Plant Growth Promoting Microbes as Biofertilizers: Promising solutions for sustainable agriculture under climate change associated abiotic stresses
DOI:
https://doi.org/10.14719/pst.1608Keywords:
Agricultural sustainability, Abiotic stresses, Climate Change, Plant-microbe interactions, Stress alleviationAbstract
Abiotic stresses are major constraints for plant growth, crop yield and global food security. Plant physiological, biochemical and molecular processes are highly affected under unfavorable environmental conditions, resulting in substantial losses to crop productivity and requiring an immediate response. Abiotic stress resistant plant growth-promoting rhizobacteria (PGPR) are a profitable and sustainable solution because of their efficiency in plant growth regulation, crop yield improvement and abiotic stress alleviation. They help plants to cope with growth inhibitory effects of abiotic stresses through several mechanisms, mainly phytohormones and osmolyte production, improvement of nutrient acquisition, enhancement of antioxidant system. Plant-PGPR interactions are vital for sustainable agriculture and industrial purposes, because they are based on biological processes and replace conventional agricultural practices. PGPR may play a key role as an ecological engineer to solve environmental stress problems. The use of microbes is a feasible and potential technology to help meeting the future global food needs with reduced impact on soil and environmental quality. Present review deals about the abiotic stresses (drought and salinity) affecting plant growth and highlights the impact of PGPR on restoration of plant growth under the stressful conditions with the goal of developing an eco-friendly and cost-effective strategy for agricultural sustainability.
Downloads
References
Shahbaz M, Ashraf M. Improving salinity tolerance in cereals. Crit Rev Plant Sci. 2013; 32(4):237-49. https://doi.org/10.1080/07352689.2013.758544
Kour D, Rana KL, Yadav AN, Yadav N, Kumar V et al. Drought-tolerant phosphorus-solubilizing microbes: Biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Sayyed RZ, Arora NK, Reddy MS, editors. Plant Growth Promoting Rhizobacteria for Sustainable Stress Management, Volume 1: Rhizobacteria in Abiotic Stress Management. Singapore: Springer. 2019; 255-308. https://doi.org/10.1007/978-981-13-6536-2_13
Yadav AN, Kaur T, Kour D, Rana KL, Yadav N, Rastegari AA et al. Saline microbiome: Biodiversity, ecological significance and potential role in amelioration of salt stress in plants. In: Rastegari AA, Yadav AN, Yadav N, editors. Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Diversity and Functional Perspectives. Amsterdam Elsevier. 2020; 283-309. https://doi.org/10.1016/B978-0-12-820526-6.00018-X
Kumar V, Joshi S, Pant NC, Sangwan P, Yadav AN, Saxena A, Singh D. Molecular approaches for combating multiple abiotic stresses in crops of arid and semi-arid region. In: Singh SP, Upadhyay SK, Pandey A, Kumar S, editors. Molecular Approaches in Plant Biology and Environmental Challenges. Singapore: Springer. 2019;149-70. https://doi.org/10.1007/978-981-15-0690-1_8
Grayson M. Agriculture and drought. Nature. 2013; 501(7468):S1-S. https://doi.org/10.1038/501S1a
Tuteja N, Gill SS, Tuteja R. Omics and plant abiotic stress tolerance: Bentham Science Publishers. 2011. https://doi.org/10.2174/97816080505811110101
Yadav AN, Kour D, Kaur T, Devi R, Guleria G, Rana KL et al. Current research and future challenges. In: Rastegari AA, Yadav AN, Yadav N, editors. Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Perspectives for Human Health. Amsterdam: Elsevier. 2020;281-92. https://doi.org/10.1016/B978-0-12-820528-0.00020-X
Kour D, Rana KL, Kaur T, Yadav N, Yadav AN, Kumar M et al. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: A review. Pedosphere. 2021; 31(1):43-75. https://doi.org/10.1016/S1002-0160(20)60057-1
Osakabe Y, Osakabe K, Shinozaki K, Tran LS. Response of plants to water stress. Front Plant Sci. 2014;5(86). https://doi.org/10.3389/fpls.2014.00086
Nabti E, Schmid M, Hartmann A. Application of Halotolerant Bacteria to Restore Plant Growth Under Salt Stress. In: Maheshwari DK, Saraf M, editors. Halophiles: Biodiversity and Sustainable Exploitation. Cham: Springer International Publishing. 2015;235-59. https://doi.org/10.1007/978-3-319-14595-2_9
Mokrani S, Nabti E-h, Cruz C. Current advances in plant growth promoting bacteria alleviating salt stress for sustainable agriculture. Appl Sci. 2020; 10(20):7025. https://doi.org/10.3390/app10207025
Yadav AN, Gulati S, Sharma D, Singh RN, Rajawat MVS, Kumar R et al. Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biologia. 2019; 74(8):1031-43. https://doi.org/10.2478/s11756-019-00259-2
Goswami M, Deka S. Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: A review. Pedosphere. 2020;30(1):40-61. https://doi.org/10.1016/S1002-0160(19)60839-8
Misra S, Dixit VK, Mishra SK, Chauhan PS. Demonstrating the potential of abiotic stress-tolerant Jeotgalicoccus huakuii NBRI 13E for plant growth promotion and salt stress amelioration. Ann Microbiol. 2019;69(4):419-34. https://doi.org/10.1007/s13213-018-1428-x
Yadav AN. Agriculturally important microbiomes: biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res. 2017;1:1-4. http://dx.doi.org/10.26717/BJSTR.2017.01.000321
Kour D, Kaur T, Devi R, Yadav A, Singh M, Joshi D et al. Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environ Sci Poll Res. 2021;28(20):24917-39. https://doi.org/10.1007/s11356-021-13252-7
Yadav AN. Endophytic fungi for plant growth promotion and adaptation under abiotic stress conditions. Acta Sci Agric. 2019;3(1):91-103.
