Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Response of saffron to some bacteria and mycorrhiza

DOI
https://doi.org/10.14719/pst.9726
Submitted
30 May 2025
Published
11-11-2025
Versions

Abstract

This study examines the impact of various bacterial types and mycorrhizal fungi on the growth and chemical composition of saffron (Crocus sativus L.) cultivated in calcareous soils of Iraq. Inoculation with Azospirillum brasilense increased daughter corm weight by 58 % compared with the control, followed by Pseudomonas aeruginosa (29 %). At the same time, Bacillus megaterium and Azotobacter chroococcum reduced growth. Combined bacterial inoculation resulted in a modest 12 % increase, while Glomus mosseae alone slightly decreased daughter corm weight (6 %). The interaction of G. mosseae with A. brasilense produced the highest improvement (65 %). The number of new corms doubled with P. aeruginosa but declined under mixed bacterial treatments due to competition. Parent corm dry weight rose with A. brasilense (9 %) and A. chroococcum (8 %), while B. megaterium reduced it by 38 %. Mycorrhizal inoculation enhanced parent corm dry weight by 40 %, with an additional 21 % increase when combined with bacteria. Leaf biochemical analysis showed higher nitrogen, phosphorus, and iron levels under microbial treatments, with G. mosseae notably enhancing phosphorus (5.39 mg/g). Potassium content was unaffected by microbial interactions. These results demonstrate that biofertilizers improve saffron growth, nutrient uptake, and metabolite accumulation, supporting its successful and economically viable cultivation in calcareous soils.

