Gamma ray induced positive alterations in morphogenetic and yield attributing traits of finger millet (Eleusine coracana (L.) Gaertn.) in M2 generation

Authors

  • Latha Sellapillai Division of Crop Breeding and Molecular Breeding Laboratory, Department of Botany, Periyar University, Salem, Tamil Nadu, India https://orcid.org/0000-0001-9247-0824
  • Arulbalachandran Dhanarajan Division of Crop Breeding and Molecular Breeding Laboratory, Department of Botany, Periyar University, Salem, Tamil Nadu, India
  • Aamir Raina Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India https://orcid.org/0000-0001-8810-7432
  • Aswini Ganesan Division of Crop Breeding and Molecular Breeding Laboratory, Department of Botany, Periyar University, Salem, Tamil Nadu, India

DOI:

https://doi.org/10.14719/pst.1807

Keywords:

Genetic advance, Genetic variability, Heritability, Mutations, Yield improvement

Abstract

Induced mutagenesis by gamma rays plays a potent promising technology to be applied for crop improvement through breeding methods, especially in tiny florets possessing self- pollinated plants such as cereals. Finger millet (Eleusine coracana (L.) Gaertn.) which always ensured for valuable nutrients, as well as famine tolerant crop to supply food for global population throughout the year. The present study was performed to assess the spectrum and frequency of macro mutants induced by gamma radiations in M2 generation finger millet. The chlorophyll mutants viz., albina, xantha, chlorina and viridis and morphological mutants such as tall, dwarf, bushy, brittle stalk and broad leaf were recorded in different doses. Among the mutagen doses 600 Gy dose induced maximum increase in mean values and phenotypic and genotypic coefficients of variation for the plant height (cm), number of leaves per plant, leaf length (cm), number of tillers per plant, number of panicles per plant, panicle length, days to 50% flowering, and 1000 seeds weight. Except for panicle number/plant and 1000 seed weight, all traits showed high heritability in all doses. The results revealed a progressive decrease in mean values of quantitative traits with the increase in doses. The present study provides an idea about the optimum dose of gamma rays from a pool of doses that could be employed in future breeding programmes.

Downloads

Download data is not yet available.

References

Raina A, Laskar RA, Khursheed S, Amin R, Tantray YR, Parveen K, Khan S. Role of mutation breeding in crop improvement-past, present and future. Asian Research Journal of Agriculture. 2016;2(2):1-3. https://doi.org/10.9734/ARJA/2016/29334

Raina A, Sahu D, Parmeshwar K, Laskar RA, Rajora N, Soa R, Khan S, Ganai RA. Mechanisms of genome maintenance in plants: playing it safe with breaks and bumps. Frontiers in Genetics. 2021;12:861. https://doi.org/10.3389/fgene.2021.675686

Raina AA, Khursheed S, Khan S. Optimisation of mutagen doses for gamma rays and sodium azide in cowpea genotypes. Trends Biosci. 2018;11(13):2386-89.

Arulbalachandran D, Mullainathan L, Velu S. Screening of mutants in black gram (Vigna mungo (L.) Hepper) with effect of DES and COH in M2 generation. J Phytol. 2009; 1(4):213-18.

Devi AS, Mullainathan L. Effect of gamma rays and ethyl methane sulphonate (EMS) in M3 generation of black gram (Vigna mungo (L.) Hepper). Afr J Biotechnol. 2012; 11(15):3548-52. https://doi.org/10.5897/AJB10.1773

Tshilenge -Lukanda L, Kalonji-Mbuyi A, Nkongolo KK, Kizungu RV. Effect of gamma irradiation on morpho-agronomic characteristics of groundnut (Arachis hypogaea L.). Am J Plant Sci. 2013; Nov 13; 4 (11): 2186. https://doi.org/10.4236/ajps.2013.411271

Rajput MA, Sarwar G, Siddiqui KA. Development of high yielding mutants in lentil. 2001.

Sadiq MS, Haidar S, Haq MA, Abbas G. A high yielding and disease resistant mutant of lentil developed through seed irradiation of an exotic germplasm. Can J Appl Sci. 2008; May: 411.

Jayawardena SD, Peiris R. Food crops breeding in Sri Lanka-achievements and challenges. BIO News. 1988; 4(2):22-34.