Z?och M, Thiem D, Gadza?a-Kopciuch R, Hrynkiewicz K. Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd2+. Chemosphere. 2016; 156:312-25. https://doi.org/10.1016/j.chemosphere.2016.04.130
Yadav AN. Beneficial plant-microbe interactions for agricultural sustainability. J Appl Biol Biotechnol. 2021;9(1):1-4. https://doi.org/10.7324/JABB.2021.91ed
Yadav AN, Singh J, Rastegari AA, Yadav N. Plant Microbiomes for Sustainable Agriculture. Cham: Springer. 2020. https://doi.org/10.1007/978-3-030-38453-1
Duca D, Lorv J, Patten CL, Rose D, Glick BR. Indole-3-acetic acid in plant–microbe interactions. Antonie van Leeuwenhoek. 2014; 106(1):85-125. https://doi.org/10.1007/s10482-013-0095-y
Tiwari P, Bajpai M, Singh LK, Mishra S, Yadav AN. Phytohormones producing fungal communities: Metabolic engineering for abiotic stress tolerance in crops. In: Yadav AN, Mishra S, Kour D, Yadav N, Kumar A, editors. Agriculturally Important Fungi for Sustainable Agriculture, Volume 1: Perspective for Diversity and Crop Productivity. Cham: Springer. 2020;1-25. https://doi.org/10.1007/978-3-030-45971-0_8
Lin Y, Watts DB, Kloepper JW, Feng Y, Torbert HA. Influence of plant growth-promoting rhizobacteria on corn growth under drought stress. Commun Soil Sci Plant Anal. 2020;51(2):250-64. https://doi.org/10.1080/00103624.2019.1705329
Kour D, Rana KL, Sheikh I, Kumar V, Yadav AN, Dhaliwal HS, Saxena AK. Alleviation of drought stress and plant growth promotion by Pseudomonas libanensis EU-LWNA-33, a drought-adaptive phosphorus-solubilizing bacterium. Proc Natl Acad Sci India B. 2020; 90:785-95. https://doi.org/10.1007/s40011-019-01151-4
Akp?nar BA, Lucas SJ, Budak H. Genomics approaches for crop improvement against abiotic stress. Scie World J. 2013. http://dx.doi.org/10.1155/2013/361921
Kour D, Rana KL, Kaur T, Sheikh I, Yadav AN, Kumar V et al. Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatal Agric Biotechnol. 2020;23:101501. https://doi.org/10.1016/j.bcab.2020.101501
Mach KJ, Kraan CM, Adger WN, Buhaug H, Burke M, Fearon JD et al. Climate as a risk factor for armed conflict. Nature. 2019;571(7764):193-97. https://doi.org/10.1038/s41586-019-1300-6
Nepomuceno A, Fuganti R, Rodrigues F, Neumaier N, Farias J, Kanamori N, Marcelino C. Estratégias moleculares para tolerância a seca em plantas. A fisiologia vegetal e os desafios para produção de alimentos e bioenergia Fortaleza: UFC/EMBRAPA-CNPAT. 2009.
Yuriko O, Osakabe K, Shinozaki K, Tran L. SP. Response of plants to water stress. Front Plant Sci. 2014;5:86. https://doi.org/10.3389/fpls.2014.00086
Kour D, Rana KL, Yadav AN, Sheikh I, Kumar V, Dhaliwal HS et al. Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environ Sustain. 2020;3(1):23-34. https://doi.org/10.1007/s42398-020-00094-1
Kour D, Yadav AN. Microbe mediated mitigation of drought stress in crops. Agric Lett. 2020;1(6):79-82.
