in Lipid Research. 2022 Jan 1;85:101138. https://doi.org/10.1016/j.plipres.2021.101138

Fang CQ, Wang CT, Wang PW, Tang YY, Wang XZ, Cui FG, Yu SL. Identification of a novel mutation in FAD2B from a peanut EMS mutant with elevated oleate content. Journal of Oleo Science. 2012;61(3):143-48. https://doi.org/10.5650/jos.61.143

Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theoretical and Applied Genetics. 2004 May;108:1492-502. https://doi.org/10.1007/s00122-004-1590-3

Ray TK, Holly SP, Knauft DA, Abbott AG, Powell GL. The primary defect in developing seed from the high oleate variety of peanut (Arachis hypogaea L.) is the absence of ?12-desaturase activity. Plant Science. 1993 Jan 1;91(1):15-21. https://doi.org/10.1016/0168-9452(93)90184-2

Lopez Y, Nadaf HL, Smith OD, Connell JP, Reddy AS, Fritz AK. Isolation and characterization of the ?12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theoretical and Applied Genetics. 2000 Nov;101:1131-38. https://doi.org/10.1007/s001220051589

Chen Z, Wang ML, Barkley NA, Pittman RN. A simple allele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection. Plant Molecular Biology Reporter. 2010 Sep;28:542-48. https://doi.org/10.1007/s11105-010-0181-5

Burow MD, Baring MR, Ayers JL, Schubert AM, López Y, Simpson CE. Registration of ‘Tamrun OL12’peanut. Journal of Plant Registrations. 2014 May;8(2):117-21. https://doi.org/10.3198/jpr2013.07.0036crc

Chu Y, Ramos L, Holbrook CC, Ozias?Akins P. Frequency of a loss?of?function mutation in oleoyl?PC desaturase (ahFAD2A) in the mini?core of the US peanut germplasm collection. Crop Science. 2007 Nov;47(6):2372-78. https://doi.org/10.2135/cropsci2007.02.0117

Chu Y, Holbrook CC, Ozias?Akins P. Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. Crop Science. 2009 Nov;49(6):2029-36. https://doi.org/10.2135/cropsci2009.01.0021

Mondal S, Badigannavar AM. A narrow leaf groundnut mutant, TMV2-NLM has a G to A mutation in AhFAD2A gene for high oleate trait. Indian Journal of Genetics and Plant Breeding. 2013 Feb 25;73(01):105-09. https://doi.org/10.5958/j.0019-5200.73.1.016

Mondal S, Badigannavar AM, d’Souza SF. Induced variability for fatty acid profile and molecular characterization of high oleate mutant in cultivated groundnut (Arachis hypogaea L.). Plant Breeding. 2011 Apr;130(2):242-47. https://doi.org/10.1111/j.1439-0523.2010.01787.x

Mukri G, Nadaf HL, Bhat RS, Gowda MV, Upadhyaya HD, Sujay V. Phenotypic and molecular dissection of ICRISAT mini core collection of peanut (Arachis hypogaea L.) for high oleic acid. Plant Breeding. 2012 Jun;131(3):418-22. https://doi.org/10.1111/j.1439-0523.2012.01970.x

Nawade B, Bosamia TC, Thankappan R, Rathnakumar AL, Kumar A, Dobaria JR, et al. Insights into the Indian peanut genotypes for ahFAD2 gene polymorphism regulating its oleic and linoleic acid fluxes. Frontiers in Plant Science. 2016 Aug 25;7:1271. https://doi.org/10.3389/fpls.2016.01271

Barkley NA, Chamberlin KD, Wang ML, Pittman RN. Development of a real-time PCR genotyping assay to identify high oleic acid peanuts (Arachis hypogaea L.). Molecular Breeding. 2010 Mar;25:541-48. https://doi.org/10.1007/s11032-009-9338-z