Donini P, Sonnino A. Induced mutation in plant breeding: current status and future outlook. In: Somaclonal Variation and Induced Mutations in Crop Improvement Dordrecht: Springer. 1998; 255-91. https://doi.org/10.1007/978-94-015-9125-6_14

Schum A. Mutation breeding in ornamentals: an efficient breeding method? In: XXI International Eucarpia Symposium on Classical versus Molecular Breeding of Ornamentals-Part I. 612 2003; Aug 25 pp. 47-60. https://doi.org/10.17660/ActaHortic; 2003.612.6

Yoon KE, Im BG, Park YH. Effect of gamma radiation on seed germination and androgenesis in Nicotiana tabacum L. Korean Journal of Breeding (Korea R.). 1990.

Kumar VA, Vairam N, Amutha R. Effect of physical mutagen on expression of characters in arid legume pulse cowpea (Vigna unguiculata (L.) Walp.). Electron J Plant Breed. 2010; 1(4):908-14.

Selvam YA, Elangaimannan R, Venkatesan M, Karthikeyan P, Palaniraja K. Chemically induced mutagenesis in blackgram (Vigna mungo (L.) Hepper). Electron J Plant Breed. 2010; Jul; 1(4):921-24.

Sangsiri C, Sorajjapinun W, Srinives P. Gamma radiation induced mutations in mung bean. Sci Asia. 2005; 31:251-55. https://doi.org/10.2306/scienceasia1513-1874.2005.31.251

Wani AA. Induced polygenic variability for quantitative traits in chickpea var. Pusa-372. Comun Sci. 2011; 2 (2):100-16.

Wani MR, Kozgar MI, Tomlekova N, Khan S, Kazi AG, Sheikh SA, Ahmad P. Mutation breeding: A novel technique for genetic improvement of pulse crops particularly chickpea (Cicer arietinum L.). Improvement of crops in the era of climatic changes. 2014; 217-48. https://doi.org/10.1007/978-1-4614-8824-8-9.

Kozgar MI, Kozgar IM. Mutation Breeding in Chickpea. De Gruyter Open Poland. 2014; Sep 1.

Tabasum A, Saleem M, Aziz I. Genetic variability, trait association and path analysis of yield and yield components in mungbean (Vigna radiata (L.) Wilczek). Pak J Bot. 2010; Dec 1; 42(6):3915-24.

Gustafsson Å. The mutation system of the chlorophyll apparatus. Kungliga Fysiografiska Sallskapets i Lund Handlingar. 1940;51(11).

Blixt S. Quantitative studies of induced mutations in peas. V. Chlorophyll mutations. Agri Hort Genet. 1961; Jan 1;19.

Burton GW. Qualitative inheritance in grasses. Vol. 1. In: Proceedings of the 6th International Grassland Congress, Pennsylvania State College. 1952; Aug pp. 17-23.

Sivasubramanian J, Madhavamenon P 1973. Genotypic and phenotypic variability in rice. Madras Agric J. 12: 15-16.

Lush JL. Intra-sire correlations or regressions of offspring on dam as a method of estimating heritability of characteristics. Journal of Animal Science. 1940 Dec 1; 1940(1):293-301.

Robinson HF. Quantitative genetics in relation to breeding on centennial of Mendelism. In Indian Journal of Genetics and Plant Breeding. 1966; Jan 1 p. 171. Indian Agriculture Res Inst, New Delhi-110 012, India: Indian Soc Genet Plant Breed.

Johnson HW, Robinson HF, Comstock RE. Estimates of genetic and environmental variability in soybeans. Agronomy Journal. 1955;47(7):314-https://doi.org/10.2134/agronj1955.00021962004700070009x

Raina A, Laskar RA, Tantray YR, Khursheed S, and Samiullah Khan. Characterization of induced high yielding cowpea mutant lines using physiological, biochemical and molecular markers. Sci Rep. 2020; 10:3687. https://doi.org/10.1038/s41598-020-60601-6

Raina A, Laskar RA, Wani MR, Jan BL, Ali S, Khan S Comparative mutagenic effectiveness and efficiency of gamma rays and sodium azide in inducing chlorophyll and morphological mutants of cowpea. Plants. 2022;11:1322. DOI 10.3390/plants11101322

Laskar RA, Khan S, Deb CR, Tomlekova N, Wani MR, Raina A, Amin R. Lentil (Lens culinaris Medik.) diversity, cytogenetics and breeding. In: Advances in plant breeding strategies: legumes. Springer, Cham. 2019; pp. 319-69. https://doi.org/10.1007/978-3-030-23400-3_9

Wani MR, Laskar RA, Raina A, Khan S, Khan TU. Application of chemical mutagenesis for improvement of productivity traits in lentil (Lens culinaris Medik). Annals of Biology. 2021; 37(1): 69-75.

