Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 8 No. 1 (2021)

Peracetic acid concentration and starch slurry ratio on functional properties of oxidized sweet potato (Ipomoea batatas (L.) Lam.) starch

DOI
https://doi.org/10.14719/pst.2021.8.1.957
Submitted
13 September 2020
Published
01-01-2021

Abstract

Sweet potato (Ipomoea batatas (L.) Lam.) is an important food crop with great source of starch. Sweet potato starch has inferior properties like high swelling power, soft gel texture and low paste clarity. Peracetic acid is an environmentally friendly oxidizing reagent without harmful effects to human health. This research evaluated the feasibility of peracetic acid concentration (2, 4, 6, 8, 10 ppm) and starch slurry ratio (1:8, 1:10, 1:12, 1:14, 1:16 w/w) to functional characteristics of the oxidized sweet potato starch. Results showed that the highest swelling power (57.34%), solubility (2.68%) and peak viscosity (6264 cP) were obtained by peracetic acid 6 ppm and starch slurry ratio 1:12 w/w. Peracetic acid could be successfully applied as a powerful oxidizing agent in starch modification.

References

  1. Satheesh N, Solomon FW. Review on nutritional composition of orange?fleshed sweet potato and its role in management of vitamin A deficiency. Food Science and Nutrition. 2019;7:1920-45. https://doi.org/10.1002/fsn3.1063
  2. Yoshimoto M, Okuno S, Yamaguchi M, Yamakawa O. Antimutagenicity of deacylatedanthocyanins in purple-fleshed sweetpotato. J Agric Chem Soc Jpn. 2001;65:1652–55. https://doi.org/10.1271/bbb.65.1652
  3. Shao YY and Huang YC. Effect of steaming and kneading with presteaming treatments on the physicochemical properties of various genotypes of sweet potato (Ipomoea batatas L.). J Food Process Eng. 2008; 31:739–53. https://doi.org/10.1111/j.1745-4530.2007.00186.x
  4. Wu DM, Lu J, Zheng YL, Zhou Z, Shan Q, Ma DF. Purple sweet potato color repairs D-galactose-induced spatial learning and memory impairment by regulating the expression of synaptic proteins. Neurobiol Learn Mem. 2008;90:19–27. https://doi.org/10.1016/j.nlm.2008.01.010
  5. Liu SC, Lin JT, Yang DJ. Determination of cis- and trans-? and ?-carotenoids in Taiwanese sweet potatoes (Ipomoea batatas (L.) Lam.) harvested at various times. Food Chem. 2009;116:605–10. https://doi.org/10.1016/j.foodchem.2008.09.037
  6. Ahmed M, Akter S, Eun JB. Peeling, drying temperatures, and sulphite-treatment affect physicochemical properties and nutritional quality of sweet potato flour. Food Chem. 2010; 121:112–18. https://doi.org/10.1016/j.foodchem.2009.12.015
  7. Katayama K, Kitahara K, Sakai T, Kai Y, Yoshinaga M. Resistant and digestible starch contents in sweet potato cultivars and lines. J Appl Glycosci. 2011;58:53–59. https://www.jstage.jst.go.jp/article/jag/58/2/58_jag.JAG-2010_016/_pdf
  8. Ramesh RC, Sandeep PK, Manas SR, Sethuraman SP. Proximate composition and sensory evaluation of anthocyanin-rich purple sweet potato (Ipomoea batatas L.) wine. International Journal of Food Science and Technology. 2011:02861. https://doi.org/10.1111/j.1365-2621.2011.02861.x
  9. Aoran L, Ruoshi X, Sijia H, Xiaoyu A, Yi H, Chengtao W, Sheng Y, Bin W, Xuewei S, Jingren H. Research advances of purple sweet potato anthocyanins: Extraction, identification, stability, bioactivity, application and biotransformation. Molecules. 2019;24:3816. https://doi.org/10.3390/molecules24213816
  10. Ellong EN, Billard C, Adenet S. Comparison of physicochemical, organoleptic and nutritional abilities of eight sweet potato (Ipomoea batatas) varieties. Food Nutr Sci. 2014;5:196. https://doi.org/10.4236/fns.2014.52025