Kumar A, Verma JP. Does plant—Microbe interaction confer stress tolerance in plants: A review? Microbiol Res. 2018;207:41-52. https://doi.org/10.1016/j.micres.2017.11.004
Tiwari S, Lata C, Chauhan PS, Nautiyal CS. Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem. 2016; 99:108-17. https://doi.org/10.1016/j.plaphy.2015.11.001
Atkinson NJ, Urwin PE. The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot. 2012;63(10):3523-43. https://doi.org/10.1093/jxb/ers100
Zhu J-K. Salt and drought stress signal transduction in plants. Ann Rev Plant Biol. 2002; 53(1):247-73. https://doi.org/10.1146/annurev.arplant.53.091401.143329
Kaur D, Rana KL, Yadav AN. Drought stress in plants and their mitigation by soil microbiomes. EU Voice. 2018; 4:29-30.
Le DT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Ham LH, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PloS One. 2012; 7(11):e49522. http://dx.doi.org/10.1371/journal.pone.0049522
Etesami H, Maheshwari DK. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicol Environ Saf. 2018; 156:225-46. https://doi.org/10.1016/j.ecoenv.2018.03.013
Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kännaste A, Behers L et al. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PloS One. 2014; 9(5):e96086. https://doi.org/10.1371/journal.pone.0096086
Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot. 2014; 97:30-39. https://doi.org/10.1016/j.envexpbot.2013.09.014
Bresson J, Vasseur F, Dauzat M, Labadie M, Varoquaux F, Touraine B, Vile D. Interact to survive: Phyllobacterium brassicacearum improves Arabidopsis tolerance to severe water deficit and growth recovery. PLoS One. 2014; 9(9):e107607. https://doi.org/10.1371/journal.pone.0107607
Liu F, Xing S, Ma H, Du Z, Ma B. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol. 2013; 97(20):9155-64. https://doi.org/10.1007/s00253-013-5193-2
Jorge GL, Kisiala A, Morrison E, Aoki M, Nogueira APO, Emery RJN. Endosymbiotic Methylobacterium oryzae mitigates the impact of limited water availability in lentil (Lens culinaris Medik.) by increasing plant cytokinin levels. Environ Exp Bot. 2019;162:525-40. https://doi.org/10.1016/j.envexpbot.2019.03.028
Davière J-M, Achard P. Gibberellin signaling in plants. Development. 2013; 140(6):1147-51. https://doi.org/10.1242/dev.087650
Danish S, Zafar-ul-Hye M, Fahad S, Saud S, Brtnicky M, Hammerschmiedt T, Datta R. Drought stress alleviation by ACC deaminase producing Achromobacter xylosoxidans and Enterobacter cloacae, with and without timber waste biochar in maize. Sustainability. 2020;12(15):6286. https://doi.org/10.3390/su12156286
Yadav AN. Microbes for Agricultural and Environmental Sustainability. J Appl Biol Biotechnol. 2022;10((Sp1)):1-5. https://doi.org/10.7324/JABB.2022.10s101
Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A. Plant growth?promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant. 2017;161(4):502-14. https://doi.org/10.1111/ppl.12614
Curá JA, Franz DR, Filosofía JE, Balestrasse KB, Burgueño LE. Inoculation with Azospirillum sp. and Herbaspirillum sp. bacteria increases the tolerance of maize to drought stress. Microorganisms. 2017; 5(3):41. https://doi.org/10.3390/microorganisms5030041
Bano Q, Ilyas N, Bano A, Zafar N, Akram A, Hassan F. Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pak J Bot. 2013;45(S1):13-20.
