Variation in antioxidant activity at two ripening stages of wild mango, Spondias pinnata (L.f.) Kurz., an underutilized fruit

Authors

DOI:

https://doi.org/10.14719/pst.2020.7.4.863

Keywords:

plant systematics

Abstract

Antioxidant compounds play a significant role in preventing and scavenging free-radicals by reducing oxidative stress and providing protection to humans against degenerative diseases and infections. Obviously, antioxidant molecules of plant origin are pivotal to combat the oxidative harm in cells. Present work intended to evaluate the antioxidant capacity of the fruits of Spondias pinnata. Methanol extracts of the fruits at two stages of maturity were prepared and investigated by various antioxidants analyses such as total antioxidant activity, reducing power and radical scavenging assays (DPPH, nitric oxide and hydrogen peroxide). Its total phenol, flavonoid and tannin contents were also determined. Spondias pinnata fruit extracts exhibited effective antioxidant activity and its IC50 values of the unripe fruits were 65, 66, 72.23, 83.25, 66.75 ?g/ml and ripe fruits were 124.24, 92.50, 97.66, 144.10, 72.25 ?g/ml, for total antioxidant activity, reducing power, DPPH radical scavenging, nitric oxide radical scavenging and hydrogen peroxide scavenging assays respectively. The extracts, especially unripe fruit extract had good amounts of total phenolic and flavonoid contents which might contribute the antioxidant activities considerably. It is evident from the study that the fruits of S. pinnata possessed potent antioxidant activity and it can be considered as a good dietary choice among the underutilized fruits as well as common fruits. Therefore, wild mango may be a good choice of antioxidants of plant origin for dietary and pharmaceutical uses.

Downloads

Download data is not yet available.

Author Biographies

Bince Mani, Department of Botany, St. Thomas College, Palai, Kottayam 86 574, India

Assistant Professor, Department of Botany, St. Thomas College, Palai, Kottayam

Sinjumol Thomas, Department of Botany, Carmel College, Mala, Thrissur 680 732, India

Assistant Professor, Department of Botany, Carmel College Malai, Thrissur

References

Sarvajeet SG, Narendra T. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48:909-30. https://doi.org/10.1016/j.plaphy.2010.08.016

Mani B, Thomas TD. Evaluation of the antioxidant potential of Pittosporum dasycaulon Miq. stem bark. Food Sci Biotechnol. 2014;23:539-45. https://doi.org/10.1007/s10068-014-0074-8

Aruoma OI. Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc. 1998;75:199-212. https://doi.org/10.1007/s11746-998-0032-9

Botterweck AAM, Verhagen H, Goldbohm RA, Kleinjans J, Van den Brandt PA. Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: Results from analyses in the Netherlands cohort study. Food Chem Toxicol. 2000;38:599-605. https://doi.org/10.1016/S0278-6915(00)00042-9

Block G, Patterson B, Subar A. Fruit, vegetables and cancer prevention: A review of the epidemiological evidence. Nutr Cancer. 1992;18:1-29. https://doi.org/10.1080/01635589209514201

Leja M, Mareczek A, Ben J. Antioxidant properties of two apple cultivars during long-term storage. Food Chem. 2003;80:303-07. https://doi.org/10.1016/S0308-8146(02)00263-7

Li HB, Cheng KW, Wong CC, Fan KW, Chen F, Jiang Y. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem. 2007;102:771-76. https://doi.org/10.1016/j.foodchem.2006.06.022

Stangeland T, Remberg SF, Lye KA. Total antioxidant activity in 35 Ugandan fruits and vegetables. Food Chem. 2009;113:85-91.https://doi.org/10.1016/j.foodchem.2008.07.026

Tavares L, Carrilho D, Tyagi M, Barata D, Serra AT, Duarte CMM et al. Antioxidant capacity of Macaronesian traditional medicinal plants. Molecules. 2010;15:2576-92. https://doi.org/10.3390/molecules15042576

Lamien-Meda A, Lamien CE, Compaore MMY, Meda RNT, Kiendrebeogo M, Zeba B, Millogo JF, Nacoulma OG. Polyphenol content and antioxidant activity of fourteen wild edible fruits from Burkina Faso. Molecules. 2008;13:581-94. https://doi.org/10.3390/molecules13030581

Sasidharan N. Flowering Plants of Kerala ver. 2.0 [DVD]. Thrissur: Kerala Forest Research Institute; 2011.