Khursheed S, Laskar RA, Raina A, Amin R, Khan S. Comparative analysis of cytological abnormalities induced in Vicia faba L. genotypes using physical and chemical mutagenesis. Chromosome Sci. 2015. 18(3):47-51.

Khursheed S, Raina A, Khan S. Improvement of yield and mineral content in two cultivars of Vicia faba L. through physical and chemical mutagenesis and their character association analysis. 2016a. Archieves Current Res Int. 4(1):1-7. https://doi.org/10.9734/ACRI/2016/24802

Laskar RA, Khan S, Khursheed S, Raina A, Amin R. Quantitative analysis of induced phenotypic diversity in chickpea using physical and chemical mutagenesis. J Agron. 2015;14:102. https://doi.org/10.3923/ja.2015.102.111

Raina A, Laskar RA, Khursheed S, Khan S, Parveen K, Amin R. Induce physical and chemical mutagenesis for improvement of yield attributing traits and their correlation analysis in chickpea. International Letters of Natural Sciences. 2017; 61. https://doi.org/10.18052/www.scipress.com/ILNS.61.14

Goyal S, Wani MR, Laskar RA, Raina A, Khan S. Mutagenic effectiveness and efficiency of individual and combination treatments of gamma rays and ethyl methanesulfonate in black gram [Vigna mungo (L.) Hepper]. Advances in Zoology and Botany. 2020a; 8 (3): 163-68. https://doi.org/10.13189/azb.2020.080311

Goyal S, Wani MR, Laskar RA, Raina A, Khan S. Performance evaluation of induced mutant lines of black gram (Vigna mungo (L.) Hepper). Acta fytotechn zootechn. 2020b; Jun 18;23(2):70-77. https://doi.org/10.15414/afz.2020.23.02.70-77

Wani MR, Dar AR, Tak A, Amin I, Shah NH, Rehman R, Baba MY, Raina A, Laskar R, Kozgar MI et al. Chemo-induced pod and seed mutants in mung bean (Vigna radiata (L.) Wilczek). SAARC J Agric. 2017; 15:57-67. https://doi.org/10.3329/sja.v15i2.35161

Raina A, Khan S. Increasing rice grain yield under biotic stresses: mutagenesis, transgenics and genomics approaches. In: Rice Research for Quality Improvement: Genomics and Genetic Engineering. 2020; pp. 149-78. Springer, Singapore. DOI: 10.1007/978-981-15-5337-0_8. https://doi.org/10.1007/978-981-15-5337-0_8

Raina A, Parmeshwar K, Khan S. Increasing Rice Grain Yield Under Abiotic Stresses: Mutagenesis, Transgenics and Genomics Approaches. In: Aryadeep C (Ed) Rice Research for Quality Improvement: Genomics and Genetic Engineering. Springer. 2020; 753-77. DOI: 10.1007/978-981-15-4120-9_31

Tantray AY, Raina A, Khursheed S, Amin RU, Khan SA. Chemical mutagen affects pollination and locule formation in capsules of black cumin (Nigella sativa L.). Intl J Agric Sci. 2017;8(1):108-17.

Amin R, Wani MR, Raina A, Khursheed S, Khan S. Induced morphological and chromosomal diversity in the mutagenized population of black cumin (Nigella sativa L.) using single and combination treatments of gamma rays and ethyl methane sulfonate. Jordan Journal of Biological Sciences. 2019; Mar 1;12(1).

Hassan N, Laskar RA, Raina A, Khan S. Maleic hydrazide induced variability in fenugreek (Trigonella foenum-graecum L.) cultivars CO1 and Rmt-1. Res Rev J Bot Sci. 2018; 7(1):19-28.

