Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 10 No. 3 (2023)

Mutagenic effect of gamma rays on induced mutation and principal component analysis of yield characters on green gram in M2 generation

DOI
https://doi.org/10.14719/pst.2187
Submitted
14 October 2022
Published
14-04-2023 — Updated on 01-07-2023
Versions

Abstract

The present study was aimed to evaluate the effect of gamma irradiation on green gram through chlorophyll mutation frequency, leaf mutation frequency, mutagenic effectiveness and efficiency and principal component analysis. Eight different types of chlorophyll mutants, namely albino, aurea, striata, tigrina, xantha, chlorina, viridis, xanthaviridis and variegated were observed at different doses of gamma irradiation in M2 generation. Albino showed the highest frequency percentage (0.229) followed by Viridis (0.163) and Xantha (0.131) and the highest frequency was noted at 500 Gray (Gy). Though, chlorophyll mutants can be lethal in nature, they increase genetic variability and induce new traits. Leaf mutant is another key indicator for induced mutations that induce leaf morphology changes and the highest frequency was noted in 500 Gy. Among the mutagenic treatments, the mutagenic effectiveness shows the maximum at 100 Gy and efficiency shows at 500 Gy. This indicated that low to moderate doses are more effective for induced mutation. This was also confirmed by Principal Component Analysis (PCA) results, which specified that gamma irradiation of 500 Gy indicated that the first five principal components were attributed to 70.82% total variability of traits studied. From this, the experimental finding evidently showed that 500 Gy of gamma irradiation, an optimum dose, resulted in considerable variation in all the parameters analyzed.

