Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 2 (2025)

Remote sensing and simulation: A novel approach to rice yield estimation in the Cauvery delta

DOI
https://doi.org/10.14719/pst.7442
Submitted
26 January 2025
Published
15-03-2025 — Updated on 01-04-2025
Versions

Abstract

This study explores the use of the C-band Synthetic Aperture Radar (SAR) dataset from Sentinel-1A for crop area delineation and its integration with the DSSAT crop simulation model for spatial yield estimation for rice crop in the Cauvery Delta region of Tamil Nadu, India. With the global population increasing at a rapid rate, precision agriculture is critical for addressing food security challenges. The near-real-time monitoring capabilities of remote sensing techniques, especially microwave datasets made all season crop monitoring possible. The DSSAT model has demonstrated its capability to simulate yields under varying climatic and management scenarios. This approach offers timely and scalable solutions for monitoring crop health and forecasting yields, which are critical for mitigating the impact of climate change on agriculture. The estimated rice area using the Parameterized classification technique was 118104 ha in the Thanjavur district and 102138 ha in the Thiruvarur district, with an accuracy of 86 %. Upon validation against crop-cutting experiments, the DSSAT approach achieved average RMSE values of 440?kg?ha-1 and 450?kg?ha-1, along with yield agreements of 90 % and 89 % in Thanjavur and Thiruvarur respectively. These quantitative results highlight the enhanced precision of the integrated remote sensing and simulation framework for rice yield estimation, offering a robust tool for precision agriculture and improved decision-making under variable climatic conditions.

