A study on the trends and seasonal fluctuations of black carbon aerosols in the elevated region of Ooty, Western Ghats, Tamil Nadu, India

Authors

DOI:

https://doi.org/10.14719/pst.6758

Keywords:

black carbon aerosols, climate change, high-altitude atmosphere, seasonal patterns, temporal variations

Abstract

The accelerating effects of climate change, driven by rising greenhouse gas emissions, necessitate identifying key contributors like aerosols, mainly black carbon (BC), due to their significant impact on global warming. This study investigates the temporal and seasonal dynamics of BC aerosols in Ooty, Tamil Nadu, India, using a decade (2013–2023) of data from an Aethalometer. Annual BC concentrations varied from 0.51 µg/m³ (2020) to 1.1 µg/m³ (2023), with a decadal mean of 0.75 ± 0.26 µg/m³. Distinct season al variations were observed, with summer BC concentrations ranging from 0.9 to 1.6 µg/m³ (mean: 1.3 µg/m³) and monsoon values significantly lower at 0.2–0.5 µg/m³ (mean: 0.4 µg/m³). Winter exhibited a seasonal mean of 1.1 µg/m³, while post-monsoon BC concentrations averaged 0.6 µg/m³. Temperature (20–28.6°C), relative humidity (49–93%), and rainfall (0.4 7.81 mm/day) influenced the observed trends. April consistently showed peak BC levels (up to 1.87 µg/m³), while 2020 recorded the lowest due to reduced emissions. Seasonal trends revealed increasing BC levels from December to April, declining during the monsoon months (June–November). These findings underscore the need for sustained monitoring and mitigation strategies in high-altitude regions to address BCs’ climatic impacts, aiding global efforts against climate change.

Downloads

Download data is not yet available.

References

Kowsalya M, Sebastian SP, Jayabalakrishnan RM. Aerosol black carbon measurement at high altitude western ghats location of Ooty, Tami Nadu. Int J Environ Clim Change. 2020;10(12):390?96. https://doi.org/10.9734/ijecc/2020/v10i1230314

Myhre G, Myhre CL, Samset BH, Storelvmo T. Aerosols and their relation to global climate and climate sensitivity. Nat Edu Know. 2013;4(5):7.

Takemura T, Suzuki K. Weak global warming mitigation by reducing black carbon emissions. Sci Rep. 2019;9(1):4419. https://doi.org/10.1038/s41598-019-41181-6

Flanner MG, Zender CS, Randerson JT, Rasch PJ. Present?day climate forcing and response from black carbon in snow. J Geophys Res: Atmos. 2007;112(D11). https://doi.org/10.1029/2006JD008003

Ramanathan V, Carmichael G. Global and regional climate changes due to black carbon. Nature Geosci. 2008;1(4):221?27. https://doi.org/10.1038/ngeo156

Valentini S, Barnaba F, Bernardoni V, Calzolai G, Costabile F, Di Liberto L, et al. Classifying aerosol particles through the combination of optical and physical-chemical properties: Results from a wintertime campaign in Rome (Italy). Atmos Res. 2020;235:104799. https://doi.org/10.1016/j.atmosres.2019.104799

Mor V, Dhankhar R, Attri SD, Soni VK, Sateesh M, Taneja K. Assessment of aerosols optical properties and radiative forcing over an Urban site in North-Western India. Environ Techno. 2017;38(10):1232–44. https://doi.org/10.1080/09593330.2016.1221473

Vachaspati CV, Begam GR, Ahammed YN, Kumar KR, Reddy RR. Characterization of aerosol optical properties and model computed radiative forcing over a semi-arid region, Kadapa in India. Atmos Res. 2018;209:36–49. https://doi.org/10.1016/j.atmosres.2018.03.013

Kumar RR, Soni VK, Jain MK. Evaluation of spatial and temporal heterogeneity of black carbon aerosol mass concentration over India using three year measurements from IMD BC observation network. Sci Total Environ. 2020;723:138060. https://doi.org/10.1016/j.scitotenv.2020.138060

Kumar R, Ghude SD, Biswas M, Jena C, Alessandrini S, Debnath S, et al. Enhancing accuracy of air quality and temperature forecasts during paddy crop residue burning season in Delhi via chemical data assimilation. J Geophys Res: Atmos. 2020;125(17):e2020JD033019. https://doi.org/10.1029/2020JD033019

Dhar P, Banik T, De BK, Gogoi MM, Babu SS, Guha A. Study of aerosol types and seasonal sources using wavelength-dependent Ångström exponent over North-East India: ground-based measurement and satellite remote sensing. Adv Space Res. 2018;62(5):1049–64. https://doi.org/10.1016/j.asr.2018.06.017

Sarangi B, Ramachandran S, Rajesh TA, Dhaker VK. Black carbon linked aerosol hygroscopic growth: Size and mixing state are crucial. Atmos Environ. 2019;200:110–18. https://doi.org/10.1016/j.atmosenv.2018.12.001

Priyanga S, Boomiraj K, Jothimani P, Kannan B, Dheebakaran G, Maheswari M. A decadal, temporal and seasonal variation of black carbon aerosol at high altitude region of Ooty, Tamil Nadu, India. Int J Environ Clim Change. 2023;13(9):3414–25. https://doi.org/10.9734/ijecc/2023/v13i92719