Barkley NA, Wang ML, Pittman RN. A real-time PCR genotyping assay to detect FAD2A SNPs in peanuts (Arachis hypogaea L.). Electronic Journal of Biotechnology. 2011 Jan;14(1):9-10. https://doi.org/10.2225/vol14-issue1-fulltext-12

Barkley NA, Isleib TG, Wang ML, Pittman RN. Genotypic effect of ahFAD2 on fatty acid profiles in six segregating peanut (Arachis hypogaea L) populations. BMC Genetics. 2013 Dec;14:1-3. https://doi.org/10.1186/1471-2156-14-62

Wang ML, Barkley NA, Chen Z, Pittman RN. FAD2 gene mutations significantly alter fatty acid profiles in cultivated peanuts (Arachis hypogaea). Biochemical Genetics. 2011 Dec;49:748-59. https://doi.org/10.1007/s10528-011-9447-3

Yu HT, Yang WQ, Tang YY, Wang XZ, Wu Q, Hu DQ, et al. An AS-PCR assay for accurate genotyping of FAD2A/FAD2B genes in peanuts (Arachis hypogaea L.). Grasas y Aceites. 2013 Sep 30;64(4):395-99. https://doi.org/10.3989/gya.118712

Zhao S, Li A, Li C, Xia H, Zhao C, Zhang Y, et al. Development and application of KASP marker for high throughput detection of AhFAD2 mutation in peanut. Electronic Journal of Biotechnology. 2017 Jan 1;25:9-12. https://doi.org/10.1016/j.ejbt.2016.10.010

Mienie CM, Pretorius AE. Application of marker-assisted selection for ahFAD2A and ahFAD2B genes governing the high-oleic acid trait in South African groundnut cultivars (Arachis hypogaea L.). African Journal of Biotechnology. 2013;12(27). https://doi.org/10.5897/AJB2012.2976

Janila P, Pandey MK, Shasidhar Y, Variath MT, Sriswathi M, Khera P, et al. Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Science. 2016 Jan 1;242:203-13. https://doi.org/10.1016/j.plantsci.2015.08.013

Tang Y, Qiu X, Hu C, Li J, Wu L, Wang W, et al. Breeding of a new variety of peanut with high-oleic-acid content and high-yield by marker-assisted backcrossing. Molecular Breeding. 2022 Jul;42(7):42. https://doi.org/10.1007/s11032-022-01313-9

Gulten HT, Polat M, Basak M, Qureshi M, Golukcu M, Uzun B, Yol E. Molecular breeding to develop advanced lines with high oleic acid and pod yield in peanut. Industrial Crops and Products. 2023 Nov 1;203:117231. https://doi.org/10.1016/j.indcrop.2023.117231

Xu Y, Li P, Yang Z, Xu C. Genetic mapping of quantitative trait loci in crops. The Crop Journal. 2017 Apr 1;5(2):175-84. https://doi.org/10.1016/j.cj.2016.06.003

Pandey MK, Wang ML, Qiao L, Feng S, Khera P, Wang H, et al. Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genetics. 2014 Dec;15:1-4. https://doi.org/10.1186/s12863-014-0133-4

Vishwakarma MK, Nayak SN, Guo B, Wan L, Liao B, Varshney RK, Pandey MK. Classical and molecular approaches for mapping of genes and quantitative trait loci in peanut. The Peanut Genome. 2017;93-116. https://doi.org/10.1007/978-3-319-63935-2_7

Fonceka D, Tossim HA, Rivallan R, Vignes H, Faye I, Ndoye O, et al. Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biology. 2012 Dec;12:1-6. https://doi.org/10.1007/978-3-319-63935-2_7

Chen Y, Zhou XR, Zhang ZJ, Dribnenki P, Singh S, Green A. Development of high oleic oil crop platform in flax through RNAi-mediated multiple FAD2 gene silencing. Plant Cell Reports. 2015 Apr;34:643-53. https://doi.org/10.1007/s00299-015-1737-5

