Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 7 No. 4 (2020)

Analyses of variability, euclidean clustering and principal components for genetic diversity of eight Tossa Jute (Corchorus olitorius L.) genotypes

DOI
https://doi.org/10.14719/pst.2020.7.4.854
Submitted
29 June 2020
Published
01-10-2020

Abstract

An investigation was done to assess the genetic variability, character associations, and genetic diversity of eight jute genotypes for seven morphological traits in a randomised complete block design at Bangladesh Jute Research Institute during 15 March, 2018 to 31 December, 2019. Analyses results revealed significant differences (P<0.01) among all genotypes for studied traits indicating the presence of variability. All the lines performed better than one control (JRO-524), and the line (O-0412-9-4) provided good results for desired traits than all controls. Jute fibre yield showed the highest broad sense heritability (98.54%). The studied jute morphological traits i.e. Plant population, the plant height, green weight, dry fibre yield and dry stick yield gave high heritability along with high genotypic and phenotypic variances, genetic advances in percent of the mean, highly significant and positive correlations. It indicates the possibility of crop improvement through phenotypic selection and maximum genetic gain, simultaneously at the genotypic-phenotypic level. Clustering analysis grouped all genotypes into three distinct clusters. The cluster II showed the highest mean values for all traits followed by cluster I and III. The first two principal components with higher Eigen values (>1.0) accounted for 90.88% of the total variation in the principal component analysis. PCA and cluster analyses indicated that the advanced breeding line O-0412-9-4 made its individual cluster II with higher inter-cluster distance and higher fibre yield (3.12 t ha-1). The investigation was done to select the genotype(s) with good fibre yield and distinct features in respect of developing high yielding Tossa jute variety for cultivation in the farmers’ field. This genotype O-0412-9-4 was selected based on higher plant height, base diameter, fibre yield content. It will be developed as a high yielding variety considering its’ higher genetic variability, heritability, genetic advance, significant associations for desirable characters.