References

  1. Nations U. World Population Prospects 2024: Summary of Results. New York: Department of Economic and Social Affairs, United Nations Affairs DoEaS; 2024. Contract No.: UN DESA/POP/2024/TR/NO. 9.
  2. The Sustainable Development Goals Report 2024. New York, USA: United Nations - Department of Economic and Social Affairs, Affairs DoEaS; 2024.
  3. Final Estimates of Production of Foodgrains, Oilseeds and other Commercial Crops for the 2023-24 [Internet]. Department of Agriculture & Farmers Welfare | MoA & FW | Government of India. 2024 [cited 06/12/2024]. https://agriwelfare.gov.in/en/AgricultureEstimates
  4. Department of Agriculture & Farmers Welfare, Ministry of Agriculture & Farmers Welfare, India. Go. Annual Report 2023-2024. New Delhi: Ministry of Agriculture & Farmers Welfare, Government of India., Welfare DoAF; 2024 26/07/2024.
  5. National Food Security Portal: Department of Food and Public Distribution, Government of India.; 2024 [updated 11/12/2024; cited 2024 06/12/2024]. https://nfsa.gov.in/portal/AboutUs
  6. Rashtriya Krishi Vikas Yojana (RKVY): Agricultural Informatics Division, National Informatics Centre; 2024 [cited 2024 12/12/2024]. https://rkvy.da.gov.in/#
  7. POSHAN Abhiyaan [press release]. Ministry of Women and Child Development, 24/03/2023 2023.
  8. Verma A, Kumar A, Lal K. Kharif crop characterization using combination of SAR and MSI Optical Sentinel Satellite datasets. Journal of Earth System Science. 2019;128(8):230. https://doi.org/10.1007/s12040-019-1260-0
  9. Dey S, Bhogapurapu N, Homayouni S, Bhattacharya A, McNairn H. Unsupervised classification of crop growth stages with scattering parameters from dual-pol Sentinel-1 SAR data. Remote Sensing. 2021;13(21):4412. https://doi.org/10.3390/rs13214412
  10. Kalecinski NI, Skakun S, Torbick N, Huang X, Franch B, Roger JC, et al. Crop yield estimation at different growing stages using a synergy of SAR and optical remote sensing data. Science of Remote Sensing. 2024;10:100153. https://doi.org/10.1016/j.srs.2024.100153
  11. Gumma MK, Tummala K, Dixit S, Collivignarelli F, Holecz F, Kolli RN, et al. Crop type identification and spatial mapping using Sentinel-2 satellite data with focus on field-level information. Geocarto International. 2022;37(7):1833-49. https://doi.org/10.1080/10106049.2020.1805029
  12. Hegde A, Umesh P, Tahiliani MP. Automated rice mapping using multitemporal Sentinel-1 SAR imagery using dynamic threshold and slope-based index methods. Remote Sensing Applications: Society and Environment. 2024:101410. https://doi.org/10.1016/j.rsase.2024.101410
  13. Pande CB, Kadam SA, Rajesh J, Gorantiwar SD, Shinde MG. Predication of Sugarcane Yield in the Semi-Arid Region Based on the Sentinel-2 Data Using Vegetation’s Indices and Mathematical Modeling. In: Pande CB, Moharir KN, Singh SK, Pham QB, Elbeltagi A, editors. Climate Change Impacts on Natural Resources, Ecosystems and Agricultural Systems. Cham: Springer International Publishing; 2023. p. 327-43. https://doi.org/10.1007/978-3-031-19059-9_12
  14. Tripathy R, Nigam R, Bhattacharya B. Agrometeorological approach for sugarcane yield estimation at regional scale using satellite remote sensing. Journal of the Indian Society of Remote Sensing. 2023;51(8):1715-28. https://doi.org/10.1007/s12524-023-01724-x
  15. Geethalakshmi V, Gowtham R, Gopinath R, Priyanka S, Rajavel M, Senthilraja K, et al. Potential impacts of future climate changes on crop productivity of cereals and legumes in Tamil Nadu, India: A Mid?Century Time Slice Approach. Advances in Meteorology. 2023;2023(1):4540454. https://doi.org/10.1155/2023/4540454
  16. Awad MM. Toward precision in crop yield estimation using remote sensing and optimization techniques. Agriculture. 2019;9(3):54. https://doi.org/10.3390/agriculture9030054
  17. Shaikh TA, Rasool T, Lone FR. Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Computers and Electronics in Agriculture. 2022;198:107119. https://doi.org/10.1016/j.compag.2022.107119
  18. Singha C, Swain KC. Vegetation indices-based rice and potato yield estimation through Sentinel 2B satellite imagery. Advancement of GI-Science and sustainable agriculture: A Multi-dimensional Approach. GIScience and Geo-environmental Modelling: Springer; 2023. p. 113-34. https://doi.org/10.1007/978-3-031-36825-7_8
  19. Htun AM, Shamsuzzoha M, Ahamed T. Rice yield prediction model using normalized vegetation and water indices from Sentinel-2A satellite imagery datasets. Asia-Pacific Journal of Regional Science. 2023;7(2):491-519. https://doi.org/10.1007/s41685-023-00299-2
  20. Sadeh Y, Zhu X, Dunkerley D, Walker JP, Chen Y, Chenu K. Versatile crop yield estimator. Agronomy for Sustainable Development. 2024;44(4):42. https://doi.org/10.1007/s13593-024-00974-4
  21. Mandapati R, Gumma MK, Metuku DR, Bellam PK, Panjala P, Maitra S, et al. Crop yield assessment using field-based data and crop models at the village level: A case study on a homogeneous rice area in Telangana, India. AgriEngineering. 2023;5(4):1909-24. https://doi.org/10.3390/agriengineering5040117
  22. Bazkiaee P, Kamkar B, Amiri E, Kazemi H, Rezaei M, López-Bernal A. The rice yield gap estimation using integrated system approaches: a case study—Guilan province, Iran. International Journal of Environmental Science and Technology. 2022;19(9):8451-64. https://doi.org/10.1007/s13762-022-04093-z