Hu XH, Zhang SZ, Miao HR, Cui FG, Shen Y, Yang WQ, et al. High-density genetic map construction and identification of QTLs controlling oleic and linoleic acid in peanut using SLAF-seq and SSRs. Scientific Reports. 2018 Apr 3;8(1):5479. https://doi.org/10.1038/s41598-018-23873-7

Wang ML, Tonnis B, An YQ, Pinnow D, Tishchenko V, Pederson GA. Newly identified natural high-oleate mutant from Arachis hypogaea L. subsp. hypogaea. Molecular Breeding. 2015 Sep;35:1-9. https://doi.org/10.1007/s11032-015-0377-3

Sarvamangala C, Gowda MV, Varshney RK. Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Research. 2011 Apr 28;122(1):49-59. https://doi.org/10.1016/j.fcr.2011.02.010

Kassie FC, Nguepjop JR, Ngalle HB, Assaha DV, Gessese MK, Abtew WG, et al. An overview of mapping quantitative trait loci in peanut (Arachis hypogaea L.). Genes. 2023 May 28;14(6):1176. https://doi.org/10.3390/genes14061176

Han X, Yang S, Li X, Wu Q, Xing Y, Zhang J, Ling F. Quantitative trait loci (QTL) mapping and marker analysis of fatty acids in peanut. Phyton. 2023 Sep 1;92(9):0031-9457. https://doi.org/10.32604/phyton.2023.029440

Liu H, Gu J, Lu Q, Li H, Hong Y, Chen X, et al. Transcriptomic analysis reveals the high-oleic acid feedback regulating the homologous gene expression of stearoyl-ACP desaturase 2 (SAD2) in peanuts. International Journal of Molecular Sciences. 2019 Jun 25;20(12):3091. https://doi.org/10.3390/ijms20123091

Sun Z, Qi F, Liu H, Qin L, Xu J, Shi L, et al. QTL Mapping of quality related traits in peanut using whole-genome resequencing. Europe PMC. 2021 Jan; PPR262119. https://doi.org/10.21203/rs.3.rs-138961/v1

He J, Zhao X, Laroche A, Lu ZX, Liu H, Li Z. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Frontiers in Plant Science. 2014 Sep 30;5:484. https://doi.org/10.3389/fpls.2014.00484

Chu Y, Wu CL, Holbrook CC, Tillman BL, Person G, Ozias?Akins P. Marker?assisted selection to pyramid nematode resistance and the high oleic trait in peanut. The Plant Genome. 2011 Jul;4(2). https://doi.org/10.3835/plantgenome2011.01.0001

Soto-Cerda BJ, Penaloza EH, Montenegro AB, Rupayan AR, Gallardo MH, Salvo-Garrido H. An efficient marker-assisted backcrossing strategy for enhancing barley (Hordeum vulgare L.) production under acidity and aluminium toxicity. Molecular Breeding. 2013 Apr;31:855-66. https://doi.org/10.1007/s11032-013-9839-7

Ribaut JM, Jiang C, Hoisington D. Simulation experiments on efficiencies of gene introgression by backcrossing. Crop Science. 2002 Mar;42(2):557-65. https://doi.org/10.2135/cropsci2002.5570

Mallick N, Vinod, Sharma JB, Tomar RS, Sivasamy M, Prabhu KV. Marker?assisted backcross breeding to combine multiple rust resistance in wheat. Plant Breeding. 2015 Apr;134(2):172-77. https://doi.org/10.1111/pbr.12242

Xu Y, Zhang XQ, Harasymow S, Westcott S, Zhang W, Li C. Molecular marker-assisted backcrossing breeding: an example to transfer a thermostable ?-amylase gene from wild barley. Molecular Breeding. 2018 May;38:1-9. https://doi.org/10.1007/s11032-018-0828-8