References

  1. Zhang L, Ibrahim AK, Niyitanga S, Zhang L, Qi J. Jute (Corchorus spp.) Breeding. Advances in Plant Breeding Strategies: Industrial and Food Crops, Springer, Cham. 2019;6:85-113. https://doi.org/10.1007/978-3-030-23265-8_4
  2. Maity S, Chowdhury S, Datta AK. Jute Biology, Diversity, Cultivation, Pest Control, Fiber Production and Genetics. In: Lichtfouse E (editor). Organic Fertilisation, Soil Quality and Human Health. Sustainable Agriculture Reviews 2012;9. https://doi.org/10.1007/978-94-007-4113-3_9
  3. Kar CS, Kundu A, Sarkar D, Sinha MK, Mahapatra BS. Genetic diversity in jute (Corchorus spp) and its utilization: a review. Indian Journal of Agricultural Sciences. 2009;79(8):575-86. http://epubs.icar.org.in/ejournal/index.php/IJAgS/article/view/2454
  4. Patel GI, Datta RM. Interspecific hybridization between Corchorus olitorius L. and C. capsularis L. and the cytogenetical basis of incompatibility between them. Euphytica. 1960;9:89–110. https://doi.org/10.1007/ BF00023259
  5. Vellend M, MA Gebe. Connections between species diversity and genetic diversity. Ecology Letters. 2005;8:767–81. https://doi.org/10.1111/j.1461-0248.2005.00775.x
  6. Bhandari HR, Bhanu AN, Srivastava K, Singh MN, Shreya, Hemantaranjan A. Assessment of genetic diversity in crop plants: an overview. Adv Plants Agric Res. 2017;7(3):279-86. https://doi.org/10.15406/apar.2017.07.00255
  7. Mazid MS, Rafii MY, Hanafi MM, Rahim HA, Shabanimofrad M, Latif MA. Agro-morphological characterization and assessment of variability, heritability, genetic advance and divergence in bacterial blight resistant rice genotypes. South African Journal of Botany. 2013;86:15–22. https://doi.org/10.1016/j.sajb.2013.01.004
  8. Al-Jibouri HA, Miller PA, Robinson HA. Genotypic and environment variances and covariance in an upland cotton cross of inter specific origin. Agronomy Journal. 1958;50:633–36. https://doi.org/10.2134/agronj1958.00021962005000100020x
  9. Swamy AA, Reddy GLK. Genetic divergence and heterosis studies of Mungbean (Vigna radiata (L.) Wilczek). Legume Research. 2004;21:115–18. https://arccjournals.com/journal/legume-research-an-international journal/ARCC3799
  10. Naik SM, Madhusudan K, Motagi BN, Nadaf HL. Diversity in soybean (Glycine max L.) accessions based on morphological characterization and seed longevity characteristics. Progressive Research – An International Journal. 2016;11(3): 377-81. https://hdl.handle.net/20.500.11766/6796
  11. Bhakuni V, Shukla PS, Singh K, Singh VK. Morphological characterization and assessment of genetic variability in soybean varieties. International Journal of Current Microbiology and Applied Sciences. 2017; 6(3): 361-69. https://doi.org/10.20546/ ijcmas.2017.603.281
  12. Islam MR, Islam MM, Akter N, Ghosh RK, Rafique ZA, Hossain AKMS. Genetic variability and performance of Tossa Jute (Corchorus olitorius L.). Pakistan Journal of Biological Sciences. 2002;5:744-45. https://doi.org/10.3923/pjbs.2002.744.745
  13. Shadakhari TV, Kalaimagal T, Senthil N, Boranayaka MB, Kambe GR, Rajesh GA. Genetic diversity studies in soybean [Glycine max (L.) Merrill] based on morphological characters. Asian Journal of BioScience. 2011;6(1):7-11. http://www.researchjournal.co.in/online/AJBS/AJBS%206(1)/6_A-7-11.pdf
  14. Surek H, Beser N. Selection for grain yield and yield components in early generations for temperate rice. Philippine Journal of Crop Science. 2003;28(3):3–15. https://www.researchgate.net/publication/268267106
  15. Larik AS, Rajput LS. Estimation of selection indices in Brassica juncea L. and Brassica napus L. Pakistan Journal of Botany. 2000;32(2):323–30. http://www.pakbs.org/pjbot/PDFs/32(2)/16.pdf
  16. Kumar P, Shukla RS. Genetic analysis for yield and its attributed traits in bread wheat under various situations. Jawaharlal Nehru Krishi Vishwa Vidyalaya Research Journal. 2002;36:95–97.
  17. Islam MS, Uddin MN, Haque MM, Islam MN. Path coefficient analysis for some fibre yield related traits in white jute (Corchorus capsularis L.). Pakistan Journal of Biological Sciences. 2001; 4:47-49. https://doi.org/10.3923/pjbs.2001.47.49