  11. Teow CC, Truong V, McFeeters RF, Thompson RL, Pecota KV, Yencho GC. Antioxidant activities, phenolic and bcarotene contents of sweet potato genotypes with varying flesh colours. Food Chemistry. 2007;103:829–38. https://doi.org/10.1016/j.foodchem.2006.09.033
  12. Enicole B, Maris C, Vanden T. Extraction of anthocyanins from industrial purple-fleshed sweet potatoes and enzymatic hydrolysis of residues for fermentable sugars. Ind Crops Prod. 2010;32:613–20. https://doi.org/10.1016/j.indcrop.2010.07.020
  13. Lu LZ, Zhou YZ, Zang YQ. Anthocyanin extracts from purple sweet potato by means of microwave baking and acidified electrolysed water and their antioxidation in vitro. International Journal of Food Science and Technology. 2010; 45:1378-85. https://doi.org/10.1111/j.1365-2621.2010.02271.x
  14. Kusano S and Abe H. Antidiabetic activity of white skinned sweet potato (Ipomoea batatas L.) in obese Zuckers fatty rats. Biological and Pharmaceutical Bulletin. 2000;23:23–26. https://doi.org/10.1248/bpb.23.23
  15. Oki T, Masuda M, Furuta S, Nishiba Y, Terahara N, Suda I. Involvement of anthocyanins and other phenolic compounds in radical-scavenging activity of purple-fleshed sweet potato cultivars. J. Food Sci. 2002;67:1752–56. https://doi.org/10.1111/j.1365-2621.2002.tb08718.x
  16. Matsui T, Ebuchi S, Kobayashi M, Fukui K, Sugita K, Terahara N, Matsumoto K. Anti-hyperglycemic effect of diacylated anthocyanin derived from Ipomoea batatas cultivar Ayamurasaki can be achieved through the aglucosidase inhibitory action. Journal of Agricultural and Food Chemistry. 2002;50:7244-48. https://doi.org/10.1021/jf025913m
  17. Konczak-Islam I, Yoshimoto M, Hou DX, Terahara N, Yamakawa O. Potential chemopreventive properties of anthocyanin-rich aqueous extracts from in vitro produced tissue of sweetpotato (Ipomoea batatas L.). Journal of Agricultural and Food Chemistry. 2003;51:5916-22. https://doi.org/10.1021/jf030066o
  18. Kano M, Takayanagi T, Harada K, Makino K, Ishikawa F. Antioxidative activity of anthocyanins from purple sweet potato, Ipomoea batatas cultivar Ayamurasaki. Biosci Biotechnol Biochem. 2005;69:979–88. https://doi.org/10.1271/bbb.69.979
  19. Saigusa N, Terahara N, Ohba R. Evaluation of DPPH radical scavenging activity and antimutagenicity and analysis of anthocyanins in an alcoholic fermented beverage produced from cooked or raw purple-fleshed sweet potato (Ipomoea batata scv Ayamurasaki) roots. Food Science and Technology Research. 2005;11:390–94.
  20. Suda I, Ishikawa F, Hatakeyama M, Miyawaki M, Kudo T, Hirano K, Ito A, Yamakawa O, Horiuchi S. Intake of purple sweet potato beverage affects on serum hepatic biomarker levels of healthy adult men with borderline hepatitis. Eur J Clin Nutr. 2008;62:60–67. https://doi.org/10.1038/sj.ejcn.1602674
  21. Zhang ZF, Fan SH, Zheng YL, Lu J, Wu DM, Shan Q, Hu B. Purple sweet potato color attenuates oxidative stress and inflammatory response induced by D-galactose in mouse liver. Food Chem. Toxicol. 2009;47:496–501. https://doi.org/10.1016/j.fct.2008.12.005
  22. Lim S, Xu J, Kim J, Chen TY, Su X, Standard J, Carey E, Griffin J, Herndon B, Katz B. Role of anthocyanin-enriched purple-fleshed sweet potato P40 in colorectal cancer prevention. Mol. Nutr. Food Res. 2013;57:1908–17. https://doi.org/10.1002/mnfr.201300040
  23. Sugata M, Lin CY, Shih YC. Anti-inflammatory and anticancer activities of Taiwanese purple-fleshed sweet potatoes (Ipomoea batatas (L). Lam) extracts. BioMed Research International. 2015:768093. https://doi.org/10.1155/2015/768093
  24. Hu Y, Deng L, Chen J, Zhou S, Liu S, Fu Y, Chen M. An analytical pipeline to compare and characterise the anthocyanin antioxidant activities of purple sweet potato cultivars. Food Chemistry. 2016;194:46-54. https://doi.org/10.1016/j.foodchem.2015.07.133