Raheem A, Shaposhnikov A, Belimov AA, Dodd IC, Ali B. Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress. Arch Agron Soil Sci. 2018; 64(4):574-87. https://doi.org/10.1080/03650340.2017.1362105
Joshi B, Chaudhary A, Singh H, Kumar PA. Prospective evaluation of individual and consortia plant growth promoting rhizobacteria for drought stress amelioration in rice (Oryza sativa L.). Plant Soil. 2020; 457(1):225-40. https://doi.org/10.1007/s11104-020-04730-x
Blanco-Montenegro I, De Ritis R, Chiappini M. Imaging and modelling the subsurface structure of volcanic calderas with high-resolution aeromagnetic data at Vulcano (Aeolian Islands, Italy). Bull Volcanol. 2007; 69(6):643-59. https://doi.org/10.1007/s00445-006-0100-7
Silva ER, Zoz J, Oliveira CES, Zuffo AM, Steiner F, Zoz T, Vendruscolo EP. Can co-inoculation of Bradyrhizobium and Azospirillum alleviate adverse effects of drought stress on soybean (Glycine max L. Merrill.)? Arch Microbiol. 2019;201(3):325-35. https://doi.org/10.1007/s00203-018-01617-5
Tallapragada P, Dikshit R, Seshagiri S. Influence of Rhizophagus spp. and Burkholderia seminalis on the growth of tomato (Lycopersicon esculatum) and bell pepper (Capsicum annuum) under drought stress. Commun Soil Sci Plant Anal. 2016;47(17):1975-84. http://dx.doi.org/10.1080/00103624.2016.1216561
Silambarasan S, Logeswari P, Valentine A, Cornejo P. Role of Curtobacterium herbarum strain CAH5 on aluminum bioaccumulation and enhancement of Lactuca sativa growth under aluminum and drought stresses. Ecotoxicol Environ Saf. 2019; 183:109573. https://doi.org/10.1016/j.ecoenv.2019.109573
Susilowati A, Puspita A, Yunus A, editors. Drought resistant of bacteria producing exopolysaccharide and IAA in rhizosphere of soybean plant (Glycine max) in Wonogiri Regency Central Java Indonesia. IOP Conference Series: Earth and Environmental Science. 2018. IOP Publishing. https://doi.org/10.1088/1755-1315/142/1/012058
Pravisya P, Jayaram K, Yusuf A. Biotic priming with Pseudomonas fluorescens induce drought stress tolerance in Abelmoschus esculentus (L.) Moench (Okra). Physiol Mol Biol Plants. 2019; 25(1):101-12. https://doi.org/10.1007/s12298-018-0621-5
Gusain YS, Singh U, Sharma A. Enzymatic amelioration of drought stress in rice through the application of plant growth promoting rhizobacteria (PGPR). Int J Curr Res. 2014; 6(1):4487-91.
Yadav AN, Kour D, Ahluwalia AS. Soil and phytomicrobiomes for plant growth and soil fertility. Plant Science Today. 2021;8(sp1):1-5. https://doi.org/10.14719/pst.1523
Yaseen R, Zafar-ul-Hye M, Hussain M. Integrated application of ACC-deaminase containing plant growth promoting rhizobacteria and biogas slurry improves the growth and productivity of wheat under drought stress. Int J Agric Biol. 2019; 21:869-78. https://doi.org/10.17957/IJAB/15.0969
SkZ A, Vardharajula S, Vurukonda SSKP. Transcriptomic profiling of maize (Zea mays L.) seedlings in response to Pseudomonas putida stain FBKV2 inoculation under drought stress. Ann Microbiol. 2018; 68(6):331-49. https://doi.org/10.1007/s13213-018-1341-3
Vaishnav A, Choudhary DK. Regulation of drought-responsive gene expression in Glycine max (L.) Merrill is mediated through Pseudomonas simiae strain AU. J Plant Growth Regul. 2019;38(1):333-42. https://doi.org/10.1007/s00344-018-9846-3
Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation. 2010;62(1):21-30. https://doi.org/10.1007/s10725-010-9479-4
Figueiredo MV, Burity HA, Martinez CR, Chanway CP. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Applied soil ecology. 2008;40(1):182-88. https://doi.org/10.1016/j.apsoil.2008.04.005
Glick BR. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett. 2005; 251(1):1-7. https://doi.org/10.1016/j.femsle.2005.07.030
Vurukonda SSKP, Giovanardi D, Stefani E. Plant Growth Promoting and Biocontrol Activity of Streptomyces spp. as Endophytes. Int J Mol Sci. 2018;19(4):952. https://doi.org/10.3390/ijms19040952
Mayak S, Tirosh T, Glick BR. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. 2004; 166(2):525-30. https://doi.org/10.1016/j.plantsci.2003.10.025
Chandra D, Srivastava R, Gupta VV, Franco CM, Sharma AK. Evaluation of ACC-deaminase-producing rhizobacteria to alleviate water-stress impacts in wheat (Triticum aestivum L.) plants. Can J Microbiol. 2019; 65(5):387-403. https://doi.org/10.1139/cjm-2018-0636
Shintu P, Jayaram K. Phosphate solubilising bacteria (Bacillus polymyxa)-An effective approach to mitigate drought in tomato (Lycopersicon esculentum Mill.). Trop Plant Res. 2015;2:17-22.
Ansary MH, Rahmani HA, Ardakani MR, Paknejad F, Habibi D, Mafakheri S. Effect of Pseudomonas fluorescent on proline and phytohormonal status of maize (Zea mays L.) under water deficit stress. Ann Biol Res. 2012;3(2):1054-62.
Agami R, Medani R, Abd El-Mola I, Taha R. Exogenous application with plant growth promoting rhizobacteria (PGPR) or proline induces stress tolerance in basil plants (Ocimum basilicum L.) exposed to water stress. Int J Environ Agri Res. 2016;2(5):78.