Satpathy G, Tyagi YK, Gupta RK. Preliminary evaluation of nutraceutical and therapeutic potential of raw Spondias pinnata Kurz., an exotic fruit of India. Food Res Int. 2011;44:2076-87. https://doi.org/10.1016/j.foodres.2011.01.040

Tandon S, Rastogi RP. Studies on the chemical constituents of Spondias pinnata. Planta Med. 1976;29:190-22. https://doi.org/10.1055/s-0028-1097651

Jain P, Hossain KR, Mishu TR, Reza HM. Antioxidant and antibacterial activities of Spondias pinnata Kurz. Leaves. European J Med Plants. 2014;4:183-95. https://doi.org/10.9734/EJMP/2014/7048

Hazra B, Biswas S, Mandal N. Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complement Altern Med. 2008;8:63.https://doi.org/10.1186/1472-6882-8-63

Hazra B, Sarkar R, Mandal N. Spondias pinnata stem bark extract lessens iron overloaded liver toxicity due to hemosiderosis in Swiss albino mice. Ann Hepatol. 2013;12:123-29. https://doi.org/10.1016/S1665-2681(19)31394-8

Ghate NB, Hazra B, Sarkar R, Mandal N. In-vitro anticancer activity of Spondias pinnata bark on human lung and breast carcinoma. Cytotechnology. 2014;66:209-18. https://doi.org/10.1007/s10616-013-9553-7

Li R, Yang J-J, Song X-Z, Wang Y-F, Corlett RT, Xu Y-K, Hu H-B. Chemical Composition and the Cytotoxic, Antimicrobial and Anti-Inflammatory Activities of the Fruit Peel Essential Oil from Spondias pinnata (Anacardiaceae) in Xishuangbanna, Southwest China. Molecules. 2020;25:343. https://doi.org/10.3390/molecules25020343

Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Annals Biochem. 1999;269:337-41.https://doi.org/10.1006/abio.1999.4019

Yen GG, Duh PD. Antioxidative properties of methanolic extracts from peanut hulls. J Am Oil Chem Soc. 1993;70:383-86. https://doi.org/10.1007/BF02552711

Thomas S, Mani B. Chemical composition, antibacterial and antioxidant properties of essential oil from the rhizomes of Hedychium forrestii var. palaniense Sanoj and M. Sabu. Indian J Pharm Sci. 2016;78:452-57. https://doi.org/10.4172/pharmaceutical-sciences.1000139

Johnson EI. The quantitative analysis of Drugs- by D.C. Garratt. J Pharm Pharmacol. 1964;16:772. https://doi.org/10.1111/j.2042-7158.1964.tb07408.x

Ruch RJ, Cheng SJ and Klaunig JE. Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis. 1989;10:1003-08. https://doi.org/10.1093/carcin/10.6.1003

Olayinka AA, Anthony IO. Preliminary phytochemical screening and in- vitro antioxidant activities of the aqueous extract of Helichrysum longifolium DC. BMC Complement Altrn Med. 2010;10:21. https://doi.org/10.1186/1472-6882-10-21

Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64:555-59. https://doi.org/10.1016/S0308-8146(98)00102-2

Mandal P, Misra TK, Ghosal M. Free radical scavenging activity and phytochemical analysis in the leaf and stem of Drymaria diandra Blume. Int J Integr Biol. 2009;7:80-84.

Lee JC, Kim HR, Kim J, Jang YS. Antioxidant property of an ethanol extract of the stem of Opuntia ficus-indica var. sabote. J Agric Food Chem. 2002;50:6490-96. https://doi.org/10.1021/jf020388c

Velioglu YS, Mazza G, Gao L, Oomah BD. Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. J Agric Food Chem. 1998;10:4113-17. https://doi.org/10.1021/jf9801973

Sum PC, Khoo HE, Azlan A. Comparison of nutrient composition of ripe and unripe fruits of Nypa fruticans. Fruits. 2013;68:491–98.https://doi.org/10.1051/fruits/2013089

Havsteen BH. The biochemistry and medical significance of the Flavonoids. Pharmacol. Therapeut. 2002;96:67–202.https://doi.org/10.1016/S0163-7258(02)00298-X