Viegas C, Monteiro A, Santos DM, Faria T, Caetano LA, Carolino E, et al. Filters from taxis air conditioning system: A tool to characterize driver's occupational exposure to bioburden?. Environ Res. 2018;164:522?29. https://doi.org/10.1016/j.envres.2018.03.032

Acosta-Martinez V, Van Pelt S, Moore-Kucera J, Baddock MC, Zobeck TM. Microbiology of wind-eroded sediments: Current knowledge and future research directions. Aeol Res. 2015;18:99?113. https://doi.org/10.1016/j.aeolia.2015.06.001

Shree S, Natha RM, Jayabalakrishnan M, Maheswari M, Kumaraperumal R. Comparative analysis of aerosol optical properties over high altitude region of western ghats in southern India. Int J Environ Clim Change. 2022;12(10):1060?66. https://doi.org/10.9734/ijecc/2022/v12i1030899

Hansen AD, Rosen H, Novakov T. The aethalometer—an instrument for the real-time measurement of optical absorption by aerosol particles. Sci Total Environ. 1984 Jul 1;36:191?96. https://doi.org/10.1016/0048-9697(84)90265-1

Novakov T, Ramanathan V, Hansen J, Kirchstetter T, Sato M, Sinton J, Sathaye J. Large historical changes of fossil?fuel black carbon aerosols. Geophy Res Lett. 2003;30(6):1–4. https://doi.org/10.1029/2002GL016345

Satheesh S, Moorthy KK, Babu SS, Vinoj V, Dutt C. Climate implications of large warming by elevated aerosol over India. Geophysical Res Lett. 2008;35(19):1–6. https://doi.org/10.1029/2008GL034944

Babu SS, Chaubey JP, Moorthy K, Gogoi MM, Kompalli SK, Sreekanth V, et al. High altitude (? 4520 m amsl) measurements of black carbon aerosols over western trans?Himalayas: Seasonal heterogeneity and source apportionment. J of Geophys Res: Atmospheres. 2011;116(D24). https://doi.org/10.1029/2011JD016722

Gogoi MM, Moorthy KK, Kompalli SK, Chaubey JP, Babu SS, Manoj M, Prabhu TP. Physical and optical properties of aerosols in a free tropospheric environment: Results from long-term observations over western trans-Himalayas. Atmos Environ. 2014; 84:262–74. https://doi.org/10.1016/j.atmosenv.2013.11.029

Bernardoni V, Elser M, Valli G, Valentini S, Bigi A, Fermo P, Vecchi R. Size-segregated aerosol in a hotspot pollution urban area: Chemical composition and three-way source apportionment. Environ Poll. 2017;231:601–11. https://doi.org/10.1016/j.envpol.2017.08.040

Babu SS, Manoj MR, Moorthy KK, Gogoi MM, Nair VS, Kompalli SK, et al. Trends in aerosol optical depth over Indian region: Potential causes and impact indicators. J Geophys Res: Atmosp. 2013;118(20):11–794. https://doi.org/10.1002/2013JD020507

Marinoni A, Cristofanelli P, Laj P, Duchi R, Calzolari F, Decesari S, et al. Aerosol mass and black carbon concentrations, a two-year record at NCO-P (5079 m, Southern Himalayas). Atmos Chem Phy. 2010;10(17):8551–62. https://doi.org/10.5194/acp-10-8551-2010

Udayasoorian C, Jayabalakrishnan RM, Suguna AR, Gogoi MM, Babu S. Aerosol black carbon characteristics over a high-altitude Western Ghats location in Southern India. Annales Geophysicae. 2014;32(10):1361–71. https://doi.org/10.5194/angeo-32-1361-2014

Bhaskar BV, Rajeshkumar RM, Muthuchelian K, Ramachandran S. Spatial, temporal and source study of black carbon in the atmospheric aerosols over different altitude regions in Southern India. J Atmos Solar Terres Phy. 2018;179:416–24.

https://doi.org/10.1016/j.jastp.2018.09.009

Jones GS, Christidis N, Stott PA. Detecting the influence of fossil fuel and bio-fuel black carbon aerosols on near-surface temperature changes. Atmos Chem Phy. 2011;11(2):799–816. https://doi.org/10.5194/acp-11-799-2011

Rajeshkumar RM, Bhaskar BV, Muthuchelian K. Characteristics of black carbon aerosol at an educational site in Southern India. Environ Asia. 2019;12(1):108–19.

Published

09-03-2025 — Updated on 01-04-2025

Versions

How to Cite

1.
Balasubramanian S, Jothimani P, Dhevagi P, Balaji K, Dheebakaran G, Jagadeeswaran R. A study on the trends and seasonal fluctuations of black carbon aerosols in the elevated region of Ooty, Western Ghats, Tamil Nadu, India. Plant Sci. Today [Internet]. 2025 Apr. 1 [cited 2025 Apr. 2];12(2). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/6758

Issue

Section

Research Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

You may also start an advanced similarity search for this article.