  25. Haskell MJ, Jamil KM, Hassan F, Peerson JM, Hossain MI, Fuchs GJ, Brown KH. Daily consumption of Indian spinach (Basella alba) or sweet potatoes has a positive effect on total body vitamin A stores in Bangladeshi men. Am J Clin Nutr. 2004;80:705-14. https://doi.org/10.1093/ajcn/80.3.705
  26. Mohammad KA, Ziaul HR, Sheikh NI. Comparison of the proximate composition, total carotenoids and total polyphenol content of nine orange-fleshed sweet potato varieties grown in Bangladesh. Foods. 2016;5:64. https://doi.org/10.3390/foods5030064
  27. Hagenimana V, Low J, Anyango M, Kurz K, Gichuki ST, Kabira J. Enhancing vitamin A intake in young children in Western Kenya: Orange-fleshed sweet potato and women farmers can serve as key entry points. Food Nutrition Bulletin. 2001;22:376-87. https://doi.org/10.1177/156482650102200407
  28. Babic J, Šubaric D, Ackar D, Kovacevic D, Pilizota V, Kopjar M. Preparation and characterisation of acetylated tapioca starches. Dtsch Lebensm Rundsch. 2007; 103:580–85. https://www.researchgate.net/publication/268278067_Preparation_and_characterization_of_acetylated_tapioca_starches
  29. Durdica A, Jurislav B, Antun J, Borislav M, Stela J, Radoslav M, Marija R, Drago S. Starch modification by organic acids and their derivatives: A review. Molecules. 2015;20:19554-70. https://doi.org/10.3390/molecules201019554
  30. Dona AC, Pages G, Gilbert RG, Kuchel PW. Digestion of starch: In vivo and in vitro kinetic models used to characterise oligosaccharide or glucose release. Carbohydr Polym. 2010;80:599–617. https://doi.org/10.1016/j.carbpol.2010.01.002
  31. Fuentes-Zaragoza E, Riquelme-Navarrete JM, Sanchez-Zapata E, Perez-Alvarez JA. Resistant starch as functional ingredient: A review. Food Res Int. 2010;43:931–42. https://doi.org/10.1016/j.foodres.2010.02.004
  32. Hoover R, Hughes T, Chung HJ, Liu Q. Composition, molecular structure, properties and modification of pulse starches: A review. Food Res Int. 2010;43:399–413. https://doi.org/10.1016/j.foodres.2009.09.001
  33. Perera A, Meda V, Tyler RT. Resistant starch: A review of analytical protocols for determining resistant starch and of factors affecting the resistant starch content of foods. Food Res Int. 2010;43:1959–74. https://doi.org/10.1016/j.foodres.2010.06.003
  34. Sweedman MC, Tizzotti MJ, Schaefer C, Gilbert RG. Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydr Polym. 2013;92:905–20. https://doi.org/10.1016/j.carbpol.2012.09.040
  35. Zavareze ER and Dias ARG. Impact of heat-moisture treatment and annealing in starches: A review. Carbohydr. Polym. 2011; 83:317–28. https://doi.org/10.1016/j.carbpol.2010.08.064
  36. Subaric D, Ackar D, Babic J, Sakac N, Jozinovic A. Modification of wheat starch with succinic acid/acetanhydride and azelaic acid/acetanhydride mixtures I. Thermophysical and pasting properties. J Food Sci Technol. 2014;51:2616–23. https://doi.org/10.1007/s13197-012-0642-y
  37. Golachowski A, Zieba T, Kapelko-Zeberska M, Drozdz W, Gryszkin A, Grzechac M. Current research addressing starch acetylation. Food Chem. 2015;176:350–56. https://doi.org/10.1016/j.foodchem.2014.12.060
  38. Cho SA and Yoo B. Comparison of the effect of sugars on the viscoelastic properties os sweet potato starch pastes. International Journal of Food Science and Technology. 2010;45: 410-14. https://doi.org/10.1111/j.1365-2621.2009.02146.x
  39. Davidson J, Steven S, David LS, Kevin KS, Christopher G. Evaluating the effects of prolonged peracetic acid dosing on water quality and rainbow trout Oncorhynchus mykiss performance in recirculation aquaculture systems. Aquac. Eng. 2018;84:117-27. https://doi.org/10.1016/j.aquaeng.2018.12.009
  40. Evans DA. Disinfectants. Wiley Encyclopedia of Food Science and Technology. (2nd Ed.), Vol. 1. John Wiley & Sons, New York. 2000; 501-09.