References

  1. Van Eenennaam AL, Wells KD, Murray JD. Proposed US regulation of gene-edited food animals is not fit for purpose. npj Science of Food, Nature 2019; 3(1): pp. 1-7. https://doi.org/10.1038/s41538-019-0035-y
  2. Hasbullah NA, Taha RM, Saleh A, Mahmad N. Irradiation effect on in vitro organogenesis, callus growth and plantlet development of Gerbera jamesonii. Hortic Bras. 2012; 30:252-57. https://doi.org/10.1590/S1516-89132012000300012
  3. Vardhan PV, Shukla LI. Gamma irradiation of medicinally important plants and the enhancement of secondary metabolite production. Int J Radiat Biol. 2017; 93:967-79. https://doi.org/10.1080/09553002.2017.1344788
  4. San Martin W. Global nitrogen in sustainable development: four challenges at the Interface of science and policy. Life on Land, 2021; 485-99. https://doi.org/10.1007/978-3-319-95981-8_114
  5. Stainier DY, Raz E, Lawson ND, Ekker SC, Burdine RD, Eisen JS, Ingham PW, Schulte-Merker S, Yelon D, Weinstein BM, Mullins MC., 2017. Guidelines for morpholino use in zebrafish. PLOS genetics 13(10) p.e1007000. https://doi.org/10.1371/journal.pgen.1007000
  6. Jankowicz-Cieslak J, Mba C, Till BJ. Mutagenesis for crop breeding and functional genomics. In: Biotechnologies for Plant Mutation Breeding 2017; 3-18. Springer, Cham. https://doi.org/10.1007/978-3-319-45021-6_1
  7. Patil BM, Rane GM. Gamma radiation induced chlorophyll mutations in cluster bean (Cyamopsis tetragonoloba (L.) Taub) var. NCB-12. Int J Allied Pract Res Rev. 2015; 2: 75-85.
  8. Asare AT, Mensah F, Acheampong S, Asare-Bediako E, Armah J. Effects of gamma irradiation on agromorphological characteristics of okra (Abelmoschus esculentus L. Moench.). Advances in Agriculture 2017;2385106 https://doi.org/10.1155/2017/2385106
  9. Yamaguchi H. Mutation breeding of ornamental plants using ion beams. Breeding Science. 2018;68(1):71-78. https://doi.org/10.1270/jsbbs.17086
  10. International Atomic Energy Agency (IAEA)., Mutant variety database. https://mvd.iaea.org, 2017.
  11. Arisha MH, Shah SN, Gong ZH, Jing H, Li C, Zhang HX. Ethyl methane sulfonate induced mutations in M2 generation and physiological variations in M1 generation of peppers (Capsicum annuum L.). Front Plant Sci. 2015; 6:399. https://doi.org/10.3389/fpls.2015.00399
  12. Kowalewska A. Mung beans nutritional value and recipes. Feed the future, The U.S. Government global hunger and food security initiatives. 2018. https://ingenaes.illinois.edu/wp-content/uploads/INGInfo-Sheet-2018_05-Mungbeans-nutritional-value-recipes- Kowalewska.pdf
  13. Uzoh IM, Igwe CA, Okebalama CB, Babalola OO. Legume-maize rotation effect on maize productivity and soil fertility parameters under selected agronomic practices in a sandy loam soil, Scientific reports 2019; 9(1):1-9. https://doi.org/10.1038/s41598-019-43679-5
  14. Ramesh M, Vanniarajan C, Ravikesavan, Eraivan Arutkani Aiyanathan K, Mahendran PP. Determination of lethal dose and effect of EMS and gamma ray on germination percentage and seedling parameters in barnyard millet variety Co (Kv) 2. Electron J Plant Breed. 2019; 10(2):957-62. https://doi.org/10.5958/0975-928X.2019.00123.6
  15. Gustafsson A. Induction of changes in genes and chromosomes II. Mutation, environment and evolution. Cold spring Harbour Symp, Quant. Bio. 1951; 16:263-81. https://doi.org/10.1101/SQB.1951.016.01.021
  16. Azigwe C, Zoryeku PAD, Asante IK, Oppong-Adjei F. Effect of gamma irradiation on chlorophyll content in the cowpea (Vigna unguiculata (L.) Walp). Ghana J. Sci. 2020; 61 (2): 113-17. https://dx.doi.org/10.4314/gjs.v61i2.11
  17. Matthew P. Johnson; Photosynthesis. Essays Biochem. 2016; 60 (3): 255-73. https://doi.org/10.1042/EBC20160016
  18. Das TR, Misra RC, Sahu PK. Efficiency of mutagenic treatments in expression of macro and micro mutations in M2 generation in greengram and its early predictability on basis of M1 parameters. Environment & Ecology. 2006;24(2):283-88.
  19. Konzak CF, Nilan RA. Wagner J, Foster RJ. Efficient chemical mutagenesis. The use of induced mutations in plant breeding (FAO / IAEA Meeting, Rome). Radiat Bot., (Suppl.) 1965;75:49-70.
  20. Julia T, Renuka T, Nanita H, Jambhulkar S. Mutagenic effectiveness and efficiency of gamma rays in Indian mustard (Brassica juncea L. Czern and Coss) Int J Curr Microbiol Appl Sci. 2018;7:3376-86. https://doi.org/10.20546/ijcmas.2018.703.390
  21. Guei RG, Sanni KA, Fawole AFJ. Genetic diversity of rice (O. sativa L.). Agron Afr. 2005;5:17-28.
  22. Gustafsson A. The mutation system of the chlorophyll apparatus. Lunds Univ Arsskr. 1940;36:1-40.
  23. Gaul H. Critical analysis of the methods for determining the mutation frequency after seed treatment with mutates. Genetic Agrigaria. 1960;12(3, 4):297-318.
  24. Nilesh Pawar, Sandeep Pai, Mansingraj Nimbalkar, Firdose Kolar, Ghansham Dixit. Induction of chlorophyll mutants in Zingiber officinale Roscoe by Gamma Rays and EMS. Emir J Food Agric. 2010; 22 (5): 406-11. http://ffa.uaeu.ac.ae/ejfa.shtml https://doi.org/10.9755/ejfa.v22i5.4828
  25. Vairam N. Mutation Studies for the improvement of Elite Unexplored traits in Green gram (Vigna radiata L.) Wilczek). Phd. (Ag) Thesis, AC and RI. Madurai, 2014.
  26. Rukesh AG, Rahuman MA, Latitia SC, Packiaraj D. Impact of gamma irradiation induced mutation on morphological and yield contributing traits of two genotypes of Green gram (Vigna radiata L.). Journal of Pharmacognosy and Phytochemistry. 2017; 6(6):1229-34.