Mythili SR, Manivannan N, Kalaimagal T, Paranidharan V, Janaki P. Identification of an effective genotyping assay for marker assisted selection of high oleic acid content trait in groundnut (Arachis hypogea L.). Electronic Journal of Plant Breeding. 2023;14(4):1285-92. http://dx.doi.org/10.37992/2023.1404.147

Bera SK, Manohar SS, Variath MT, Chaudhari S, Yaduru S, Thankappan R, et al. Assessing variability for disease resistance and nutritional quality traits in an interspecific collection of groundnut (Arachis hypogaea). Plant Breeding. 2018 Dec;137(6):883-94. https://doi.org/10.1111/pbr.12647

Bera SK, Kamdar JH, Kasundra SV, Patel SV, Jasani MD, Maurya AK, et al. Steady expression of high oleic acid in peanut bred by marker-assisted backcrossing for fatty acid desaturase mutant alleles and its effect on seed germination along with other seedling traits. PloS One. 2019 Dec 12;14(12):e0226252. https://doi.org/10.1371/journal.pone.0226252

Shasidhar Y, Variath MT, Vishwakarma MK, Manohar SS, Gangurde SS, Sriswathi M, et al. Improvement of three popular Indian groundnut varieties for foliar disease resistance and high oleic acid using SSR markers and SNP array in marker-assisted backcrossing. The Crop Journal. 2020 Feb 1;8(1):1-5. https://doi.org/10.1016/j.cj.2019.07.001

Mohanta TK, Bashir T, Hashem A, Abd_Allah EF, Bae H. Genome editing tools in plants. Genes. 2017 Dec 19;8(12):399. https://doi.org/10.3390/genes8120399

Van de Wiel CC, Schaart JG, Lotz LA, Smulders MJ. New traits in crops produced by genome editing techniques based on deletions. Plant Biotechnology Reports. 2017 Feb;11:1-8. https://doi.org/10.1007/s11816-017-0425-z

Stoutjesdijk PA, Hurlestone C, Singh SP, Green AG. High-oleic acid Australian Brassica napus and B. juncea varieties produced by co-suppression of endogenous ?12-desaturases. Biochemical Society Transactions. 2000 Dec; 28(6):938-40. https://doi.org/10.1042/bst0280938

Takeno S, Sakuradani E, Tomi A, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S. Improvement of the fatty acid composition of an oil-producing filamentous fungus, Mortierella alpina 1S-4, through RNA interference with ?12-desaturase gene expression. Applied and Environmental Microbiology. 2005 Sep;71(9):5124-28. https://doi.org/10.1128/AEM.71.9.5124-5128.2005

Liu Q, Singh SP, Green AG. High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiology. 2002 Aug 1;129(4):1732-43. https://doi.org/10.1104/pp.001933

Hammond SM, Caudy AA, Hannon GJ. Post-transcriptional gene silencing by double-stranded RNA. Nature Reviews Genetics. 2001 Feb;2(2):110-19. https://doi.org/10.1038/35052556

Yin D, Deng S, Zhan K, Cui D. High-oleic peanut oils produced by HpRNA-mediated gene silencing of oleate desaturase. Plant Molecular Biology Reporter. 2007 Dec;25:154-63. https://doi.org/10.1007/s11105-007-0017-0

Wood CC, Okada S, Taylor MC, Menon A, Mathew A, Cullerne D, et al. Seed?specific RNAi in safflower generates a superhigh oleic oil with extended oxidative stability. Plant Biotechnology Journal. 2018 Oct;16(10):1788-96.https://doi.org/10.1111/pbi.12915

Yang J, Xing G, Niu L, He H, Guo D, Du Q, et al. Improved oil quality in transgenic soybean seeds by RNAi-mediated knockdown of GmFAD2-1B. Transgenic Research. 2018 Apr;27:155-66. https://doi.org/10.1007/s11248-018-0063-4