  41. Gawande HM, Dhotre AV, Shendurse AM, Khodwe NM. Peroxyacetic acid: A potent food industry sanitizer. Indian Food Industry Mag. 2013;32:26-30. https://www.researchgate.net/publication/327100509
  42. Adebowale KO, Afolabi AT, Lawal OS. Isolation, chemical modification and physicochemical characterisation of Bambarra groundnut (Voandzeia subterranea) starch and flour. Food Chemistry. 2002;78:305–11. https://doi.org/10.1016/S0308-8146(02)00100-0
  43. Goze P, Rhazi L, Pauss A, Aussenac T. Starch characterization after ozone treatment of wheat grains. Journal of Cereal Science. 2016;70:207–13. https://doi.org/10.1016/j.jcs.2016.06.007
  44. Kim MJ, Shoi SJ, Shin SI, Sohn MR, Lee CJ, Kim Y, Cho WI, Moon TW. Resistant glutarate starch from adlay: Preparation and properties. Carbohydr Polym. 2008;74:787–96. https://doi.org/10.1016/j.carbpol.2008.04.043
  45. Le D and Angellier-coussy H. Preparation and application of starch nanoparticles for nanocomposites?: A review. Reactive and Functional Polymers. 2014;85:97–120. https://doi.org/10.1016/j.reactfunctpolym.2014.09.020
  46. Satmalawati EM, Pranoto Y, Marseno DW, Marsono Y. Oxidation of cassava starch at different dissolved ozone concentration: effect on functional and structural properties. Food Research. 2020;4:1896–1904. https://www.myfoodresearch.com/uploads/8/4/8/5/84855864/_9__fr-2020 209_satmalawati_1.pdf
  47. Torre-Gutierrez L, Chel-Guerro LA, Betancur-Ancona D. Functional properties of square banana (Musa babisiana) starch. J Food Chem. 2008;106:1138-1144. https://doi.org/10.1016/j.foodchem.2007.07.044
  48. Olayinka OO, Adebowale KO, Olue-Owolabi BI. Effect of heat-moisture treatment on physicochemical properties of white sorghum starch. J Food Hydrocolloids. 2008;22:225-30. https://doi.org/10.1016/j.foodhyd.2006.11.004
  49. Singh J, Kaur L, McCarhy OJ. Factors influencing the physic-chemical, morphological, thermal and rheological properties of some chemically modified starches for food application—A review. Food Hydrocoll. 2007;21:1–22. https://doi.org/10.1016/j.foodhyd.2006.02.006
  50. Olayinka OO, Olu-Owolabi BI, Adebowale KO. Effect succinylation on the physicochemical, rheological, thermal and retrogradation properties of red and white sorghum starches. Food Hydrocoll. 2011;25:515–20. https://doi.org/10.1016/j.foodhyd.2010.08.002
  51. Ackar D, Babic J, Subaric D, Muhamedbegovic B, Jasic M, Budimlic A, Stankovic I. Preparation of modified tapioca starch with mixture of adipic acid and acetanhydride. Works Fac Agric Univ Sarajevo. 2010;60:261–65. https://www.cabdirect.org/cabdirect/abstract/20103070983
  52. Muhamedbegovic B, Subaric D, Babic J, Ackar D, Jasic M, Keran H, Budimlic A, Matas I. Modification of potato starch. Technol Acta. 2012;5:1–6. https://www.researchgate.net/publication/268278156_Modification_of_potato_starch
  53. Wang YJ and Wang L. Physicochemical properties of common and waxy corn starches oxidized by different level of sodium hypochlorite. Carbohydrate Polymers. 2003;52:207– 17. https://doi.org/10.1016/S0144-8617(02)003041
  54. El-sheikh MA, Ramadan MA, El-shafie A. Photo-oxidation of rice starch. Part I?: Using hydrogen peroxide. Carbohydrate Polymers. 2010;80:266–69. https://doi.org/10.1016/j.carbpol.2009.11.023
  55. Lu S, Chen CY, Lii CY. Gelchromatography fractionation and thermal characterization of rice starch affected by hydrothermal treatment. Cereal Chemistry. 1996;73:5-11. http://online.cerealsgrains.org/publications/cc/backissues/1996/documents/73_5.pdf