Yang S, Vanderbeld B, Wan J, Huang Y. Narrowing Down the Targets: Towards Successful Genetic Engineering of Drought-Tolerant Crops. Mol Plant. 2010;3(3):469-90. https://doi.org/10.1093/mp/ssq016
Rodríguez-Salazar J, Suárez R, Caballero-Mellado J, Iturriaga G. Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett. 2009; 296(1):52-59. https://doi.org/10.1111/j.1574-6968.2009.01614.x
Alcázar R, Bitrián M, Bartels D, Koncz C, Altabella T, Tiburcio AF. Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum. Plant Signal Behav. 2011; 6(2):243-50. https://doi.org/10.4161/psb.6.2.14317
Kaushal M. Microbes in cahoots with plants: MIST to hit the jackpot of agricultural productivity during drought. Int J Mol Sci. 2019; 20(7):1769. https://doi.org/10.3390/ijms20071769
Chen THH, Murata N. Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci. 2008; 13(9):499-505. https://doi.org/10.1016/j.tplants.2008.06.007
Kumar A, Sharma S, Mishra S. Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation and mycorrhizal dependency of Jatropha curcas L. J Plant Growth Regul. 2010; 29(3):297-306. https://doi.org/10.1007/s00344-009-9136-1
Hashem A, Abd_Allah EF, Alqarawi AA, Radhakrishnan R, Kumar A. Plant defense approach of Bacillus subtilis (BERA 71) against Macrophomina phaseolina (Tassi) Goid in mung bean. J Plant Interact. 2017; 12(1):390-401. https://doi.org/10.1080/17429145.2017.1373871
Kaushal M, Wani SP. Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol. 2016; 66(1):35-42. https://doi.org/10.1007/s13213-015-1112-3
Sarma RK, Saikia R. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil. 2014; 377(1):111-26. https://doi.org/10.1007/s11104-013-1981-9
Kohler J, Hernández JA, Caravaca F, Roldán A. Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol. 2008;35(2):141-51. https://doi.org/10.1071/FP07218
Armada E, Roldán A, Azcon R. Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia Plants species under drought conditions in natural arid soil. Microb Ecol. 2014;67(2):410-20. https://doi.org/10.1007/s00248-013-0326-9
Bensalim S, Nowak J, Asiedu SK. A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res. 1998; 75(3):145-52. https://doi.org/10.1007/BF02895849
Rossi F, Potrafka RM, Pichel FG, De Philippis R. The role of the exopolysaccharides in enhancing hydraulic conductivity of biological soil crusts. Soil Biol Biochem. 2012; 46:33-40. https://doi.org/10.1016/j.soilbio.2011.10.016
Vu B, Chen M, Crawford RJ, Ivanova EP. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules. 2009; 14(7):2535-54. https://doi.org/10.3390/molecules14072535
Sandhya V, Sk. Z A, Grover M, Reddy G, Venkateswarlu B. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fert Soils. 2009; 46(1):17-26. https://doi.org/10.1007/s00374-009-0401-z
Timmusk S, Wagner EGH. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact. 1999; 12(11):951-9. https://doi.org/10.1094/MPMI.1999.12.11.951
Lim JH, Kim SD. Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J. 2013; 29(2):201. https://doi.org/10.5423/PPJ.SI.02.2013.0021
Daim SB, Meijer J. Wedad A. Kasim, Mohammed E. Osman, Mohammed N. Omar, Islam A. Abd El. J Plant Growth Regul. 2013;32:122-30. https://doi.org/10.1007/s00344-012-9283-7
Vargas L, Santa Brigida AB, Mota Filho JP, De Carvalho TG, Rojas CA, Vaneechoutte D, Van Bel M, Farrinelli L, Ferreira PC, Vandepoele K. Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. PLoS One. 2014; 9(12):e114744. https://doi.org/10.1371/journal.pone.0114744
Paul D, Lade H. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev. 2014; 34(4):737-52. https://doi.org/10.1007/s13593-014-0233-6
Nedjimi B, Daoud Y, Touati M. Growth, water relations, proline and ion content of in vitro cultured Atriplex halimus subsp. schweinfurthii as affected by CaCl2. Commun Biometry Crop Sci. 2006;1(2):79-89.