Dodo HW, Konan KN, Chen FC, Egnin M, Viquez OM. Alleviating peanut allergy using genetic engineering: the silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnology Journal. 2008 Feb;6(2):135-45. https://doi.org/10.1111/j.1467-7652.2007.00292.x

Ozias-Akins P, Ramos ML, Faustinelli P, Chu Y, Maleki S, Thelen JJ, et al. Spontaneous and induced variability of allergens in commodity crops: Ara h 2 in peanut as a case study. Regulatory Toxicology and Pharmacology. 2009 Aug 1;54(3):S37-40. https://doi.org/10.1016/j.yrtph.2008.11.002

Chu Y, Deng XY, Faustinelli P, Ozias-Akins P. Bcl-xL transformed peanut (Arachis hypogaea L.) exhibits paraquat tolerance. Plant Cell Reports. 2008 Jan;27:85-92. https://doi.org/10.1007/s00299-007-0444-2

Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology. 2013 Jan;14(1):49-55. https://doi.org/10.1038/nrm3486

Wen S, Liu H, Li X, Chen X, Hong Y, Li H, et al. TALEN-mediated targeted mutagenesis of fatty acid desaturase 2 (FAD2) in peanut (Arachis hypogaea L.) promotes the accumulation of oleic acid. Plant Molecular Biology. 2018 May;97:177-85. https://doi.org/10.1007/s11103-018-0731-z

Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Weeks DP. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnology Journal. 2017 May;15(5):648-57. https://doi.org/10.1111/pbi.12663

Demorest ZL, Coffman A, Baltes NJ, Stoddard TJ, Clasen BM, Luo S, et al. Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biology. 2016 Dec;16:1-8. https://doi.org/10.1186/s12870-016-0906-1

Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnology Journal. 2014 Sep;12(7):934-40. https://doi.org/10.1111/pbi.12201

González Castro N, Bjelic J, Malhotra G, Huang C, Alsaffar SH. Comparison of the feasibility, efficiency and safety of genome editing technologies. International Journal of Molecular Sciences. 2021 Sep 26;22(19):10355. https://doi.org/10.3390/ijms221910355

Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK, Cummings AM, O’Connor-Giles KM. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics. 2014 Apr 1;196(4):961-71. https://doi.org/10.1534/genetics.113.160713

Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013 Sep 12;154(6):1380-89. https://doi.org/10.1016/j.cell.2013.08.021

Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances. 2015 Jan 1;33(1):41-52. https://doi.org/10.1016/j.biotechadv.2014.12.006

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012 Aug 17;337(6096):816-21. https://doi.org/10.1126/science.1225829

Yang N, Wang R, Zhao Y. Revolutionize genetic studies and crop improvement with high-throughput and genome-scale CRISPR/Cas9 gene editing technology. Molecular Plant. 2017 Sep 12;10(9):1141-43. https://doi.org/10.1016/j.molp.2017.08.001

Morineau C, Bellec Y, Tellier F, Gissot L, Kelemen Z, Nogué F, Faure JD. Selective gene dosage by CRISPR?Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnology Journal. 2017 Jun;15(6):729-39. https://doi.org/10.1111/pbi.12671

Neelakandan AK, Wright DA, Traore SM, Chen X, Spalding MH, He G. CRISPR/Cas9 based site-specific modification of FAD2 cis-regulatory motifs in peanut (Arachis hypogaea L). Frontiers in Genetics. 2022 Apr 27;13:849961. https://doi.org/10.3389/fgene.2022.849961

Yuan, Mei, Jun Zhu, Limin Gong, Liangqiong He, Crystal Lee, et al. Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Biotechnology. 2019;19(1):1-7. https://doi.org/10.1186/s12896-019-0516-8

Siger, Oliveira. Gene editing with CRISPR: Advances, challenges and future directions. J Bioengineer and Biomedical Sci. 2024 Aug 14;427. https://doi.org/10.37421/2155-9538.2024.14.427