Petti S, Scully C. Polyphenols, oral health and disease: a review. J Dentistry. 2009;37:413-23. https://doi.org/10.1016/j.jdent.2009.02.003

Adeolu AA, Florence OJ, Anthony JA, Patrick JM. Antioxidant activities and phenolic contents of the methanol extracts of the stems of Acokanthera oppositifolia and Adenia gummifera. BMC Complement Altern Med. 2008;8:54.https://doi.org/10.1186/1472-6882-8-54

Abdalbasit AM, Ramlah MI, Maznah I, Norsharina I. Antioxidant activity and phenolic content of phenolic rich fractions obtained from black cumin (Nigella sativa) seedcake. Food Chem. 2009;116:306-12. https://doi.org/10.1016/j.foodchem.2009.02.051

Ke-Xue Z, Cai-Xia L, Xiao-Na G, Wei P, Hui-Ming Z. Antioxidant activities and total phenolic contents of various extracts from defatted wheat germ. Food Chem. 2011;126:1122-26. https://doi.org/10.1016/j.foodchem.2010.11.144

Huang R, Xia R, Hu L, Lu Y, Wang M. Antioxidant activity and oxygen scavenging system in orange pulp during fruit ripening and maturation. Sci Hort. 2007;113:166-72. https://doi.org/10.1016/j.scienta.2007.03.010

Iqbal S, Bhanger MI. Effect of season and production location on antioxidant activity of Moringa oleifera leaves grown in Pakistan. J Food Comp Anal. 2006;19:544-51. https://doi.org/10.1016/j.jfca.2005.05.001

Van-Der Sluis A, Dekker M, de Jager A, Jongen W. Activity and concentration of polyphenolic antioxidants in apple: Effect of cultivar, harvest year and storage conditions. J Agric Food Chem. 2001;49:3606-13.https://doi.org/10.1021/jf001493u

Ayala-Zavala JF, Wang SY, Wang CY, lez-Aguilar GA. Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. LWT-Food Sci Technol. 2004;37:687-95. https://doi.org/10.1016/j.lwt.2004.03.002

Kondo S, Kittikorn M, Kanlayanarat S. Preharvest antioxidant activities of tropical fruit and the effect of lower temperature storage on antioxidant and jasmonates. Postharvest Biol Tec. 2005;36:309-18. https://doi.org/10.1016/j.postharvbio.2005.02.003

Wang LJ, Chen SJ, Kong WF, Li SH, Archbold DD. Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest Biol Tec. 2006;41:244-51. https://doi.org/10.1016/j.postharvbio.2006.04.010

Ganu GP, Jadhav SS, Deshpande AD. Antioxidant and antihyperglycemic potential of methanolic extract of bark of Mimusops elengi L. in mice. Res J Pharm Biol Chem Sci. 2010;1:67-77.

Yildirim A, Mavi A, Kara AA. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J Agric Food Chem. 2001;49:4083-9.https://doi.org/10.1021/jf0103572

Gordon MH. The mechanism of the antioxidant action in-vitro. In: Hudson BJF, editor. Food antioxidants. London: Elsevier; 1999. p. 1–18.https://doi.org/10.1007/978-94-009-0753-9_1

Kulkarni AP, Aradhya SM. Chemical changes and antioxidant activity in pomegranate arils during fruit development. Food Chem. 2005;93:319-24. https://doi.org/10.1016/j.foodchem.2004.09.029

Bashir HA, Abu-Goukh AA. Compositional changes during guava fruit ripening. Food Chem. 2003;80:557-63. https://doi.org/10.1016/S0308-8146(02)00345-X

Tylor BS, Kion YM, Wang QI, Sharpio RA, Billiar TR, Geller DA. Nitric oxide down regulates hepatocyte-inducible nitric oxide synthase gene expression. Arch Surg. 1997;132:1177-83. https://doi.org/10.1001/archsurg.1997.01430350027005

Huie RE, Padmaja S. The reaction of NO with superoxide. Free Radic Res Commun. 1993;18:195-99. https://doi.org/10.3109/10715769309145868

Noh, KS, Yang MO, Cho EJ. Nitrite scavenging effect of Umbelliferae. Korean J Food Cookery Sci. 2002;18:8–12.