  56. Eerlingen RC, Jacobs H, Block K, Delcour JA. Effects of hydrothermaltreatments on the rheological properties ofpotato starch. Carbohydr Res. 1997;297:347-56. https://doi.org/10.1016/S0008-6215(96)00279-0
  57. Tan Y and Chinnaswamy R. Molecular properties of cereal based breakfast foods. Staerke. 1993;11:391-96. https://doi.org/10.1002/star.19930451105
  58. Ackar D, Subaric D, Babic J, Milicevic B, Jozinovic A. Modification of wheat starch with succinic acid/acetanhydride and azelaic acid/acetanhydride mixtures II. Chemical and physical properties. J Food Sci Technol. 2014;51:1463–72. https://doi.org/10.1007/s13197-012-0642-y
  59. Kim J and Yousef AE. Application of ozone for enhancing the microbiological safety and quality of foods?: A review. Journal of Food Protection 1999;62:1071–87. https://doi.org/10.4315/0362-028x-62.9.1071
  60. John JK and Raja KCM. Properties of cassava starch—Dicarboxylic acid complexes. Carbohydr Polym. 1999;39:181–86. https://doi.org/10.1016/S0144-8617(98)00164-7
  61. Castanha N, Matta-Junior MDD, Augusto PED. Potato starch modification using the ozone technology. Food Hydrocolloids. 2017;66:343–56. https://doi.org/10.1016/j.foodhyd.2016.12.001
  62. Oladebeye AO, Oshodi AA, Amoo IA, Karim AA. Functional, thermal and molecular behaviours of ozone-oxidised cocoyam and yam starches. Food Chemistry. 2013;141:1416–23. https://doi.org/10.1016/j.foodchem.2013.04.080
  63. Catal H and Ibanoglu S. Effect of aqueous ozonation on the pasting, flow and gelatinization properties of wheat starch. Food Science and Technology. 2014;59:577–82. https://doi.org/10.1016/j.lwt.2014.04.025
  64. Klein B, Levien N, Moomand K, Zanella V, Colussi R, Zavareze R, Dias ARG. Ozone oxidation of cassava starch in aqueous solution at different pH. Food Chemistry. 2014;155:167–73. https://doi.org/10.1016/j.foodchem.2014.01.058
  65. Lai HM. Effects of hydrothermaltreatment on the physicochemical propertiesof pregelatinized rice flour. Food Chemistry. 2001;72:455-63. https://doi.org/10.1016/S0308-8146(00)00261-2
  66. Sodhi NS and Singh N. Characteristics of acetylated starches prepared using starches separated from different rice cultivars. J Food Eng. 2005;70:117–27. https://doi.org/10.1016/j.jfoodeng.2004.09.018
  67. Saartrat S, Puttanlek C, Rungsardthong V, Uttapap D. Paste and gel properties of low-substituted acetylated canna starches. Carbohydr Polym. 2005;61:211–21. https://doi.org/10.1016/j.carbpol.2005.05.024
  68. Sui Z, Huber KC, Be-Miller JN. Effects of the order of addition of reagents and catalyst on modification of maize starches. Carbohydr Polym. 2013;96:118–30. https://doi.org/10.1016/j.carbpol.2013.03.059
  69. Mehboob S, Mohsin-Ali T, Alam F, Hasnain A. Dual modifi cation of native white sorghum (Sorghum bicolor) starch via acid hydrolysis and succinylation. Food Sci Tech. 2015;64:459–67. https://doi.org/10.1016/j.lwt.2015.05.012
  70. Kapelko-Zeberska M, Zieba T, Spychaj R, Gryszkin A. Acetylated adipate of retrograded starch as RS 3/4 type resistant starch. Food Chem. 2015; 188: 365–69. https://doi.org/10.1016/j.foodchem.2015.05.018
  71. Segura-Campos M, Chel-Guerrero L, Betancur-Ancona D. Synthesis and partial characterisation of octenylsuccinic starch from Phaseolus lunatus. Food Hydrocoll. 2008;22:1467–74. https://doi.org/10.1016/j.foodhyd.2007.09.009

Downloads

Download data is not yet available.