  23. Bhoutika K, Kumar A, Das DP, Pandey A. Geospatial Technology for Crop Yield Forecasting-A Case Study of SW Uttarakhand. Geospatial Technologies for Resources Planning and Management: Springer; 2022. p. 315-30. https://doi.org/10.1007/978-3-030-98981-1_14
  24. Official Website of Thanjavur District, Tamil Nadu: National Informatics Centre. Ministry of Electronics & Information Technology, Government of India; 2024 [updated 12-12-2024. https://thanjavur.nic.in/
  25. Official Website of Thiruvarur District, Tamil Nadu: National Informatics Centre. Ministry of Electronics & Information Technology, Government of India; 2024 [updated 11-12-2024. https://tiruvarur.nic.in/
  26. Agency ES. Overview of Sentinel-1 Mission: European Space Agency; 2024 [cited 2024 12/12/2024]. https://sentiwiki.copernicus.eu/web/s1-mission
  27. Liu Y, Pu X, Shen Z. Crop type mapping based on polarization information of time series sentinel-1 images using patch-based neural network. Remote Sensing. 2023;15(13):3384. https://doi.org/10.3390/rs15133384
  28. Mansaray LR, Zhang D, Zhou Z, Huang J. Evaluating the potential of temporal Sentinel-1A data for paddy rice discrimination at local scales. Remote Sensing Letters. 2017;8(10):967-76. https://doi.org/10.1080/2150704X.2017.1331472
  29. Abayechaw D. Review on decision support system for agrotechnology transfer (DSSAT) model. Information Systems. 2021;10(6):126-33. https://doi.org/10.11648/j.ijiis.20211006.13
  30. DSSAT-History: DSSAT Foundation; 2024 [cited 2024 12/12/2024]. https://dssat.net/development/history/
  31. (LaRC) NAaSANLRC. NASA POWER. In: (LaRC) NAaSANLRC, editor. 2024.
  32. Amiri E, Rezaei M, Bannayan M, Soufizadeh S. Calibration and evaluation of CERES rice model under different nitrogen-and water-management options in semi-mediterranean climate condition. Communications in soil science and plant analysis. 2013;44(12):1814-30. https://doi.org/10.1080/00103624.2013.769565
  33. Kraatz S, Torbick N, Jiao X, Huang X, Robertson LD, Davidson A, et al. Comparison between dense l-band and c-band synthetic aperture radar (sar) time series for crop area mapping over a nisar calibration-validation site. Agronomy. 2021;11(2):273. https://doi.org/10.3390/agronomy11020273
  34. Boschetti M, Busetto L, Manfron G, Laborte A, Asilo S, Pazhanivelan S, et al. PhenoRice: A method for automatic extraction of spatio-temporal information on rice crops using satellite data time series. Remote Sensing of Environment. 2017;194:347-65. https://doi.org/10.1016/j.rse.2017.03.029
  35. Raman MG, Kaliaperumal R, Pazhanivelan S. Rice area estimation in Tiruvarur district of Tamil Nadu using VV Polarized Sentinel 1A SAR Data. Indian Journal of Natural Sciences. 2017;8(44):12782-93.
  36. Kumar M, Podila P, Sireesha G. Response of the direct sown and transplanted rice crop to multi-temporal Sentinel-1A data and estimate the rice sown area by synergetic use of Senteil-1A and Sentinel-2. 2022;1:73-82. https://doi.org/10.5281/zenodo.7054508
  37. Prakash MA, Pazhanivelan S, Muthumanickam D, Ragunath K, Sivamurugan A. Mapping rice area in the Cauvery Delta Zone of Tamil Nadu using Sentinel 1A Synthetic Aperture Radar (SAR) Data. International Journal of Environment and Climate Change. 2023;13(10):195-204. https://doi.org/10.9734/ijecc/2023/v13i102630
  38. Pazhanivelan S, Ragunath K, Sudarmanian N, Kumaraperumal R, Setiyono T, Quicho E. Integrating time-series SAR data and ORYZA crop growth model in Rice area mapping and yield estimation for crop insurances. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2019;42:239-43. https://doi.org/10.5194/isprs-archives-XLII-3-W6-239-2019
  39. Raman MG, Kaliaperumal R, Pazhanivelan S, Kannan B. Rice area estimation using parameterized classification of sentinel 1A SAR data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2019;42:141-7. https://doi.org/10.5194/isprs-archives-XLII-3-W6-141-2019
  40. Venugopalan M, Tiwary P, Ray S, Chatterji, Velmourougane K, Bhattacharyya T, et al. InfoCrop-cotton simulation model–its application in land quality assessment for cotton cultivation. Current Science. 2014:1512-8.
  41. Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt L, et al. The DSSAT cropping system model. European Journal of Agronomy. 2003;18(3-4):235-65. https://doi.org/10.1016/S1161-0301(02)00107-7
  42. Rugira P, Ma J, Zheng L, Wu C, Liu E. Application of DSSAT CERES-maize to identify the optimum irrigation management and sowing dates on improving maize yield in Northern China. Agronomy. 2021;11(04):674. https://doi.org/10.3390/agronomy11040674
  43. Rui L, Li C-j, Dong Y-y, Feng L, Wang J-h, Yang X-d, et al. Assimilation of remote sensing and crop model for LAI estimation based on ensemble Kaiman Filter. Agricultural Sciences in China. 2011;10(10):1595-602. https://doi.org/10.1016/S1671-2927(11)60156-9
  44. Zechariah Jeremaiho A-GS, Abdul-Halim Abubakari, Muna Mohamed Elhag. Methodology: The Decision Support System for Agrotechnology Transfer (DSSAT) Software Crop Model for Agriculture Decision. Agrotechnology. 2023;12(03):08. https://doi.org/10.35248/2168-9881.23.12.327
  45. Hoogenboom G, Porter CH, Boote KJ, Shelia V, Wilkens PW, Singh U, et al. The DSSAT crop modeling ecosystem. Advances in crop modelling for a sustainable agriculture: Burleigh Dodds Science Publishing; 2019. p. 173-216. http://doi.org/10.19103/AS.2019.0061.10

Downloads

Download data is not yet available.