Ebrahimzadeh MA, Nabavi SF, Nabavi SM. Antioxidant activities of methanol extract of Sambucus ebulus L. flower. Pak J Biol Sci. 2009;12:447-50. https://doi.org/10.3923/pjbs.2009.447.450

Hazra B, Sarkar R, Biswas S, Mandal N. Comparative study of the antioxidant and reactive oxygen species scavenging properties in the extracts of the fruits of Terminalia chebula, Terminalia bellirica and Emblica officinalis. BMC Complement Altern Med. 2010;10:20. https://doi.org/10.1186/1472-6882-10-20

Cook NC, Samman S. Flavonoids-chemistry, metabolism, cardioprotective effects and dietary sources. J Nutr Biochem. 1996;7:66-76. https://doi.org/10.1016/0955-2863(95)00168-9

Magrone T, Candore G, Caruso C, Jirillo E, Covelli V. Polyphenols from red wine modulate immune responsiveness: Biological and clinical significance. Curr Pharm Des. 2008;14:2733-48. https://doi.org/10.2174/138161208786264098

Kidd PM. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea and grape seed extracts. Altern Med Rev. 2009;14:226-46.

Adams LS, Zhang Y, Seeram NP, Heber D, Chen S. Pomegranate ellagitannin-derived compounds exhibit antiproliferative and antiaromatase activity in breast cancer cells in-vitro. Cancer Prev Res. 2010;3:108-13. https://doi.org/10.1158/1940-6207.CAPR-08-0225

Huang WY, Cai YZ, Zhang Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer. 2010;62:1-20. https://doi.org/10.1080/01635580903191585

Prior RL, Cao G. Antioxidant phytochemicals in fruits and vegetables-Diet and health implications. Hort Sci. 2000;35:588-92. https://doi.org/10.21273/HORTSCI.35.4.588

Parr AJ, Bolwell PAJ. Phenols in the plant and in man: The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J Sci Food Agric. 2000;80:985-12. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<985::AID-JSFA572>3.0.CO;2-7

Rop O, Sochor J, Jurikova T, Zitka O, Skutkova H, Mlcek J, et al. Effect of five different stages of ripening on chemical compounds in medlar (Mespilus germanica L.). Molecules. 2011;16:74-91. https://doi.org/10.3390/molecules16010074

Stanislaw L. Determination of the degree of polymerization of leucoanthocyanidins. Phytochemistry. 1968;7:665-67. https://doi.org/10.1016/S0031-9422(00)88246-1

Wang SY, Lin HS. Antioxidant activity of fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stages. J Agric Food Chem. 2000;48:140-46. https://doi.org/10.1021/jf9908345

Iqbal S, Bhanger MI. Effect of season and production location on antioxidant activity of Moringa oleifera leaves grown in Pakistan. J Food Comp Anal. 2006;19:544-51. https://doi.org/10.1016/j.jfca.2005.05.001

Kondakova V, Tsvetkov I, Batchvarova R, Badjakov I, Dzhambazova T, Slavov S. Phenol compounds–qualitative index in small fruits. Biotechnol Biotech Eq. 2009;23:1444-48. https://doi.org/10.2478/V10133-009-0024-4

Kondo K, Hirano R., Matsumoto A, Igarashi O, Itakura H. Inhibition of LDL oxidation by cocoa. Lancet. 1996;348:1514-18. https://doi.org/10.1016/S0140-6736(05)65927-2

Kalim MD, Bhattacharyya D, Banerjee A, Chattopadhyay S. Oxidative DNA damage preventive activity and antioxidant potential of plants used in Unani system of medicine. BMC Complement Altern Med. 2010;10:77. https://doi.org/10.1186/1472-6882-10-77

Ben-ahmed C, Ben-Rouina B, Sensoy S, Boukhriss M. Saline water irrigation effects on fruit development, quality and phenolic composition of virgin olive oils, cv. Chemlali. J Agric Food Chem. 2009;57:2803-11. https://doi.org/10.1021/jf8034379

Published

01-10-2020

How to Cite

1.
Mani B, Thomas S. Variation in antioxidant activity at two ripening stages of wild mango, Spondias pinnata (L.f.) Kurz., an underutilized fruit. Plant Sci. Today [Internet]. 2020 Oct. 1 [cited 2024 Nov. 2];7(4):534–541. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/863

Issue

Section

Research Articles