Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 9 No. 1 (2022)

Effects of gamma radiations on morphological and physiological traits of finger millet (Eleusine coracana (L.) Gaertn.)

DOI
https://doi.org/10.14719/pst.1142
Submitted
22 February 2021
Published
30-11-2021 — Updated on 01-01-2022

Abstract

The present study was carried out to analyse the effect of gamma radiation on morpho-physiological parameters of seven days old M1 seedlings of Eleusine coracana (L.) Gaertn. (finger millet). The finger millet seeds were irradiated with different doses of viz., 100 Gy, 200 Gy, 300 Gy, 400 Gy, 500 Gy, 600 Gy, 700 Gy, 800 Gy, 900 Gy and 1000 Gy of gamma ray. Higher doses of gamma rays induced substantial reduction in mean performance of morphological and physiological traits. However, lower doses showed stimulatory effects on morphological and physiological traits. The results revealed a progressive decrease in chlorophyll fluorescence with increasing dose of gamma irradiation. Among all the mutagen doses used, 600 Gy gamma irradiated seeds showed enhanced mean performance of morphological and physiological traits in finger millet. Hence 600 Gy gamma rays may be employed in other crop species to improve the agro-economic traits

References

  1. Rachie KO. The millets: importance, utilization and outlook.(1975).
  2. Annison G, Topping DL. Nutritional role of resistant starch: chemical structure vs physiological function. Annual review of nutrition. 1994;14(1):297-320.https://doi.org/10.1146/annurev.nu.14.070194.001501
  3. Gee JM, Johnson IT, Lind L. Physiological properties of resistant starch. European Journal of Clinical Nutrition.1992; 46,125-131.
  4. Lata C, Gupta S, Prasad M. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Critical reviews in biotechnology. 2013;33(3):328-43.https://doi.org/10.3109/07388551.2012.716809
  5. Bergamini N, Padulosi S, Ravi SB, Yenagi N. Minor millets in India: a neglected crop goes mainstream. Diversifying food and diets: using agricultural biodiversity to improve nutrition and health'.(Eds J Fanzo, D Hunter, T Borelli, F Matei) pp. 2013; 26:313-25.
  6. Goud JV, Nayar KM, Rao MG. Radio-sensitivity in ragi (Eleusine coracana). Canadian Journal of Genetics and Cytology. 1969;11(2):254-65.https://doi.org/10.1139/g69-032
  7. Goyal S, Wani MR, Laskar RA, Raina A, Khan S. Assessment on cytotoxic and mutagenic potency of Gamma rays and EMS in Vigna mungo L. Hepper. Biotecnología Vegetal. 2019;19(3):193-204.
  8. Goyal S, Wani MR, Laskar RA, Raina A, Khan S, Raina A. Mutagenic effectiveness and efficiency of individual and combination treatments of gamma rays and Ethyl Methanesulfonate in black gram (Vigna mungo (L.) Hepper). Advances in Zoology and Botany. 2020;8(3):163-8.https://doi.org/10.13189/azb.2020.080311
  9. Goyal S, Wani MR, Raina A, Laskar RA, Khan S. Phenotypic diversity in mutagenized population of urdbean (Vigna mungo (L.) Hepper). Heliyon. 2021;7(5):e06356.https://doi.org/10.1016/j.heliyon.2021.e06356
  10. Ansari, S.B., Raina, A., Amin, R., Jahan, R., Malik, S., Khan S. (2021) Mutation Breeding for Quality Improvement: A Case Study for Oilseed Crops In: Bhat TA (ed) Mutagenesis, Cytotoxicity and Crop Improvement: Revolutionizing Food Science, pp. 171-221, Cambridge Scholars Publishing, Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK
  11. Khursheed S, Raina A, Khan S. Physiological response of two cultivars of faba bean using physical and chemical mutagenesis. International Journal of Advance Research in Science and Engineering. 2018;7(4):897-905.
  12. Goyal S, Wani MR, Laskar RA, Raina A, Khan S. Performance evaluation of induced mutant lines of black gram (Vigna mungo (L.) Hepper). Acta Fytotechn Zootechn. 2020; 23(2):70-7.https://doi.org/10.15414/afz.2020.23.02.70-77
  13. Raina A, Sahu D, Parmeshwar K, Laskar RA, Rajora N, Soa R, Khan S, Ganai RA. Mechanisms of genome maintenance in plants: playing it safe with breaks and bumps. Frontiers in Genetics. 2021;12:675686.doi: 10.3389/fgene.2021.675686https://doi.org/10.3389/fgene.2021.675686
  14. Raina A, Khan S, Wani MR, Laskar RA, Mushtaq W. Chickpea (Cicer arietinum L.) cytogenetics, genetic diversity and breeding. InAdvances in Plant Breeding Strategies: Legumes 2019 (pp. 53-112). Springer, Cham.https://doi.org/10.1007/978-3-030-23400-3_3