  27. Arulsevi S, Suresh S, Dhole VJ. Occurrence of chlorophyll deficient mutants in the mutated populations of greengram (Vigna radiata (L.) Wilczek). Electronic Journal of Plant Breeding. 2019;10(1):303-06. DOI: 10.5958/0975-928X.2019.00038.3
  28. Sanjay Gandhi E, S Umavathi, L Mullainathan. Studies on induced chlorophyll mutants in green gram (Vigna radiata (L.) Wilczek). International J of Advanced Res. 2014; 2(2):01-04.
  29. Kousar Makeen, G Suresh Babu. Mutagenic effectiveness and efficiency of gamma rays, sodium azide and their synergistic effects in urd bean (Vigna mungo L.). World Journal of Agricultural Sciences. 2010;6(2):234-37.
  30. Yogalakshmi S. Induced mutagenesis in black gram [Vigna mungo (L.). Hepper] for identification of new plant type. M.Sc. (Ag.) Thesis, Tamil Nadu Agric Univ., Coimbatore, 2013.
  31. Digbijaya Swain, Bhabendra Baisakh, Swapan K Tripathy and Devraj Lenka. Mutagenic effect of gamma rays, EMS, NG and their combinations for induction of Chlorophyll and macro-mutations in mungbean (Vigna radiata (L.) Wilczek) (2019) Journal of Pharmacognosy and Phytochemistry. 2019;8(5):2489-95.
  32. Aamir Raina, Rafiul Amin Laskar, Mohammad Rafiq Wani, Basit Latief Jan, Sajad Ali and Samiullah Khan. Comparative mutagenic effectiveness and efficiency of gamma rays and sodium azide in inducing chlorophyll and morphological mutants of cowpea plants. 2022;11:1322. https://doi.org/10.3390/plants11101322
  33. Dhanavel D, Pavadai P, Mullainathan L, Mohana D, Raju G, Girija M. Effectiveness and efficiency of chemical mutagens in cowpea (Vigna unguiculata (L.) Walp.). African Journal of Biotechnology. 2008;7:4116-17.
  34. Goverdhan G, Lal GM. Mutagenic effectiveness of gamma rays in field pea (Pisum sativum L.). Indian Journal of Plant Sciences. 2013;2(3):73-76.
  35. Wani MR, Dar AR, Tak A, Amin I, Shah NH, Rehman R, Baba MY, et al. Chemo-induced pod and seed mutants in mung bean (Vigna radiata (L.) Wilczek). SAARC Journal of Agriculture. 2017;15:57-67. http://dx.doi.org/10.3329/sja.v15i2.35161
  36. Laskar RA, Laskar AA, Raina A, Khan S, Younus H. Induced mutation analysis with biochemical and molecular characterization of high yielding lentil mutant lines. International Journal of Biological Macromolecules. 2018;109:167-79. https://doi.org/10.1016/j.ijbiomac.2017.12.067
  37. Shinde MS. Induced mutation in Guar (Cyamopsis tetragonoloba (L.) Taub.). Ph.D. Thesis, University of Pune, 2013.
  38. Veni K, Vanniarajan C, Souframanien J. Effect of gamma rays on quantitative traits of Urdbean in M1 generation. Adva in Life Sci. 2016;5(6):2066-70.
  39. Girija M, Dhanavel D. Effect of gamma rays on quantitative traits of cowpea in M1 generation. Inter Jour of Res in Biol Sci. 2013;3(2):84-87.
  40. Yasmin K, Arulbalachandran D. Effect of Gamma Rays on morphological and quantitative traits of Black gram (Vigna mungo (L.) Hepper) in M1 Generation. Inter Jour Curr Tre in Res. 2016;4(2):5-12.
  41. Ignacimuthu S, Babu CR. Radio sensitivity of the wild and cultivated urd and mung beans. Indi J Genet. 1988;48:331-42.
  42. Kumar Y, Mishra VK. Effect of gamma rays and diethyl sulphate on germination, growth, fertility and yield in green gram (Vigna radiata (L.) Wilczek). Annu of Agric Res. 1999;20(2):144-47.
  43. Kumari V, Chaudhary HK, Prasad R, Kumar A, Singh A, Jambhulkar S. Effect of mutagenesis on germination, growth and fertility in sesame (Sesamum indicum L.). Annu Res and Revi in Biol. 2016;10(6):1-9. https://doi.org/10.9734/ARRB/2016/26983
  44. Ravichandran V, Jaykumar S. Effect of gamma rays on quantitative traits of sesame (Sesamum indicum L.) in M1 generation. Inter Jour of Adva Res. 2014; 2(8):593-97.
  45. Deepalakshmi AJ, Anandakumar CR. Efficiency and effectiveness of physical and chemical mutagens in urdbean (Vigna mungo (L.) Hepper). Madras Agric J 2003;90(7-9):485-89.
  46. Abdul M, Khan AUR, Ahmad H, Muhammed Z. ? irradiation effects on some growth parameters of Lepidium sativum L. ARPN Journal of Agricultural and Biological Science. 2010;5(1):39-42.
  47. Banu MR, Kalamani A, Ashok S, Makesh S. Effect of mutagenic treatments on quantitative characters in M1, generation of cowpea (Vigna unguiculata (L.) Walp). Adva in Plan Sci. 2005;18 (2):505.
  48. Thilagavathi C, Mullainathan L. Influence of physical and chemical mutagens on quantitative characters of (Vigna mungo (L.) Hepper). Inter Multidi Res Jour. 2011; 22;1(1):6-8.
  49. Khan MR, Qureshi AS, Hussain SA, Ibrahim M. Genetic variability induced by gamma irradiation and its modulation with gibberellic acid in M2 generation of chickpea (Cicer arietinum (L.)). Pakis Jour of Bot. 2005;37(2):285.
  50. Girija SP, Tambe AB, Apparao BJ. Induction of a Novel, high yielding Mutant of Pigeon pea. Asi J Exp Biol Sci Spl. 2010;152-55.
  51. Karthika IR, Subba B. Effect of gamma rays and EMS on two varieties of soybean. Asi Jour of Biolo Sci. 2006; 5:721-24. https://doi.org/10.3923/ajps.2006.721.724
  52. Khursheed T, Ansari MY, Shahab D. Studies on the effect of caffeine on growth and yield parameters in Helianthus annuus L. variety Modern. 2009.
  53. Tahir A, Ilyas MK, Sardar MM. Selection criteria for yield potential in a large collection of Vigna radiata (L.) accessions. Euphytica. 2020;126-38. https://link.springer.com/article/10.1007/s10681-020-02675-x https://doi.org/10.1007/s10681-020-02675-x
  54. Thippani S, Eshwari KB, Bramheshwar MV. Genetic divergence in greengram (Vigna radiata (L.) Wilczek). Journal of Progressive Agriculture. 2017;4(2):117-19.

Downloads

Download data is not yet available.