Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Unveiling the fragrance compounds of Jasminum auriculatum genoytpes through GC-MS and FTIR techniques

DOI
https://doi.org/10.14719/pst.9487
Submitted
18 May 2025
Published
13-08-2025 — Updated on 28-08-2025
Versions

Abstract

Jasminum auriculatum Vahl, a species valued and commonly cultivated for its fragrant flowers, holds significant cultural and commercial value in India. Tamil Nadu is the leading state cultivating Jasminum spp. for perfumery industries; also holds a niche market for use as loose flowers in garland making and worship. There are three released varieties of J. auriculatum viz., CO.1 Mullai, CO.2 Mullai and Pacha Mullai widely cultivated among the jasmine farmers of Tamil Nadu. Besides the above varieties, from the germplasm collection of TNAU, a promising genotype, Pacha Mullai, has been identified and recognized for its distinctive, green-tinged buds and superior agronomic traits. This genotype will be a promising alternative to the already cultivated Mullai types. Hence this study was conducted to investigate the phytochemical composition and aromatic profile of Pacha Mullai in comparison to CO.1 Mullai using Gas Chromatography-Mass Spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FT-IR). The GC-MS analysis revealed that Pacha Mullai exhibited a higher peak area percentage for several bioactive compounds such as squalene, phytol and β-sitosterol, indicating a richer presence of antioxidant, antimicrobial and fragrance-contributing metabolites. Notably, unique compounds like α-farnesene and phenylethyl alcohol in Pacha Mullai were strongly associated with enhanced aroma and fragrance persistence. FT-IR spectral analysis confirmed the presence of functional groups such as O–H, C–H and C–O, with distinctive peaks in Pacha Mullai indicating additional methyl group vibrations, possibly contributing to its longer shelf life and chemical stability. The distinct metabolite profile and structural attributes affirm that Pacha Mullai not only offers a unique and intense fragrance but also improved post-harvest longevity, making it a superior genotype for commercial cultivation. While CO.1 Mullai retains its relevance for traditional use, Pacha Mullai demonstrates superior phytochemical richness, aromatic complexity and post-harvest potential, supporting its recommendation for commercial cultivation, particularly in the perfumery, cosmetic and floriculture industries.