  15. Raina, A., Ansari, S.B., Khursheed, S., Wani, M.R., Khan, S., Bhat, T.A. Mutagens their types and mechanism of action with an emphasis on sodium azide and gamma radiations. In: Bhat TA (ed) Mutagenesis, Cytotoxicity and Crop Improvement: Revolutionizing Food Science, (2021b). p. 1-37, Cambridge Scholars Publishing, Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK
  16. Raina A, Laskar RA, Jahan R, Khursheed S, Amin R, Wani MR, Nisa TN, Khan S. Mutation breeding for crop improvement. Introduction to challenges and strategies to improve crop productivity in changing environment. Enriched Publications. PVT. lTD, New Delhi. 2018a: 303-17.
  17. Wani Mr, Tomlekova N, Raina A, Laskar Ra, Khursheed S, Khan S, Tak Ma, Bhat Ta. Mutation Breeding Technique for the Improvement of Pulse Crops with Special Reference to Faba Bean (Vicia faba L.). Mutagenesis, Cytotoxicity and Crop Improvement: Revolutionizing Food Science. 2021b; 11:222.
  18. Raina A, Khan S. Increasing rice grain yield under biotic stresses: mutagenesis, transgenics and genomics approaches. InRice Research for Quality Improvement: Genomics and Genetic Engineering 2020 (pp. 149-178). Springer, Singapore.https://doi.org/10.1007/978-981-15-5337-0_8
  19. Raina A, Khan S, Sahu PK, Sao R. Increasing Rice Grain Yield Under Abiotic Stresses: Mutagenesis, Genomics and Transgenic Approaches. In Rice Research for Quality Improvement: Genomics and Genetic Engineering 2020a; (pp. 753-777). Springer, Singapore.https://doi.org/10.1007/978-981-15-4120-9_31
  20. Raina, A., Laskar, R.A., Malik, S., Wani, M.R., Khan, S., Bhat, T.A. Plant Mutagenesis: Principle and Application in Crop Improvement. In: Bhat TA (ed) Mutagenesis, Cytotoxicity and Crop Improvement: Revolutionizing Food Science, Cambridge Scholars Publishing, (2021c). p. 38-65, Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK
  21. Kulandaivelu G, Noorudeen AM. Comparative study of the action of ultraviolet?C and ultraviolet-B radiation on photosynthetic electron transport. Physiologia plantarum. 1983;58(3):389-94.https://doi.org/10.1111/j.1399-3054.1983.tb04199.x
  22. Zaccone C, D'Orazio V, Shotyk W, Miano TM. Chemical and spectroscopic investigation of porewater and aqueous extracts of corresponding peat samples throughout a bog core (Jura Mountains, Switzerland). Journal of Soils and Sediments. 2009;9(5):443-56.https://doi.org/10.1007/s11368-009-0093-x
  23. Cocozza C, Parente A, Zaccone C, Mininni C, Santamaria P, Miano T. Chemical, physical and spectroscopic characterization of Posidonia oceanica (L.) Del. residues and their possible recycle. biomass and bioenergy. 2011; 35(2):799-807.https://doi.org/10.1016/j.biombioe.2010.10.033
  24. Maurya R, Prasad SM, Gopal R. LIF technique offers the potential for the detection of cadmium-induced alteration in photosynthetic activities of Zea Mays L. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2008;9(1):29-35.https://doi.org/10.1016/j.jphotochemrev.2008.03.001
  25. Buschmann C. Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynthesis Research. 2007;92(2):261-71.https://doi.org/10.1007/s11120-007-9187-8
  26. Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology. 1949;24(1):1.https://doi.org/10.1104/pp.24.1.1
  27. Kirk JT, Allen RL. Dependence of chloroplast pigment synthesis on protein synthesis: effect of actidione. Biochemical and Biophysical Research Communications. 1965;21(6):523-30.https://doi.org/10.1016/0006-291X(65)90516-4
  28. Arulbalachandran D, Mullainathan L, Velu S. Genetic variation in quantitative traits of black gram (Vigna mungo (L.) Hepper) induced by gamma rays treatment in M3 generation. Journal of Phytology. 2009 2;1(5).https://doi.org/10.9755/ejfa.v21i2.5163
  29. Raina AA, Khursheed SH, Khan SA. Optimisation of mutagen doses for gamma rays and sodium azide in cowpea genotypes. Trends Bioscience. 2018b;11(13):2386-9.
  30. Olasupo FO, Ilori CO, Forster BP, Bado S. Mutagenic effects of gamma radiation on eight accessions of Cowpea (Vigna unguiculata [L.] Walp.). American Journal of Plant Sciences. 2016;7(2):339-51.https://doi.org/10.4236/ajps.2016.72034
  31. Ousmane SD, Elegba W, Danso K. Radio-sensibility of pearl millet (Pennisetum glaucum (L.) R. Br.) and cowpea (Vigna unguiculata (L.) Walp.) seed germination and seedling growth. International Journal of Innovation and Applied Studies. 2013;4(4):665.
  32. Horn LN, Chikelou MB, Soleymanne B, Ipinge SN. Radiosensitivity studies in pearl millet (Pennisetum glaucum), Cowpea (Vigna unguiculata) and Sorghum (Sorghum bicolor) varieties in Namibia. Agriculture. 2010;15(1):38-40.