Sellapillaibanumathi L, Dhanarajan A, Raina A, Ganesan A. Effects of gamma radiations on morphological and physiological traits of finger millet (Eleusine coracana (L.) Gaertn.). Plant Sci Today. 2022; Jan 1;9(1):89-95. https://doi.org/10.14719/pst.1142

Arulbalachandran D. Physical and chemical mutagenesis in black gram (Vigna mungo (L.) Hepper) Ph.D [thesis], Annamalai University; 2006.

Gnanamurthy S, Dhanavel D, Bharathi T. Effect of chemical mutagenesis on biochemical activity and variability, heritability and genetic advances in Zea mays (L.). International Journal of Current Science. 2013;(5):57-61.

Khan S. Genetic variability and correlations studies in chickpea mutants. J Cytol Genet; 2005; 6:155-60.

Dhanavel D, Gnanamurthy S, Girija M. Effect of gamma rays on induced chromosomal variation in cowpea Vigna unguiculata (L.) Walp. International Journal of Current Science. 2012;2012:245-50.

Vanmathi S, Arulbalachandran D, Soundarya V. Effects of gamma radiation on quantitative traits and genetic variation of three successive generations of cowpea (Vigna unguiculata (L.) Walp.). Plant Sci Today; 2021. Jul 1;8(3):578-88. https://doi.org/10.14719/pst.2021.8.3.1054

Saroj SK, Poudel PP, Singh MN. Induced genetic variability with EMS and studies on frequency and spectrum of chlorophyll mutations in pigeon pea. Electron J Plant Breed. 2016; Sep 12;7(2):209-14. https://doi.org/10.5958/0975-928X.2016.00029.6

Geetha K, Vaidyanathan P. Studies on induction of chlorophyll mutations in soyabean through physical and chemical mutagens. Agric Sci Digest. 2000; 20(1):33-35.

Raina A, Laskar RA, Wani MR, Jan BL, Ali S, Khan S. Gamma rays and sodium azide induced genetic variability in high yielding and biofortified mutant lines in cowpea [Vigna unguiculata (L.) Walp.]. Frontiers in Plant Sciences. 2022b; 13:911049. doi: 10.3389/fpls.2022.911049

Usharani KS, Kumar CA. Induced viable mutants in urd bean (Vigna mungo (L.) Hepper). Bioscan. 2015; Aug 14; 10(3):1103-08.

Rasik S, Raina A, Laskar RA, Wani MR, Reshi ZA, Khan S, Ndhlala AR. Lower doses of Sodium azide and Methyl methane sulphonate improved yield and pigment contents in vegetable cowpea [Vigna unguiculata (L.) Walp.]. South African Journal of Botany. 148:727-36. doi.org/10.1016/j.sajb.2022.04.034.

Raina A, Khan S, Laskar RA, Wani MR, Mushtaq W. Chickpea (Cicer arietinum L.) cytogenetics, genetic diversity and breeding. In: Al-Khayri JM et al (Eds) Advances in Plant Breeding: Legumes. Springer, Cham. 2019;pp. 53-112. https://doi.org/10.1007/978-3-030-23400-3_3

Khursheed S, Raina A, Parveen K, Khan S. Induced phenotypic diversity in the mutagenized populations of faba bean using physical and chemical mutagenesis. J Saudi Society Agric Sci. 2019.18 (2):113-19. doi.org/10.1016/j.jssas.2017.03.001

Goyal S, Wani MR, Laskar RA, Raina A, Khan S. Assessment on cytotoxic and mutagenic potency of Gamma rays and EMS in Vigna mungo (L.) Hepper. Biotecnología Vegetal. 2019a Sep;19(3):193-204.

Goyal S, Wani MR, Laskar RA, Raina A, Amin R, Khan S. Induction of morphological mutations and mutant phenotyping in black gram [Vigna mungo (L.) Hepper] using gamma rays and EMS. Vegetos. 2019b. Dec;32(4):464-72. https://doi.org/10.1007/s42535-019-00057-w

Kautsky H, Hirsch A. Chlorophyll fluoreszenz und kohlensäure assimilation. I.D as fluoreszenzverhalten grüner pflanzen. Biochem Z. 1934; 274:423-34.

Lavorel J, Etienne AL. In vivo chlorophyll fluorescence. In: Primary Processes in Photosynthesises. (Ed. J Barber). 1977; pp. 203-68.

