Foliar fortification of Copper (Cu) in Glycine max L. for the protection against Asian Soybean Rust (Phakopsora pachyrhizi Syd. & P.Syd.)
DOI:
https://doi.org/10.14719/pst.2020.7.4.737Keywords:
Copper, Phytosanitary treatments, Severity, Randomized block design, Yield componentsAbstract
The Asian Soybean Rust caused by the fungus Phakopsora pachyrhizi is one of the serious phytosanitary problems faced by soybean [Glycine max (L.) Merrill], which cause up to 80% yield loss. An alternative for the integrated management of the disease is the use of mineral nutrition together with phytosanitary treatments. Thus, the objective of this study is to understand the effect of foliar fortification with copper (Cu) along with phytosanitary treatments in the soybean reaction to Rust by lignin content variation in leaf tissues, and how it reflects the yield. The experimental design was a randomized block with four replicates. Four concentrations Cu (30, 60, 90, 120 g Cu ha-1) were tested in two distinct sources (cuprous oxide and copper carbonate) together with phytosanitary treatments. Evaluations were made to determine the progression of Asian Rust severity, micronutrient content in leaves and grains, as well as lignin content in leaves. The grain yield components and productivity were also evaluated. The Cu contents in the soybean leaves and grains were influenced by foliar spraying. Foliar spray with Cu retarded the disease progression, reducing the severity of Asian Rust and positively impacting grain yield. The amount of lignin present in the leaves was altered considerably with the application of the Cu associated with phytosanitary treatments. The results suggest that the leaf nutrition with copper together with phytosanitary treatments, may reduce the rust severity and improvement the plant performance. Future research with Cu application and analysis of specific enzymes, secondary metabolites and cell wall thickness may further contribute to the understanding of the role of Cu in defence against Asian Soybean Rust.
Downloads
References
Friedman M, Brandon DL. Nutritional and health benefits of soy proteins. Journal of Agricultural and Food Chemistry. 2001;49(3):1069–86. https://doi.org/10.1021/jf0009246
El-Hamidi M, Zaher FA. Production of vegetable oils in the world and in Egypt: an overview. Bulletin of the National Research Centre. 2018;42(1):19. https://doi.org/10.1186/s42269-018-0019-0
Pessoa LP, Villardi H, Calixto E da S, Vieira ED, de Souza ALB, Machado BAS. Integrated Soybean Biorefinery. In: Biorefinery Concepts [Working Title]. IntechOpen; 2019. https://doi.org/10.5772/intechopen.88111
Reis EM CR. Ferrugem asiática. In: Reis EM, Reis AC, Carmona M DAD, editor. Doenças da soja. 1st ed. Passo Fundo: Berthier; 2012. p. 69–101.
Furlan SH, Carvalho FK, Antuniassi UR. Strategies for the control of Asian Soybean rust (Phakopsora pachyrhizi) in Brazil: Fungicide resistance and application efficacy. Outlooks on Pest Management. 2018;29(3):120–23. https://doi.org/10.1564/v29_jun_05
Klosowski AC, May De Mio LL, Miessner S, Rodrigues R, Stammler G. Detection of the F129L mutation in the cytochrome b gene in Phakopsora pachyrhizi. Pest Management Science. 2016;72(6):1211–15. https://doi.org/10.1002/ps.4099