  33. Ambavane AR, Sawardekar SV, Sawantdesai SA, Gokhale NB. Studies on mutagenic effectiveness and efficiency of gamma rays and its effect on quantitative traits in finger millet (Eleusine coracana L. Gaertn). Journal of Radiation Research and Applied Sciences. 2015;8(1):120-5.https://doi.org/10.1016/j.jrras.2014.12.004
  34. Kiong AL, Lai AG, Hussein S, Harun AR. Physiological responses of Orthosiphon stamineus plantlets to gamma irradiation. American-Eurasian journal of sustainable agriculture. 2008;2(2):135-49.
  35. Laskar RA, Laskar AA, Raina A, Khan S, Younus H. Induced mutation analysis with biochemical and molecular characterization of high yielding lentil mutant lines. International Journal of Biological Macromolecules. 2018;109:167-79.https://doi.org/10.1016/j.ijbiomac.2017.12.067
  36. Raina A, Laskar RA, Tantray YR, Khursheed S, Wani MR, Khan S. Characterization of induced high yielding cowpea mutant lines using physiological, biochemical and molecular markers. Scientific Reports. 2020;10(1):1-22.https://doi.org/10.1038/s41598-020-60601-6
  37. Fukuzawa K, Inokami Y, Tokumura A, Terao J, Suzuki A. Rate constants for quenching singlet oxygen and activities for inhibiting lipid peroxidation of carotenoids and ??tocopherol in liposomes. Lipids. 1998;33(8):751-6.https://doi.org/10.1007/s11745-998-0266-y
  38. Van Kooten O, Snel JF. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research. 1990;25(3):147-50.https://doi.org/10.1007/BF00033156
  39. Hendry GA, Grime JP, editors. Methods in comparative plant ecology: a laboratory manual. Springer Science & Business Media; 1993 Jan 31.https://doi.org/10.1007/978-94-011-1494-3
  40. Samson G, Prášil O, Yaakoubd B. Photochemical and thermal phases of chlorophyll a fluorescence. Photosynthetica.1999; 37(2):163-82.https://doi.org/10.1023/A:1007095619317
  41. Maxwell K, Johnson GN. Chlorophyll fluorescence-a practical guide. Journal of experimental botany. 2000;51(345):659-68.https://doi.org/10.1093/jexbot/51.345.659
  42. Rohá?ek K. Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica. 2002;40(1):13-29.https://doi.org/10.1023/A:1020125719386
  43. Baker NR, Rosenqvist E. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany. 2004;55(403):1607-21.https://doi.org/10.1093/jxb/erh196
  44. Netto AT, Campostrini E, de Oliveira JG, Bressan-Smith RE. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae. 2005;104(2):199-209.https://doi.org/10.1016/j.scienta.2004.08.013
  45. Seaton GG, Walker DA. Chlorophyll fluorescence as a measure of photosynthetic carbon assimilation. Proceedings of the Royal Society of London. Series B: Biological Sciences. 1990;242(1303):29-35.https://doi.org/10.1098/rspb.1990.0099
  46. Ojiewo CO, Agong SG, Murakami K, Tanaka SG, Hase Y, Masuda M. Male-sterility induced by gamma-ray irradiation of African nightshade (Solanum nigrum L. ssp. villosum) seed. The Journal of Horticultural Science and Biotechnology. 2005;80(6):699-704.https://doi.org/10.1080/14620316.2005.11512001
  47. Ojiewo CO, Agong SG, Murakami K, Tanaka A, Hase Y, Masuda M. Biological effects of carbon-ion beam on induction of male-sterility and a novel season-dependent floral homeotic mutant in Solanum villosum Miller. The Journal of Horticultural Science and Biotechnology. 2006;81(4):559-64.https://doi.org/10.1080/14620316.2006.11512105
  48. Benjavad Talebi A, Benjavad Talebi A. Radiosensitivity study for identifying the lethal dose in MR219 (Oryza sativa L. spp. Indica cv. MR219). International Journal of Agricultural Science, Research and Technology in Extension and Education Systems. 2012;2(2):63-8.
  49. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature genetics. 2008;40(6):761-767.https://doi.org/10.1038/ng.143
  50. Sheeba A, Ibrahim SM, Yogameenakshi P, Babu S. Studies on induced chlorophyll mutation in sesame (Sesamum indicum L.). 91(1-3):75-78. Madras Agricultural Journal. 2004; 91(1-3):75-78.
  51. Mahto RN, Lal Mahto J. Correlation, regression and path coefficient analysis in rainfed linseed. Madras Agricultural Journal. 1997;84:84-6.
  52. Khan S, Farhatullah R, Khalil IH, Khan MY, Ali N. Genetic variability, heritability and correlation for some quality traits in F3: 4 Brassica populations. Sarhad Journal of Agriculture. 2008;24(2):223-31.
  53. Jan S, Parween T, Siddiqi TO. Effect of gamma radiation on morphological, biochemical, and physiological aspects of plants and plant products. Environmental Reviews. 2012; 20(1):17-39.https://doi.org/10.1139/a11-021

Downloads

Download data is not yet available.