References

  1. 1. Mirheidar H. Maaref Giahi (Plant Knowledge). Tehran (Iran): Daftare Nashre Farhange Eslami; 2005. p. 172–3.
  2. 2. Kafi M, Koocheki A, Rashed MH, Nassiri M, editors. Saffron (Crocus sativus): Production and Processing. 1st ed. Boca Raton (FL): CRC Press; 2006. p. 252. https://doi.org/10.1201/9781482280463
  3. 3. Cagliani LR, Culeddu N, Chessa M, Consonni R. NMR investigations for a quality assessment of Italian PDO saffron (Crocus sativus L.). Food Control. 2015;50:342–8. https://doi.org/10.1016/j.foodcont.2014.09.003
  4. 4. Alenezi SM, Farhan KJ, Alrawi AA. Effect of Nano-NP biofertilization on some vegetative growth indices and yield of potato plant. IOP Conf Ser Earth Environ Sci. 2025;1449:012093. https://doi.org/10.1088/1755-1315/1449/1/012093
  5. 5. Ramadan ASA, Mukhlif FH, Al-Rawi AA, Abdulrazzaq MHM, Mousa MO, Shahatha SS. Molecular evaluation of several wheat varieties of Triticum aestivum L. Plant Sci Today. 2024;11(3):612–7. https://doi.org/10.14719/pst.4110
  6. 6. Ahmad F, Ahmad I, Khan MS. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res. 2008;163(2):173–81. https://doi.org/10.1016/j.micres.2006.04.001
  7. 7. Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18(11):607–21. https://doi.org/10.1038/s41579-020-0412-1
  8. 8. Lucy M, Reed E, Glick BR. Applications of free-living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek. 2004;86:1–25. https://doi.org/10.1023/B:ANTO.0000024903.10757.6e
  9. 9. Cummings SP. The application of plant growth-promoting rhizobacteria (PGPR) in low input and organic cultivation of graminaceous crops: potential and problems. Environ Biotechnol. 2009;5:43–50.
  10. 10. Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN. Diversity of plant growth and soil health supporting bacteria. Curr Sci. 2005;89:136–50. http://www.jstor.org/stable/24110439
  11. 11. Ordookhani K, Sharafzadeh S, Zare M. Influence of PGPR on growth, essential oil and nutrients uptake of sweet basil. Adv Environ Biol. 2011;5(4):672–7.
  12. 12. Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012;488(7409):91–5. https://doi.org/10.1038/nature11336
  13. 13. Díez-Méndez A, Rivas R. Improvement of saffron production using Curtobacterium herbarum as a bioinoculant under greenhouse conditions. AIMS Microbiol. 2017;3(3):354–65. https://doi.org/10.3934/microbiol.2017.3.354
  14. 14. Shahnaz E, Banday S, Dar ZA, Lone AA, Habib M, Nisa SU, Kumar A, Iqbal S, Jhang T. New and emerging trends in phytopathology of medicinally bioactive geographical indicator of Kashmir: Saffron (Crocus sativus L.). J Med Aromat Plant Sci. 2024;46(1):10–6. https://doi.org/10.62029/jmaps.v46i1.shahnaz
  15. 15. Al-Ahmadi MJ, Mohammadi A, Salehi Kohabadi E. Characterization of bacteria isolated from the saffron (Crocus sativus L.) rhizosphere. J Hortic Res. 2017;25(2):27–34. https://doi.org/10.1515/johr-2017-0017
  16. 16. Kour R, Ambardar S, Vakhlu J. Plant growth promoting bacteria associated with corm of Crocus sativus during three growth stages. Lett Appl Microbiol. 2018;67(5):458–64. https://doi.org/10.1111/lam.13042
  17. 17. Magotra S, Bhagat N, Ambardar S, Ali T, Hurek BR, Hurek T, Verma PK, Vakhlu J. Field evaluation of PGP Bacillus sp. strain D5 native to Crocus sativus, in traditional and non-traditional areas, and mining of PGP genes from its genome. Sci Rep. 2021;11(1):5454. https://doi.org/10.1038/s41598-021-84585-z
  18. 18. Nehvi FA, Khan MA, Lone AA, Maqhdoomi MI. Impact of microbial inoculation on growth and yield of saffron in Kashmir. Acta Hortic. 2009;850:171–4. https://doi.org/10.17660/ActaHortic.2010.850.27
  19. 19. Aimo S, Gosetti F, D'Agostino G, Gamalero E, Gianotti V, Bottaro M, Gennaro MC, Berta G. Use of arbuscular mycorrhizal fungi and beneficial soil bacteria to improve yield and quality of saffron (Crocus sativus L.). Acta Hortic. 2010;850:159–64. https://doi.org/10.17660/ActaHortic.2010.850.25
  20. 20. Ghanbari J, Khajoei-Nejad G, Van Ruth SM, Aghighi S. The possibility for improvement of flowering, corm properties, bioactive compounds, and antioxidant activity in saffron (Crocus sativus L.) by different nutritional regimes. Ind Crops Prod. 2019;135:301–10. https://doi.org/10.1016/j.indcrop.2019.04.064
  21. 21. Lone R, Shuab R, Koul KK. AMF association and their effect on metabolite mobilization, mineral nutrition and nitrogen assimilating enzymes in saffron (Crocus sativus). J Plant Nutr. 2016;39(13):1852–62.
  22. 22. El Aymani I, Ourras S, Mouden N, Chliyeh M, Selmaoui K, Msairi S, Benkirane R, El Modafar C, Touhami AO, Douira A. Effect of endomycorrhizal fungi inoculum on agro-morphological behavior and productivity of saffron (Crocus sativus L.) under water and salinity stress. Acta Univ Agric Silvic Mendel Brun. 2023;71(4):183–92. https://doi.org/10.11118/actaun.2023.013