Kim H, Kim ST, Ryu J, Kang BC, Kim JS, Kim SG. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nature Communications. 2017 Feb 16;8(1):14406. https://doi.org/10.1038/ncomms14406

Al Amin N, Ahmad N, Wu N, Pu X, Ma T, Du Y, et al. CRISPR-Cas9 mediated targeted disruption of FAD2–2 microsomal omega-6 desaturase in soybean (Glycine max L). BMC Biotechnology. 2019 Dec;19:1-0. https://doi.org/10.1186/s12896-019-0501-2

Do PT, Nguyen CX, Bui HT, Tran LT, Stacey G, Gillman JD, et al. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2–1A and GmFAD2–1B genes to yield a high oleic, low linoleic and ?-linolenic acid phenotype in soybean. BMC Plant Biology. 2019 Dec;19:1-4. https://doi.org/10.1186/s12870-019-1906-8

Bai S, Wallis JG, Denolf P, Engelen S, Bengtsson JD, Van Thournout M, et al. The biochemistry of headgroup exchange during triacylglycerol synthesis in canola. The Plant Journal. 2020 Jul;103(1):83-94. https://doi.org/10.1111/tpj.14709

Peng Q, Hu Y, Wei R, Zhang Y, Guan C, Ruan Y, Liu C. Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Plant Cell Reports. 2010 Apr;29:317-25. https://doi.org/10.1007/s00299-010-0823-y

Dong Z, Chen Y. Transcriptomics: advances and approaches. Science China Life Sciences. 2013 Oct;56:960-67. https://doi.org/10.1007/s11427-013-4557-2

Yin D, Wang Y, Zhang X, Li H, Lu X, Zhang J, et al. De novo assembly of the peanut (Arachis hypogaea L.) seed transcriptome revealed candidate unigenes for oil accumulation pathways. Plos One. 2013 Sep 10;8(9):e73767. https://doi.org/10.1371/journal.pone.0073767

Wang YS, Yao HY, Xue HW. Lipidomic profiling analysis reveals the dynamics of phospholipid molecules in Arabidopsis thaliana seedling growth. Journal of Integrative Plant Biology. 2016 Nov;58(11):890-902. https://doi.org/10.1111/jipb.12481

Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH. Proteomics: technologies and their applications. Journal of Chromatographic Science. 2016 Oct 18;1-5. https://doi.org/10.1093/chromsci/bmw167

Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008 Jun 2;59(1):651-81. https://doi.org/10.1146/annurev.arplant.59.032607.092911

Kotecka?Majchrzak K, Sumara A, Fornal E, Montowska M. Proteomic analysis of oilseed cake: a comparative study of species?specific proteins and peptides extracted from ten seed species. Journal of the Science of Food and Agriculture. 2021 Jan 15;101(1):297-306. https://doi.org/10.1002/jsfa.10643

Wang T, Zhang E, Chen X, Li L, Liang X. Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (Arachis hypogaea L). BMC Plant Biology. 2010 Dec;10:1-1. https://doi.org/10.1186/1471-2229-10-267

Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, et al. Advancing crop transformation in the era of genome editing. The Plant Cell. 2016 Jul 1;28(7):1510-20. https://doi.org/10.1105/tpc.16.00196

Patidar OP, Nadaf HL. An assessment of genetic variability and traits association among high oleic advanced breeding lines for yield and quality traits in groundnut (Arachis hypogaea L.). Electronic Journal of Plant Breeding. 2017 Mar 27;8(1):201-05. http://dx.doi.org/10.5958/0975-928X.2017.00029.1

Kassa MT, Yeboah SO, Bezabih M. Profiling peanut (Arachis hypogea L.) accessions and cultivars for oleic acid and yield in Botswana. Euphytica. 2009 Jun;167:293-301. https://doi.org/10.1007/s10681-008-9852-9