Krause GH, Weis E. Chlorophyll fluorescence as a tool in plant physiology. Photosynth Res. 1984; Jun; 5(2):139-57. https://doi.org/10.1007/BF00028527

Briantais JM, Dacosta J, Goulas Y, Ducruet JM, Moya I. Heat stress induces in leaves an increase of the minimum level of chlorophyll fluorescence, Fo: a time-resolved analysis. Photosynthesis Research. 1996; May;48(1):189-96. https://doi.org/10.1007/BF00041008

Renger GE, Schreiber UL. Practical applications of fluorometric methods to algae and higher plant research. Light emission by plants and bacteria. 1986; 587-619.

https://doi.org/10.1016/B978-0-12-294310-2.50025-1

Smillie RM, Nott R. Salt tolerance in crop plants monitored by chlorophyll fluorescence in vivo. Plant Physiol. 1982; Oct;70(4):1049-54. https://doi.org/10.1104/pp.70.4.1049

Schreiber U, Bilger W. Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements. In: Plant Response to Stress; Springer, Berlin, Heidelberg. 1987; pp. 27-53. https://doi.org/ 10.1007/978-3-642-70868-8_2

Baker NR. Chlorophyll fluorescence quenching during photo inhibition. Photo Inhibition. 1988.

Strand M, Oquist G. Effects of frost hardening, dehardening and freezing stress on in vivo chlorophyll fluorescence of Scots pine seedlings (Pinus sylvestris L.). Plant Cell Environ;1988. 11:231-38.https://doi.org/10.1111/j.1365-3040.1988.tb01141.x

Ogunniyan DJ, Olakojo SA. Genetic variation, heritability, genetic advance and agronomic character association of yellow elite inbred lines of maize (Zea mays L.). Niger J Genet. 2014; Jul 1; 28(2):24-28. https://doi.org/10.1016/j.nigjg.2015.06.005

Laskar RA, Wani MR, Raina A, Amin R, Khan S. Morphological characterization of gamma rays induced multi podding mutant (mp) in lentil cultivar Pant L 406. International Journal of Radiation Biology. 2018b; 94(11):1049-53. https://doi.org/10.1080/09553002.2018.1511927

Goyal S, Wani MR, Raina A, Laskar RA, Khan S. Quantitative assessments on induced high yielding mutant lines in urd bean [Vigna mungo (L.) Hepper]. Legume Science. 2021a.: e125.https://doi.org/10.1002/leg3.125

Goyal S, Wani MR, Raina A, Laskar RA, Khan S. Phenotypic diversity in mutagenized population of urdbean (Vigna mungo (L.) Hepper). Heliyon. 2021b; May 1;7(5): e06356. https://doi.org/10.1016/j.heliyon.2021.e06356

Unche PB, Misal MB, Borgaonkar SB, Godhawale GV, Chavan BD, Sawant DR. Genetic variability studies in sweet sorghum (Sorghum bicolor L. Moench). Int J Plant Sci. 2008; 3(1):16-18.

Khursheed S, Raina A, Laskar RA, Khan S. Effect of gamma radiation and EMS on mutation rate: their effectiveness and efficiency in faba bean (Vicia faba L.). Caryologia. 2018a. Oct 2;71(4):397-404. doi.org/10.1080/00087114.2018.1485430.

Khursheed S, Raina A, Khan S. Physiological response of two cultivars of faba bean using physical and chemical mutagenesis. International Journal of Advance Research in Science and Engineering. (IJARSE) 2018b;7(4):897-905.

Khursheed S, Raina A, Amin R, Wani MR, Khan S. Quantitative analysis of genetic parameters in the mutagenized population of faba bean (Vicia faba L.). Research on Crops. 2018c Jun 1;19(2). https://doi.org/10.5958/2348-7542.2018.00041.4

Published

26-08-2022 — Updated on 01-10-2022

Versions

How to Cite

1.
Sellapillai L, Dhanarajan A, Raina A, Ganesan A. Gamma ray induced positive alterations in morphogenetic and yield attributing traits of finger millet (Eleusine coracana (L.) Gaertn.) in M2 generation. Plant Sci. Today [Internet]. 2022 Oct. 1 [cited 2024 Nov. 21];9(4):939-4. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/1807

Issue

Section

Research Articles

Most read articles by the same author(s)