References

  1. 1. Ganga M, Lakshmi J, Manivannan N, Rajamani K. Palynological investigations in Jasminum spp. J Hortic Sci. 2020;15(2):183–90. https://doi.org/10.24154/jhs.v15i2.948
  2. 2. Sunny K, Ganga M, Visalakshi M, Suganthy M. Response of Jasminum auriculatum ecotype Pacha Mullai flowers to post-harvest treatments. J Pharm Innov. 2022;11(7):3259–64.
  3. 3. State-wise area and production of jasmine in India (2023-24). www.Indiastat.com
  4. 4. Mirunalini SP. Development of elite mutants of Jasminum auriculatum for flower yield, quality and pest tolerance [PhD thesis]. Tamil Nadu Agricultural University; 2025.
  5. 5. Micera M, Botto A, Geddo F, Antoniotti S, Bertea CM, Levi R, et al. Squalene: more than a step toward sterols. Antioxidants. 2020;9(8):688. https://doi.org/10.3390/antiox9080688
  6. 6. Kaplan A, Çelikoğlu U. Evaluation of phytochemical constituents in the whole plant parts of hexane extract of some traditional medicinal plants by GC-MS analysis. Middle East J Sci. 2020;6(2):57–67. https://doi.org/10.23884/mejs.2020.6.2.02
  7. 7. Rashed K. Beta-sitosterol medicinal properties: a review article. J Sci Innov Technol. 2020;9:208–12.
  8. 8. Al Kamaly O, Imtara H, Alanazi AS, Noman O. Phytochemical composition and cytotoxic activity of Senecio asirensis hexane fraction using in vitro and in silico approaches. Nat Prod Commun. 2024;19(4):1–9. https://doi.org/10.1177/1934578X241246418
  9. 9. Konovalova O, Gergel E, Herhel V. GC-MS analysis of bioactive components of Shepherdia argentea (Pursh.) Nutt. from Ukrainian flora. J Pharm Innov. 2013;2(6):7–12.
  10. 10. De Sousa Ferrão EJ, Janeque EA. Anti-viral compounds from Jatropha curcas seed extract with anti-HIV-1 and anti-SARS-CoV-2 action. Afr J Pharm Pharmacol. 2023;17(1):1–9. https://doi.org/10.5897/ajpp2022.5328
  11. 11. Islam MT, Ali ES, Uddin SJ, Shaw S, Islam MA, Ahmed MI, et al. Phytol: a review of biomedical activities. FCT. 2018;121:82–94. https://doi.org/10.1016/j.fct.2018.08.032
  12. 12. Okechukwu PN. Evaluation of anti-inflammatory, analgesic, antipyretic effect of eicosane, pentadecane, octacosane and heneicosane. Asian J Pharm Clin Res. 2020;13(4):29–35. https://doi.org/10.22159/ajpcr.2020.v13i4.36196
  13. 13. Arora S, Kumar G, Meena S. GC-MS analysis of bioactive compounds from the whole plant hexane extract of Cenchrus setigerus Vahl. PSM. 2017;8(4):137–46. https://doi.org/10.7897/2230-8407.08699
  14. 14. De Araújo Delmondes G, Bezerra DS, de Queiroz Dias D, de Souza Borges A, Araujo IM, da Cunha GL, et al. Toxicological and pharmacologic effects of farnesol (C15H26O): a descriptive systematic review. FCT. 2019;129:169–200. https://doi.org/10.1016/j.fct.2019.04.037
  15. 15. Nath A, Kumer A, Khan MW. Synthesis, computational and molecular docking study of some 2,3-dihydrobenzofuran and its derivatives. J Mol Struct. 2021;1224:129225. https://doi.org/10.1016/j.molstruc.2020.129225
  16. 16. Waheed I, Haq MI, Rasool S, Javaid M, Shah AA, Aamir K, et al. In-vitro and in-vivo antidiabetic activity of aerial parts of Aitchisonia rosea supported by phytochemical and GC-MS analysis. Pak J Pharm Sci. 2024;37(1):163–71. https://doi.org/10.36721/PJPS.2024.37.1.REG.163-171.1
  17. 17. Adebiyi AO, Tedela PO. Phytochemical profiling and GC-MS analysis of extracts of two tropical moss species. Sch Acad J Biosci. 2023;5:181–90. https://doi.org/10.36347/sajb.2023.v11i05.003
  18. 18. Sirivella N, Gopalakrishnan C, Kannan R, Pushpam R, Uma D, Raveendran M, et al. Analysis of bioactive secondary metabolites produced by endophytic Bacillus amyloliquefaciens against rice sheath blight pathogen Rhizoctonia solani. Agric Sci Digest. 2024;45(1):131–7. https://doi.org/10.18805/ag.d-5984
  19. 19. Tong Y, Huang J, Wang S, Awa R, Tagawa T, Zhang Z, et al. Effects of 3-(4-hydroxy-3-methoxyphenyl) propionic acid on enhancing grip strength and inhibiting protein catabolism induced by exhaustive exercise. Int J Mol Sci. 2024;25(12):6627. https://doi.org/10.3390/ijms25126627
  20. 20. Lutfia A, Munir E, Yurnaliza Y, Basyuni M. Chemical analysis and anticancer activity of sesterterpenoid from an endophytic fungus Hypomontagnella monticulosa Zg15SU and its host Zingiber griffithii Baker. Heliyon. 2021;7(2):e06292. https://doi.org/10.1016/j.heliyon.2021.e06292