Yusuf Z, Zeleke H, Mohammed W, Hussein S, Hugo A. Association of agro-morphological and oil traits in groundnut (Arachis hypogaea L.) cultivars. Journal of Plant Breeding and Genetics. 2018 Aug 29;6(2):67-74. https://doi.org/10.33687/pbg.006.02.2772

Mythili SR, Manivannan N, Mahalingam A. Diversity assessment of groundnut genotypes for pod and kernel traits through multivariate analysis. Electronic Journal of Plant Breeding. 2023;14(3):902-11. http://dx.doi.org/10.37992/2023.1403.102

Wang XZ, Wu Q, Tang YY, Sun QX, Wang CT. FAD2B from a peanut mutant with high oleic acid content was not completely dysfunctional. In: Advances in Applied Biotechnology: Proceedings of the 2nd International Conference on Applied Biotechnology (ICAB 2014)-Volume I. Springer Berlin Heidelberg; 2015. pp. 265-71. https://doi.org/10.1007/978-3-662-45657-6_28

Batelli G, Verslues PE, Agius F, Qiu Q, Fujii H, Pan S, et al. SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity. Molecular and Cellular Biology. 2007 Nov 1;27(22):7781-90. https://doi.org/10.1128/MCB.00430-07

Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell. 2016 Apr 21;165(3):535-50. https://doi.org/10.1016/j.cell.2016.03.014

Das S, Bosley AD, Ye X, Chan KC, Chu I, Green JE, et al. Comparison of strong cation exchange and SDS-PAGE fractionation for analysis of multiprotein complexes. Journal of Proteome Research. 2010 Dec 3;9(12):6696-704. https://doi.org/10.1021/pr100843x

Rawsthorne S. Carbon flux and fatty acid synthesis in plants. Progress in Lipid Research. 2002 Mar 1;41(2):182-96. https://doi.org/10.1016/S0163-7827(01)00023-6

Nguyen TV, Jung H, Rotllant G, Hurwood D, Mather P, Ventura T. Guidelines for RNA-seq projects: applications and opportunities in non-model decapod crustacean species. Hydrobiologia. 2018 Dec;825:5-27. https://doi.org/10.1007/s10750-018-3682-0

Sturtevant D, Horn P, Kennedy C, Hinze L, Percy R, Chapman K. Lipid metabolites in seeds of diverse Gossypium accessions: molecular identification of a high oleic mutant allele. Planta. 2017 Mar;245:595-610. https://doi.org/10.1007/s00425-016-2630-3

Liu T, Salguero P, Petek M, Martinez-Mira C, Balzano-Nogueira L, Ramšak Ž, et al. PaintOmics 4: new tools for the integrative analysis of multi-omics datasets supported by multiple pathway databases. Nucleic Acids Research. 2022 Jul 5;50(W1):W551-59. https://doi.org/10.1093/nar/gkac352

Hernández-de-Diego R, Tarazona S, Martínez-Mira C, Balzano-Nogueira L, Furió-Tarí P, Pappas Jr GJ, Conesa A. PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data. Nucleic Acids Research. 2018 Jul 2;46(W1):W503-09. https://doi.org/10.1093/nar/gky466

Raval SS, Mahatma MK, Chakraborty K, Bishi SK, Singh AL, Rathod KJ, et al. Metabolomics of groundnut (Arachis hypogaea L.) genotypes under varying temperature regimes. Plant Growth Regulation. 2018 Apr;84:493-505. https://doi.org/10.1007/s10725-017-0356-2

Published

28-12-2024

How to Cite

1.
Ellandula A, Kalaiyarasi R, Sasikala R, Rajagopal B, Amirtham D, Senthilvelu M. Molecular insights driving oleic acid improvement in groundnut: A review. Plant Sci. Today [Internet]. 2024 Dec. 28 [cited 2025 Jan. 6];11(sp4). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/5602

Most read articles by the same author(s)