  18. Maji AT, Shaibu AA. Application of principal component analysis for rice germplasm characterization and evaluation. J. Plant Breed. Crop Sci. 2012;4(6):87-93. https://doi.org/10.5897/JPBCS11.093
  19. Adams MW. An estimation of homogeneity in crop plants with special reference to genetic vulnerability in the dry bean (Phaseolus vulgaris L.), Euphytica. 1977;26:665–79. https://doi.org/10.1007/BF00021692
  20. Hotelling H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology. 1933;24(7):498–520. https://doi.org/ 10.1037/h0070888
  21. Amy EL, Pritts MP. Application of principal component analysis to horticultural research. Hort Sci. 1991;26(4):334-38. https://doi.org/10.21273/HORTSCI.26.4.334
  22. Clifford HT, Stephenson W. An Introduction to Numerical Classification. Academic Press, London. 1975;229. https://catalogue.nla.gov.au/Record/302559
  23. Guei RG, Abamul FJ, Karim T, Naman S. Genetic variability in morphological and physiological traits within and among rice species and their interspecific progenies. Agronomieafricaine. 2004; 16(1): 15-32. https://www.ajol.info/index.php/aga/article/download/1636/534
  24. SRDI-Soil Resource Development Institute, Ministry of Agriculture, 2017. Annual Report of SRDI (2017-2018), Dhaka, Bangladesh.
  25. Gomez KA, Gomez AA. Statistical procedures for agricultural research 2nd ed. An International Rice Research Institute Book, A Wiley-inter-science Publication, JOHN WILEY & SONS, 1984. https://pdf.usaid.gov/pdf_docs/PNAAR208.pdf
  26. Girma T, Tilahun Y, Demisue M. Design and Analysis of field experiments. In: Agriculture. Technical Manual No. 15. Ethiopian Agricultural Research Organization. Addis Abeba, Ethiopia, 2002. http://publication.eiar.gov.et:8080/xmlui/bitstream/handle/123456789/3144/28%20pdf1ab%20bbbyyy.pdf?sequence=1&isAllowed=y
  27. BARJ-Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute. Leaflet prepared on latest released variety of BJRI. Dhaka, Bangladesh, 2018.
  28. Islam MM, Ali MS. Agronomic research advances in jute crops of Bangladesh. AASCIT Journal of Biology 2017;3(6):34-46. http://www.aascit.org/journal/archive?journalId=980&issueId=9800306
  29. STATISTIX- Statistical analysis programme (29 August, 2017). https://statistix. informer.com/10.0.0.9/
  30. Johnson HW, Robinson HF, Comstock RW. Estimates of genetic and environment variability in Soybean. Agronomy Journal. 1955;47:314–318. http://dx.doi.org/10.2134/agronj1955.00021962004700070009x
  31. Cohen J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Hillsdale, NJ: Erlbaum, 1988. http://www.utstat.toronto.edu/~brunner/oldclass/378f16/ readings/Cohen Power.pdf
  32. Burton GW. Quantitative inheritance in grasses. 6th Intl Grassland Cong Proc. 1952;1:227-38.
  33. Lush JL. Heritability of quantitative characters in farm animals. Hereditas. 1949;35(S1):356-75. https://doi.org/10.1111/j.1601-5223.1949.tb03347.x
  34. Hanson CH, Robinson HF, Comstock RE. Biometrical studies of yield in segregating populations of Korean Lespedza or Korean clover (Kummerowia stipulacea). Agron J. 1956;48:268-72. https://doi.org/10.2134/agronj1956.00021962004800060008x
  35. Burton GW, Devane EH. Estimating heritability in tall fesscusce from replicated clone natural materials. Journal of Agronomy. 1953;45:171–81. https://doi.org/10.2134/agronj1953.00021962004500100005x
  36. Comstock RE, Robinson HF. Genetic parameters, their estimation and significance. Proc. 6th Intercropping, Grassland Cong. 1952;1:284-91.
  37. Karim D, Sarkar U, Siddique MNA, Miah MAK, Hasnat MZ. Variability and Genetic parameter analysis in aromatic rice. Int J Sustain Crop Prod. 2007;2(5):15-18.
  38. Karim D, Siddique MNA, Sarkar U, Hasnat MZ, Sultana J. Phenotypic and genotypic correlation co-efficient of quantitative characters and character association of aromatic rice. Journal of Bioscience and Agriculture Research, 2014; 01(01):36-48. https://doi.org/10.18801/jbar.010114.05
  39. Jolliffe IT. Principal Component Analysis. New York: Springer, 2002. https://www.springer.com/gp/book/9780387954424