Gupta N, Debnath S, Sharma S, Sharma P, Purohit J. Role of nutrients in controlling the plant diseases in sustainable agriculture. In: V.S. Meena et al, editor. Agriculturally Important Microbes for Sustainable Agriculture. Springer Nature Singapore Pte Ltd; 2017. p. 217–62. https://doi.org/10.1007/978-981-10-5343-6_8
Marschner H. Marschner’s Mineral Nutrition of Higher Plants: 3rd ed. Academic Press; 2012. 672 p. https://doi.org/10.1016/C2009-0-63043-9
Guo XY, Zuo YB, Wang BR, Li JM, Ma YB. Toxicity and accumulation of copper and nickel in maize plants cropped on calcareous and acidic field soils. Plant and Soil. 2010;333(1-2):365–73. https://doi.org/10.1007/s11104-010-0351-0
Dias KG de Lima, Carmo DL do, Pozza AAA, Pozza EA, Guimarães PTG. Cobre via foliar na nutrição e na produção de mudas de cafeeiro. Coffee Science. 2015;10(4):516–26. http://www.sbicafe.ufv.br:80/handle/123456789/8155
Liu Q, Luo L, Zheng L. Lignins: Biosynthesis and Biological Functions in Plants. International Journal of Molecular Sciences. 2018;19(2):335. https://doi.org/10.3390/ijms19020335
Chen EL, Chen YA, Chen LM, Liu ZH. Effect of copper on peroxidase activity and lignin content in Raphanus sativus. Plant Physiology and Biochemistry. 2002;40(5):439–44. https://doi.org/10.1016/S0981-9428(02)01392-X
Printz B, Lutts S, Hausman JF, Sergeant K. Copper trafficking in plants and its implication on cell wall dynamics. Frontiers in Plant Science. 2016;7:601. https://doi.org/10.3389/fpls.2016.00601
Streck EV, Kampf N, Klamt E, Schneider P, do Nascimento PC, Giasson E, Pinto LFS DR. Solos do Rio Grande do Sul. Porto Alegre: EMATER/RS, Universidade Federal do Rio Grande do Sul; 2008. 126 p.
Tedesco MJ, Gianello C, Anghinoni I, Bissani CA, Flávio AO, Camargo FAO WS. Manual de Adubação e de Calagem para os estados do Rio Grande so Sul e Santa Catarina. 10th ed. Porto Alegre: Sociedade Brasileira de Ciência do Solo; 2004. 400 p.
Godoy CV, Seixas CDS, Soares RM, Marcelino-Guimarães FC, Meyer MC, Costamilan LM. Asian soybean rust in Brazil: Past, present and future. Pesquisa Agropecuaria Brasileira. 2016;51(5):407–21. https://doi.org/10.1590/S0100-204X2016000500002
Fehr WR, Caviness CE. Stages of Soybean Development. Special report. Iowa State University of Science and Technology: Experimental Station; 1977. 11 p.
Godoy C V., Koga LJ, Canteri MG. Diagrammatic scale for assessment of soybean rust severity. Fitopatologia Brasileira. 2006;31(1):63–68. https://doi.org/10.1590/S0100-41582006000100011
Campbell CL, Madden LV. Introduction to plant disease epidemiology. 1st ed. New York: Wiley-Interscience. Wiley-Blackwell; 1990. 532 p.
Alfaro ATS, Trojan DG. Agronomia: elo da cadeia produtiva. Ponta Grossa; 2018. 414 p.
Malavolta E, Vitti GC, Oliveira SA. Avaliação do estado nutricional das plantas - princípios e aplicações. 2nd ed. Associação Brasileira para Pesquisa da Potassa e do Fosfato, editor. Piracicaba: Potafos; 1997. 319 p.
Sindirações. Compêndio brasileiro de alimentação animal. 5th ed. Brasil; 2017. 842 p.
Carlos Costa FLC. CoStat: Um programa para quem pensa que não gosta de estatística. 1st ed. Passo Fundo; 2009. 384 p.
CQFS – RS/SC. Comissão de Química e Fertilidade do Solo. Manual de adubação e calagem para os estados do Rio Grande do Sul e de Santa Catarina. 10th ed. Porto Alegre: RS: SBCS; 2004. 403 p.
Anti-Ferrugem C. Consórcio Anti-Ferrugem. Parceria público-privada no combate à ferrugem asiática da soja. 2017.