  21. 21. Bakrim S, Benkhaira N, Bourais I, Benali T, Lee LH, El Omari N, et al. Health benefits and pharmacological properties of stigmasterol. Antioxidants. 2022;11(10):1912. https://doi.org/10.3390/antiox11101912
  22. 22. Arora S, Kumar G, Meena S. GC-MS analysis of bioactive compounds from the whole plant hexane extract of Cenchrus setigerus Vahl. PSM. 2017;8(4):137–46. https://doi.org/10.7897/2230-8407.08699
  23. 23. Rao MR, Ravi A, Narayanan S, Prabhu K, Kalaiselvi VS, Dinakar S, et al. Antioxidant study and GC-MS analysis of an ayurvedic medicine Talisapatradi choornam. Int J Pharm Sci Rev Res. 2016;36(1):158–66. https://doi.org/10.5958/0974-360x.2019.00182.3
  24. 24. Gupta V, Tyagi S, Tripathi R. Hexadecanoic acid methyl ester, a potent hepatoprotective compound in leaves of Pistia stratiotes L. TABCJ. 2023;4(4):118–20. https://doi.org/10.52679/tabcj.2023.0012
  25. 25. Chen XM, Kobayashi H, Sakai M, Hirata H, Asai T, Ohnishi T, et al. Functional characterization of rose phenylacetaldehyde reductase (PAR), an enzyme involved in the biosynthesis of the scent compound 2-phenylethanol. J Plant Physiol. 2011;168(2):88–95. https://doi.org/10.1016/j.jplph.2010.06.011
  26. 26. Sermakkani M, Thangapandian V. GC-MS analysis of Cassia italica leaf methanol extract. Asian J Pharm Clin Res. 2012;5(2):90–4. https://doi.org/10.9734/bpi/caprd/v3/9739d
  27. 27. Oh K, Adnan M, Cho D. Uncovering mechanisms of Zanthoxylum piperitum fruits for the alleviation of rheumatoid arthritis based on network pharmacology. Biology. 2021;10(8):703. https://doi.org/10.3390/biology10080703
  28. 28. Amirav A, Fialkov A, Margolin Eren K, Neumark B, Elkabets O, Tsizin S, et al. Gas chromatography–mass spectrometry (GC–MS) with cold electron ionization (EI): bridging the gap between GC–MS and LC–MS. Spectroscopy. 2020;18(4):5–15. https://doi.org/10.1016/j.ijms.2017.09.006
  29. 29. Kamel NM, Helmy MW, Samaha MW, Ragab D, Elzoghby AO. Multicompartmental lipid–protein nanohybrids for combined tretinoin/herbal lung cancer therapy. Nanomedicine. 2019;14(18):2461–79. https://doi.org/10.2217/nnm-2019-0090
  30. 30. Kumar SS, Badhmapriya D, Keerthana R. Determination of bioactive compounds of Boerhavia diffusa Linn. leaf using IR irradiation. IJPBSTM. 2020;10(2):222–8. https://doi.org/10.21276/ijpbs.2020.10.2.27
  31. 31. Sreelal NKS, Balachandran N, Vijayalekshmi KP. Synthesis and characterization of low temperature curable phthalonitrile containing propargyl-novolacs through click-chemistry approach. J Polym Res. 2022;29(9):376. https://doi.org/10.1007/s10965-022-03207-y
  32. 32. Isah Y, Alfa C. Phytochemical and FT-IR spectroscopic analysis of the root bark of Sarcocephalus latifolius (Smith Bruce). FJS. 2018;2(2):21–7.
  33. 33. Jadhav VK, Pawar SS. Qualitative and quantitative analysis of Anethum graveolens L. flowers extracts. UGC Group Care I J. 2023;84(13):124–33. https://doi.org/10.13189/azb.2023.110507
  34. 34. Wagih N, Mahmoud MM, Elbaz AA, El-Moniry D. Oil removal from water using agricultural wastes-based adsorbents for the application in reverse osmosis desalination systems. Desalination Water Treat. 2023;316:335–55. https://doi.org/10.5004/dwt.2023.30200
  35. 35. Liu J, Zhang QH, Ma F, Zhang SF, Zhou Q, Huang AM. Three-step identification of infrared spectra of similar tree species to Pterocarpus santalinus covered with beeswax. J Mol Struct. 2020;1218:128484. https://doi.org/10.1016/j.molstruc.2020.128484
  36. 36. Aydin A, Ulag S, Nouri S, Durasi E, Pelit Arayıcı P, Tinaz GB, et al. Production of polyvinyl alcohol/amoxicillin–chitosan/collagen hybrid bilayer membranes for regeneration of gingival tissues. Macromol Biosci. 2025;25(1):2400331. https://doi.org/10.1002/mabi.202400331
  37. 37. Nishida J, Shigeto S, Yabumoto S, Hamaguchi HO. Anharmonic coupling of the CH-stretch and CH-bend vibrations of chloroform as studied by near-infrared electroabsorption spectroscopy. J Chem Phys. 2012;137(23):234502. https://doi.org/10.1063/1.4770264
  38. 38. Predoi D, Groza A, Iconaru SL, Predoi G, Barbuceanu F, Guegan R, et al. Properties of basil and lavender essential oils adsorbed on the surface of hydroxyapatite. Materials. 2018;11(5):652. https://doi.org/10.3390/ma11050652

Downloads

Download data is not yet available.