Ladeiro B. Saline agriculture in the 21st century: using salt contaminated resources to cope food requirements. J Bot. 2012. https://doi.org/10.1155/2012/310705
Shrivastava P, Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci. 2015;22(2):123-31. https://doi.org/10.1016/j.sjbs.2014.12.001
Arbona V, Marco AJ, Iglesias DJ, López-Climent MF, Talon M, Gómez-Cadenas A. carbohydrate depletion in roots and leaves of salt-stressed potted Citrus clementina L. Plant Growth Regul. 2005;46(2):153-60. https://doi.org/10.1007/s10725-005-7769-z
Tewari S, Arora NK. Plant growth promoting rhizobacteria for ameliorating abiotic stresses triggered due to climatic variability. Clim Chang Environ Sustain. 2013; 1(2):95-103. https://doi.org/10.5958/j.2320-642X.1.2.009
Tester M, Davenport R. Sodium tolerance sodium transport in higher plants. Ann Bot. 2003; 91:503-27. https://doi.org/10.1093/aob/mcg058
Romic D, Ondrasek G, Romic M, Josip B, Vranjes M, Petosic D. Salinity and irrigation method affect crop yield and soil quality in watermelon (Citrullus lanatus L.) growing. Irrig Drain. 2008; 57(4):463-69. https://doi.org/10.1002/ird.358
Carillo P, Annunziata MG, Pontecorvo G, Fuggi A, Woodrow P. Salinity stress and salt tolerance. In: Shanker, editor. A Abiotic stress in plants–Mechanisms and adaptations. InTech, Crotia. 2011; 1:21-38. https://doi.org/10.5772/22331
Porcel R, Aroca R, Ruiz-Lozano JM. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev. 2012; 32(1):181-200. https://doi.org/10.1007/s13593-011-0029-x
Niu G, Xu W, Rodriguez D, Sun Y. Growth and physiological responses of maize and sorghum genotypes to salt stress. Int Sch Res Notices. 2012; 1–12. https://doi.org:10.5402/2012/145072
Lugtenberg BJ, Malfanova N, Kamilova F, Berg G. Plant growth promotion by microbes. In: FJ dB, editor. Molecular microbial ecology of the rhizosphere. 2. Hoboken: Wiley-Blackwell. 2013;561-73. https://doi.org/10.1002/9781118297674.ch53
Egamberdieva D, Jabborova D, Hashem A. Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid. Saudi J Biol Sci. 2015; 22(6):773-79. https://doi.org/10.1016/j.sjbs.2015.04.019
Nabti E, Sahnoune M, Adjrad S, Van Dommelen A, Ghoul M, Schmid M et al. A halophilic and osmotolerant Azospirillum brasilense strain from Algerian soil restores wheat growth under saline conditions. Engineering in Life Sciences. 2007;7(4):354-60. https://doi.org/10.1002/elsc.200720201
Yadav AN. Phosphate-Solubilizing Microorganisms for Agricultural Sustainability. J Appl Biol Biotechnol. 2022;10 (03):1-6. doi:10.7324/JABB.2022.103ed
Gerhardt K, Greenberg B, Glick B. The role of ACC deaminase in facilitating the phytoremediation of organics, metals and salt. Curr Trends Microbiol, Volume 2. 2006;61-73.
Kende H. Ethylene biosynthesis. Ann Rev Plant Biol. 1993; 44(1):283-307. https://doi.org/10.1146/annurev.pp.44.060193.001435
Nakbanpote W, Panitlurtumpai N, Sangdee A, Sakulpone N, Sirisom P, Pimthong A. Salt-tolerant and plant growth-promoting bacteria isolated from Zn/Cd contaminated soil: identification and effect on rice under saline conditions. J Plant Interac. 2014; 9(1):379-87. https://doi.org/10.1080/17429145.2013.842000
Nadeem SM, Zahir ZA, Naveed M, Arshad M. Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol. 2009; 55(11):1302-309. https://doi.org/10.1139/W09-092
Cheng Z, Park E, Glick BR. 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol. 2007;53(7):912-18. https://doi.org/10.1139/W07-050
Saravanakumar D, Samiyappan R. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol. 2007;102(5):1283-92. https://doi.org/10.1111/j.1365-2672.2006.03179.x
Ahmad M, Zahir ZA, Asghar HN, Asghar M. Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Canad J Microbiol. 2011;57(7):578-89. https://doi.org/10.1139/w11-044
Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S et al. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol. 2018;169(1):20-32. https://doi.org/10.1016/j.resmic.2017.08.005
Tardieu F, Parent B, Simonneau T. Control of leaf growth by abscisic acid: hydraulic or non?hydraulic processes? Plant Cell Environ. 2010;33(4):636-47. https://doi.org/10.1111/j.1365-3040.2009.02091.x
Naz I, Bano A, Ul-Hassan T. Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr J Biotechnol. 2009;8(21). https://doi.org/10.5897/AJB09.1176
Maggio A, Barbieri G, Raimondi G, De Pascale S. Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul. 2010; 29(1):63-72. https://doi.org/10.1007/s00344-009-9114-7