  40. Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Phil Trans R Soc. 2016;A 374:20150202. http://dx.doi.org/10.1098/rsta.2015.0202
  41. Spuhler JN. Advanced statistical methods in biometric research. By C. Radhakrishna Rao. John Wiley & Sons, Inc., New York, N. Y. 1952. 390 pp. American Journal of Physical Anthropology 1954;12(2):268-70. https://doi.org/10.1002/ajpa.1330120224
  42. Singh RK, Choudhary BD. Biometrical methods in quantitative genetic analysis. ISBN 13: 9788176633079, Kalyani Publishers, New Delhi, India. 1979:211-15. https://www.sapnaonline.com/books/biometrical-methods-in-quantitative-genetic-analysis-4829916
  43. Malek MA, Rafii MY, Afroz MSS, Nath UK, Mondal MMA. Morphological characterization and assessment of genetic variability, character association and divergence in soybean mutants. The Scientific World Journal, Hindawi Publishing Corporation. 2014;AID968796:12. http://dx.doi.org/10.1155/2014/968796
  44. Jatothu JL, Kumar AA, Choudhary SB, Sharma HK, Maruthi RT, Kar CS, Mitra J. Genetic diversity analysis in Tossa jute (Corchorus olitorius L.) germplasm lines. Journal of Applied and Natural Science. 2018;10(1):1-3. https://doi.org/10.31018/jans.v10i1.1566
  45. XLSTAT-Statistical Software for Excel: Statistical and data analysis solution (Version 2020.4). New York, USA, 2020. https://www.xlstat.com
  46. Islam MS, Nasrin A, Begum S, Haque S. Correlated response and path analysis in Tossa jute (Corchorus olitorius L.). Bangladesh Journal of Botany. 2004;33(2):99-102. http://www.scopus.com/inward/record.url?eid=2-s2.033750342488&partnerID= MN8TOARS
  47. Mohammed A, Geremew B, Amsalu A. Variation and associations of quality parameters in Ethiopian Durum wheat (Triticum turgidum L. var. durum) genotypes. International Journal of Plant Breeding and Genetics. 2012;6(1):17-31. http://dx.doi.org/10.3923/ijpbg.2012.17.31
  48. Segherloo AE, Mohammadi SA, Sadeghzadeh B, Kamrani M. Study of Heritability and Genetic Advance of Agronomic Traits in Barley (Hordeum vulgare L.) and Graphic Analysis of Trait Relations by Biplot. Jordan Journal of Agricultural Sciences, 2016; 12(1): 299-310. https://journals.ju.edu.jo/JJAS/article/download/7992/5125
  49. Kumar AA, Choudhary SB, Sharma HK, Maruthi RT, Jatothu JL, Mitra J, Karmakar PG. An International Quarterly Journal of Life Sciences: The BioScan. 2018;13(2),SL-39:703-06. https://thebioscan.com/journal.php?edition= TnVtYmVyIDI=&volume=Vm9sdW1l IDEz
  50. Anand SC, Torrie JH. Heritability of yield and other traits and interrelationship among traits in the F3 and F4 generations of three soybean crosses. Crop Science. 1963;3:508–11. https://doi.org/10.2135/cropsci1963. 0011183X000300060015x
  51. Weber CR, Moorthy BR. Heritable and non-heritable relationships and variability of oil content and agronomic characters in the F2 generation of soybean crosses. Agronomy Journal. 1952;44:202–09. https://doi.org/10.2134/agronj1952.00021962004400040010x
  52. Roy SK, Das B, Kale VA, Haque S. Genetic divergence study for yield and quality traits in Tossa jute (Corchorus olitorius). Journal of Crop and Weed. 2011;7(1):130-32. http://www.cropandweed.com/archives/2011/vol7issue1/32 .pdf
  53. Ghosh RK, Wongkaew A, Sreewongchai T, Nakasathien S, Phumichai C. Assessment of genetic diversity and population structure in jute (Corchorus spp.) Using Simple Sequence Repeat (SSR) and Amplified Fragment Length Polymorphism (AFLP) Markers. Kasetsart J (Nat. Sci.). 2014;48:83-94. https://pdfs.semanticscholar.org/d281/ 402621a46abd31270c16c3deee6c72fc7f10.pdf
  54. Akter N, Islam MM, Yahiya ASM, Newaz MA. Genetic divergence for fibre and seed characters in Tossa jute (Corchorus olitorius L.). Journal of Experimental Bioscience, 2010;(1):7-12. http://www.bioscience-associates.com/2013/02/genetic-divergence-for-fibre-and-seed.html
  55. Denton OA, Nwangburuka CC. Morphological diversity among Corchorus olitorius based on single linkage cluster analysis and principal component analysis. Jordan J Biol Sci 2012; 5:191–96. http://jjbs.hu.edu.jo/ files/v5n3/Paper_Number_7.pdf

Downloads

Download data is not yet available.