Del Ponte EM, Esker PD. Meteorological factors and Asian soybean rust epidemics - A systems approach and implications for risk assessment. Scientia Agricola. 2008;65(spe):88–97. https://doi.org/10.1590/S0103-90162008000700014
Godoy CV, Utiamada CM, Meyer MC, Campos HD, Forcelini CA, Pimenta CB., Venancio WS. Eficiência de fungicidas para o controle da ferrugem-asiática da soja, Phakopsora pachyrhizi, na safra 2016/17: resultados sumarizados dos ensaios cooperativos. 2017;Circular Técnica, 129.
Gomes Moraes SR, Pozza EA, Pozza AAA, de Carvalho JG, de Souza PE. Nutrition in bean plants and anthracnose intensity in function of silicon and copper application. Acta Scientiarum -Agronomy. 2009;31(2):283–91. https://doi.org/10.4025/actasciagron.v31i2.7037
Henning AA, Almeida AMR, Godoy CV, Seixas CDS, Yorinori JT, Costamilan LC., Dias WP. Manual de identificação de doenças de soja. 5th ed. Londrina: Embrapa Soja; 2014. 76 p.
Andre C, Larondelle Y, Evers D. Dietary antioxidants and oxidative stress from a human and plant perspective: A Review. Current Nutrition and Food Science. 2010;6(1):2–12. https://doi.org/10.2174/157340110790909563
Bouazizi H, Jouili H, Geitmann A, El Ferjani E. Copper toxicity in expanding leaves of Phaseolus vulgaris L.: Antioxidant enzyme response and nutrient element uptake. Ecotoxicology and Environmental Safety. 2010;73(6):1304–08. https://doi.org/10.1016/j.ecoenv.2010.05.014
Moharana PC, Sharma BM, Biswas DR. Changes in the soil properties and availability of micronutrients after six-year application of organic and chemical fertilizers using STCR-based targeted yield equations under pearl millet-wheat cropping system. Journal of Plant Nutrition. 2017;40(2):165–76. https://doi.org/10.1080/01904167.2016.1201504
Malavolta E. Manual de nutrição mineral de plantas. Agronomica Ceres. São Paulo; 2006. 631 p.
Cancian M. Cupper application in soybean culture in soils with high phosphorus content. Federal University of Santa Maria; 2018.
Huber DM WN. The role of manganese in resistence to plant disease. In: Graham RDR, Hannam J. NC (editor). Manganese in soils and plants. South Australia: Kluwer Academic Publishers; 1988. p. 155–73.
Zambolim L, Ventura JA. Resistência a doenças induzidas pela nutrição mineral das plantas. Informações Agronômicas (Encarte Técnico - Potafos). 1996;75:1–16.
Sakamoto RL, Fancelli AL. Efeitos do fosfito de Mn, fungicida e micronutrientes, aplicações em diferentes estádios fenológicos no controle da ferrugem asiática e na produtividade da soja (Glycine max (L.) Merril). In: In Resumos. São Paulo: Simpósio Internacional de Iniciação Científica da Universidade de São Paulo - SIICUSP 2009; 2009.
Fancelli A. Influência da nutrição na ocorrência de doenças de plantas. In: Milho: nutrição e adubação. Piracicaba: ESALQ/USP; 2008. p. 1–35.
Schutzendubel A, Polle A. Plant responses to abiotic stresses: heavy-metal induced oxidative stress and protection by my corrhization. Journal of Experimental Botany. 2002;53(372):1351–65. https://doi.org/10.1093/jexbot/53.372.1351
Vitti GC, Trevisan W. Manejo de macro e micronutrientes para alta produtividade da soja. PotaFos - Informações Agronômicas. 2000;90:1–16.
Luchese EB, Favero LOB, Lenzi E. Fundamentos da química do solo, teoria e prática. Rio de Janeiro: Freitas Bastos; 2001. 159 p.
MBW S. Avaliação técnica e econômica preliminar da produção de etanol via hidrólise enzimática de bagaço de cana-de-açúcar. University of São Paulo; 2010.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Edevan Bedin, Andréia Caverzan, Diógenes Cecchin Silveira, Geraldo Chavarria
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).