Manjili FA, Sedghi M, Pessarakli M. Effects of phytohormones on proline content and antioxidant enzymes of various wheat cultivars under salinity stress. J Plant Nutr. 2012; 35(7):1098-1111. https://doi.org/10.1080/01904167.2012.671411
Mayak S, Tirosh T, Glick BR. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem. 2004; 42(6):565-72. https://doi.org/10.1016/j.plantsci.2003.10.025
Sapre S, Gontia-Mishra I, Tiwari S. Plant Growth-Promoting Rhizobacteria Ameliorates Salinity Stress in Pea (Pisum sativum). J Plant Growth Regul. 2021;1-10. https://doi.org/10.1007/s00344-021-10329-y
Khan MA, Sahile AA, Jan R, Asaf S, Hamayun M, Imran M et al. Halotolerant bacteria mitigate the effects of salinity stress on soybean growth by regulating secondary metabolites and molecular responses. BMC Plant Biol. 2021; 21(1):1-15. https://doi.org/10.1186/s12870-021-02937-3
Hamdia MAE-S, Shaddad M, Doaa MM. Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul. 2004;44(2):165-74. https://doi.org/10.1139/W07-081
Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R. Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol. 2012;61:264-72. https://doi.org/ 10.1016/j.apsoil.2012.01.006
Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem. 2013;66:1-9. https://doi.org/10.1021/jf073258i
Siddikee MA, Chauhan PS, Anandham R, Han G-H, Sa T-M. Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol. 2010; 20(11):1577-84. https://doi.org/10.4014/jmb.1007.07011
Desoky E-SM, Saad AM, El-Saadony MT, Merwad A-RM, Rady MM. Plant growth-promoting rhizobacteria: Potential improvement in antioxidant defense system and suppression of oxidative stress for alleviating salinity stress in Triticum aestivum (L.) plants. Biocatal Agric Biotechnol. 2020; 30:101878. https://doi.org/10.1016/j.bcab.2020.101878
El-Esawi MA, Alaraidh IA, Alsahli AA, Alamri SA, Ali HM, Alayafi AA. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. Plant Physiol Biochem. 2018; 132:375-84. https://doi.org/10.1016/j.envexpbot.2018.12.001
Haroon U, Khizar M, Liaquat F, Ali M, Akbar M, Tahir K et al. Halotolerant plant growth-promoting rhizobacteria induce salinity tolerance in wheat by enhancing the expression of SOS genes. J Plant Growth Regul. 2021;1-14. https://doi.org/10.1007/s00344-021-10457-5
Din BU, Sarfraz S, Xia Y, Kamran MA, Javed MT, Sultan T, Munis MFH, Chaudhary HJ. Mechanistic elucidation of germination potential and growth of wheat inoculated with exopolysaccharide and ACC-deaminase producing Bacillus strains under induced salinity stress. Ecotoxicol Environ Safe. 2019; 183:109466. https://doi.org/10.1016/j.ecoenv.2019.109466
Jha Y, Subramanian R, Patel S. Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant. 2011; 33(3):797-802. https://doi.org/10.1007/s11738-010-0604-9
Kapadia C, Sayyed R, El Enshasy HA, Vaidya H, Sharma D, Patel N et al. Halotolerant microbial consortia for sustainable mitigation of salinity stress, growth promotion and mineral uptake in tomato plants and soil nutrient enrichment. Sustainability. 2021; 13(15):8369. https://doi.org/10.3390/su13158369
Han QQ, Lü XP, Bai JP, Qiao Y, Paré PW, Wang SM et al. Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. Front Plant Sci. 2014;5:525. https://doi.org/10.3389/fpls.2014.00525
Nadeem SM, Zahir ZA, Naveed M, Arshad M. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Canad J Microbiol. 2007;53(10):1141-9. https://doi.org/10.1139/W07-081
Atouei MT, Pourbabaee AA, Shorafa M. Alleviation of salinity stress on some growth parameters of wheat by exopolysaccharide-producing bacteria. Iran J Sci Technol Transa A: Sci. 2019;43(5):2725-33. https://doi.org/10.1007/s40995-019-00753-x
Shultana R, Tan Kee Zuan A, Yusop MR, Mohd Saud H, Ayanda AF. Effect of salt-tolerant bacterial inoculations on rice seedlings differing in salt-tolerance under saline soil conditions. Agronomy. 2020;10(7):1030. https://doi.org/10.3390/agronomy10071030
Mohammed AF. Effectiveness of exopolysaccharides and biofilm forming plant growth promoting rhizobacteria on salinity tolerance of faba bean (Vicia faba L.). Afr J Microbiol Res. 2018;12(17):399-404. https://doi.org/10.5897/AJMR2018.8822
Kohler J, Hernández JA, Caravaca F, Roldán A. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot. 2009;65(2-3):245-52. https://doi.org/10.1016/j.envexpbot.2008.09.008