  23. 23. Caser M, Demasi S, Victorino IM, Donno D, Faccio A, Lumini E, Bianciotto V, Scariot V. Arbuscular mycorrhizal fungi modulate the crop performance and metabolic profile of saffron in soilless cultivation. Agronomy. 2019;9(5):232. https://doi.org/10.3390/agronomy9050232
  24. 24. Stelluti S, Grasso G, Nebauer SG, Alonso GL, Renau-Morata B, Caser M, Gómez-Gómez ML, Molina RV, Bianciotto V, Scariot V. Arbuscular mycorrhizal symbiosis modulates the apocarotenoid biosynthetic pathway in saffron. Sci Hortic. 2024;323:112441. https://doi.org/10.1016/j.scienta.2023.112441
  25. 25. Jami N, Rahimi A, Naghizadeh M, Sedaghati E. Investigating the use of different levels of mycorrhiza and vermicompost on quantitative and qualitative yield of saffron (Crocus sativus L.). Sci Hortic. 2020;262:109027. https://doi.org/10.1016/j.scienta.2019.109027
  26. 26. Mohebi-Anabat M, Riahi H, Zanganeh S, Sadeghnezhad E. Effects of arbuscular mycorrhizal inoculation on the growth, photosynthetic pigments and soluble sugar of Crocus sativus (saffron) in autoclaved soil. Int J Agron Agric Res. 2015;6(4):296–304.
  27. 27. Bashan Y, Holguin G, Lifshitz R. Isolation and characterization of plant growth-promoting rhizobacteria. In: Glick BR, Thompson JE, editors. Methods in Plant Molecular Biology and Biotechnology. Boca Raton (FL): CRC Press; 1993. p. 331–50.
  28. 28. Gerdemann JW, Nicolson TH. Spores of mycorrhizal Endogone species extracted from soil by wet sieving & decanting. Trans Br Mycol Soc. 1963;46(2):235–44. https://doi.org/10.1016/S0007-1536(63)80079-0
  29. 29. AOAC. Official Methods of Analysis. 13th ed. Washington (DC): Association of Official Analytical Chemists; 1980.
  30. 30. OriginLab Corporation. OriginPro 2025b [Computer software]. Northampton (MA): OriginLab Corporation; 2025.
  31. 31. Singh D, Tripathi P, Meena VS. Role of PGPR in sustainable agriculture: advances and challenges. Plant Sci Today. 2020;7(4):745–54. https://doi.org/10.14719/pst.2020.7.4.893
  32. 32. Ansari RA, Mahmood I. Plant growth-promoting rhizobacteria (PGPR): a promising approach in agriculture under stress conditions. Plant Sci Today. 2021;8(3):678–85. https://doi.org/10.14719/pst.2021.8.3.1063
  33. 33. Rathore R, Yadav SK, Chaudhary A. Synergistic effect of rhizobacteria and mycorrhizae on crop productivity: a review. Plant Sci Today. 2022;9(2):215–24. https://doi.org/10.14719/pst.2022.9.2.1167
  34. 34. Sharma A, Meena VS, Maurya BR. Impact of microbial interactions on nutrient dynamics and plant growth under marginal soils. Plant Sci Today. 2021;8(2):284–91. https://doi.org/10.14719/pst.2021.8.2.1025
  35. 35. Khairnar Y, Patil U, Pawar P. Arbuscular mycorrhizal fungi performance under variable soil pH and nutrient stress: a case study. Plant Sci Today. 2023;10(1):45–53. https://doi.org/10.14719/pst.2023.10.1.1209
  36. 36. Rani R, Shukla A. Biofertilizer consortia and plant health: a sustainable perspective. Plant Sci Today. 2020;7(2):135–41. https://doi.org/10.14719/pst.2020.7.2.841
  37. 37. Kumar R, Verma JP, Yadav J. Effectiveness of PGPR and AMF co-inoculation on nutrient uptake and productivity of crops: an eco-friendly approach. Plant Sci Today. 2021;8(4):856–62. https://doi.org/10.14719/pst.2021.8.4.1091
  38. 38. Akhgar A, Modarres-Sanavy SAM, Amooaghaie R, Tabatabaie SJ. Effect of Azospirillum and Azotobacter inoculation on growth and antioxidant capacity of saffron (Crocus sativus L.). Biol Agric Hortic. 2015;31(2):91–101. https://doi.org/10.1080/01448765.2014.963839
  39. 39. Khezri M, Modarres-Sanavy SAM, Mokhtassi-Bidgoli A. Improvement of growth and flowering of saffron (Crocus sativus L.) by application of mycorrhiza and PGPR under greenhouse conditions. J Plant Nutr. 2018;41(15):1982–90. https://doi.org/10.1080/01904167.2018.1470461
  40. 40. Yacoub MM, Al-Hamdany FMA, Almehemdi AF. Effect of some fertilizer combinations of nitrogen, phosphorus and potassium on some qualitative characteristics of quinoa in seed. IOP Conf Ser Earth Environ Sci. 2023;1252:012053. https://doi.org/10.1088/1755-1315/1252/1/012053
  41. 41. Noaman AH, Abood NM, Ajaj HA, Almehemdi AF. Effect of potassium fertilizer on yield and its components of flax (Linum usitatissimum L.). SABRAO J Breed Genet. 2024;56(6):2521–31. http://doi.org/10.54910/sabrao2024.56.6.34
  42. 42. Sylia AB, Corrêa A, Cruz C, Yadav AN, Nabti E. Plant growth-promoting microbes as biofertilizers: promising solutions for sustainable agriculture under climate change-associated abiotic stresses. Plant Sci Today. 2022;8(sp1):60–76. https://horizonepublishing.com/journals/index.php/PST/article/view/1608

Downloads

Download data is not yet available.