Kubi HAA, Khan MA, Adhikari A, Imran M, Kang SM, Hamayun M, Lee IJ. Silicon and plant growth-promoting rhizobacteria Pseudomonas psychrotolerans CS51 mitigates salt stress in Zea mays L. Agriculture. 2021; 11(3):272. https://doi.org/10.3390/agriculture11030272
Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM. Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp. Plant Cell Rep. 2018; 37(11):1557-69. https://doi.org/10.1007/s00299-018-2328-z
Abulfaraj AA, Jalal RS. Use of plant growth-promoting bacteria to enhance salinity stress in soybean (Glycine max L.) plants. Saudi J Biol Sci. 2021; 28:3823-34. https://doi.org/10.1016/j.sjbs.2021.03.053
Hahm MS, Son JS, Hwang YJ, Kwon DK, Ghim SY. Alleviation of salt stress in pepper (Capsicum annum L.) plants by plant growth-promoting rhizobacteria. Journal of Microbiology and Biotechnology. 2017;27(10):1790-97. https://doi.org/10.4014/jmb.1609.09042
Kohler J, Hernández JA, Caravaca F, Roldán A. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot. 2009; 65(2):245-52. https://doi.org/10.1016/j.envexpbot.2008.09.008
Jha Y, Subramanian RB, Patel S. Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant. 2011; 33(3):797-802. https://doi.org/10.1007/s11738-010-0604-9
Upadhyay SK, Maurya SK, Singh DP. Salinity tolerance in free living plant growth promoting rhizobacteria. Indian J Sci Res. 2012;3(2):73-78.
El-Esawi MA, Al-Ghamdi AA, Ali HM, Alayafi AA. Azospirillum lipoferum FK1 confers improved salt tolerance in chickpea (Cicer arietinum?L.) by modulating osmolytes, antioxidant machinery and stress-related genes expression. Environ Exp Bot. 2019; 159:55-65. https://doi.org/10.1016/j.envexpbot.2018.12.001
Abd_Allah EF, Alqarawi AA, Hashem A, Radhakrishnan R, Al-Huqail AA, Al-Otibi FON. Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. J Plant Interac. 2018; 13(1):37-44. https://doi.org/10.1080/17429145.2017.1414321
Han H, Lee K. Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agric Biol Sci. 2005;1(3):210-15.
Jha Y, Subramanian RB. PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol Mol Biol Plants. 2014; 20(2):201-07. https://doi.org/10.1007/s12298-014-0224-8
Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR et al. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem. 2014; 84:115-24. https://doi.org/10.1016/j.plaphy.2014.09.001
Kim K, Jang Y-J, Lee S-M, Oh B-T, Chae J-C, Lee K-J. Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Mol Cells. 2014; 37(2):109-17. https://doi.org/10.14348/molcells.2014.2239
Damodaran T, Rai R, Jha S, Kannan R, Pandey B, Sah V et al. Rhizosphere and endophytic bacteria for induction of salt tolerance in gladiolus grown in sodic soils. J Plant Interac. 2014; 9(1): 577-84. https://doi.org/10.1080/17429145.2013.873958
Chakraborty A, Dey PU, Chakraborty, BN Chakraborty. Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World J Microbiol Biotechnol. 2013; 29:789-803. https://doi.org/10.1007/s11274-012-1234-8
Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW. plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul. 2013; 32(2):245-58. https://doi.org/10.1007/s00344-012-9292-6
Ilangumaran G, Smith DL. Plant Growth Promoting Rhizobacteria in Amelioration of Salinity Stress: A Systems Biology Perspective. Front Plant Sci. 2017; 8(1768). https://doi.org/10.3389/fpls.2017.01768
Vardharajula S, Zulfikar Ali S, Grover M, Reddy G, Bandi V. Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes and antioxidant status of maize under drought stress. J Plant Interact. 2011; 6(1):1-14. https://doi.org/10.1080/17429145.2010.535178
Qurashi AW, Sabri AN. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol. 2012; 43:1183-91. http://dx.doi.org/10.1590/S1517-83822012000300046
Tewari S, Arora NK. Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Curr Microbiol. 2014; 69(4):484-94. https://doi.org/10.1007/s00284-014-0612-x
Pinedo I, Ledger T, Greve M, Poupin MJ. Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance. Front Plant Sci. 2015;6(466). https://doi.org/10.3389/fpls.2015.00466
Chen L, Liu Y, Wu G, Veronican Njeri K, Shen Q, Zhang N, Zhang R. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol Plant. 2016;158(1):34-44. https://doi.org/10.1111/ppl.12441
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Ait Bessai Sylia, Ana Corrêa, Cristina Cruz, Ajar Nath Yadav, Elhafid Nabti
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).