Research Articles
Early Access
Comparative in-silico analysis of the bHLH protein family in rice Oryza sativa subsp. japonica cv. Nipponbare
Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur 208 002, Uttar Pradesh, India
Department of Genetics and Plant Breeding, Banaras Hindu University Varanasi 221 005, Uttar Pradesh, India
Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur 208 002, Uttar Pradesh, India
Department of Genetics and Plant Breeding, NDUAT University, Ayodhya 224229, Uttar Pradesh, India
Department of Plant Pathology, Banaras Hindu University, Varanasi 221 005, Uttar Pradesh, India
Abstract
The basic Helix-Loop-Helix (bHLH) proteins are key regulators of gene expression, development and responses to environmental stimuli in plants. In this study, we performed a comprehensive computational analysis of six bHLH proteins (OsbHLH056, OsbHLH057, OsbHLH058, OsbHLH059, OsbHLH062 and OsbHLH063) in Oryza sativa subsp. japonica cv. Nipponbare. Their physicochemical properties, secondary and tertiary structures, domains, phylogenetic relationships, subcellular localisation and protein-protein interactions were investigated. Results showed that OsbHLH062 had the highest molecular weight (29,686.27 kilodalton (kDa) and amino acid number (265), while OsbHLH058 had the lowest (7,896.08 kDa; 77 amino acids). Isoelectric point analysis indicated five proteins were acidic, while OsbHLH058 was basic. All proteins were predicted to be unstable, reflecting the flexibility essential for regulation. Aliphatic index values (61.13–85.26) suggested moderate thermo-stability. The secondary structure was dominated by α-helices, which enhance structural stability and the extinction coefficients suggested enrichment of cysteine, tryptophan and tyrosine residues. Phylogenetic analysis showed OsbHLH057 as the earliest ancestor among the six proteins. Subcellular localisation predictions identified nuclear targeting for all proteins, with OsbHLH059 showing the highest nuclear localisation probability. Protein-protein interaction analysis highlighted potential partners, implying roles in diverse cellular pathways. This study provides valuable insights into the molecular characteristics, structure and interactions of rice bHLH proteins. These findings form a foundation for experimental validation and functional characterisation. Understanding these proteins may enable the development of innovative strategies to enhance abiotic stress tolerance and crop productivity in rice.
References
- 1. Mthiyane P, Aycan M, Mitsui T. Strategic advancements in rice cultivation: combating heat stress through genetic innovation and sustainable practices: A review. Stresses. 2024;4(3):452–80. https://doi.org/10.3390/biology13090659
- 2. Sun PW, Gao ZH, Lv FF, Yu CC, Jin Y, Xu YH, et al. Genome-wide analysis of basic helix–loop–helix (bHLH) transcription factors in Aquilaria sinensis. Sci Rep. 2022;12(1):7194. https://doi.org/10.1038/s41598-022-10785-w
- 3. Khan I, Asaf S, Jan R, Bilal S, Khan AL, Kim KM, et al. Genome-wide annotation and expression analysis of WRKY and bHLH transcription factor families reveal their involvement under cadmium stress in tomato (Solanum lycopersicum L.). Front Plant Sci. 2023; 14:1100895. https://doi.org/10.3389/fpls.2023.1100895
- 4. Berger N, Marin AJ, Stassen MJ, Lourenço T, Li M, Watanabe S, et al. Molecular regulation of iron homeostasis in plants. In: Lüttge U, Cánovas FM, Risueño Almeida MC, Leuschner C, Pretzsch H, editors. Progress in Botany Vol. 85. Cham: Springer; 2023. p. 75–103. https://doi.org/10.1007/124_2023_76
- 5. Xufeng X, Yuanfeng H, Ming Z, Shucheng S, Haonan Z, Weifeng Z, et al. Transcriptome profiling reveals the genes involved in tuberous root expansion in Pueraria montana var. thomsonii. BMC Plant Biol. 2023;23(1):1–19. https://doi.org/10.1186/s12870-023-04303-x
- 6. Zhang L, Xiang Z, Li J, Wang S, Chen Y, Liu Y, et al. bHLH57 confers chilling tolerance and grain yield improvement in rice. Plant Cell Environ. 2023;46(4):1402–18. https://doi.org/10.1111/pce.14513
- 7. Zou T, Wang X, Sun T, Rong H, Wu L, Deng J, et al. MYB transcription factor OsC1PLSr involves the regulation of purple leaf sheath in rice. Int J Mol Sci. 2023;24(7):6655. https://doi.org/10.3390/ijms24076655
- 8. Zuo ZF, Lee HY, Kang HG. Basic helix–loop–helix transcription factors: Regulators for plant growth, development and abiotic stress responses. Int J Mol Sci. 2023;24(2):1419. https://doi.org/10.3390/ijms24021419
- 9. Schmidt W, Thomine S, Buckhout TJ. Iron nutrition and interactions in plants. Front Plant Sci. 2020; 10:1670. https://doi.org/10.3389/fpls.2019.01670
- 10. Shekhawat PK, Ram H, Soni P. The regulatory circuit of iron homeostasis in rice: a tale of transcription factors. In: Srivastava V, Mishra S, Mehrotra S, Upadhyay SK, editors. Plant transcription factors. London: Academic Press; 2023. p. 251–68. https://doi.org/10.1016/B978-0-323-90613-5.00015-7
- 11. Zhang H, Li Y, Pu M, Xu P, Liang G, Yu D, et al. Oryza sativa positive regulator of iron deficiency response 2 (OsPRI2) and OsPRI3 are involved in the maintenance of Fe homeostasis. Plant Cell Environ. 2020;43(1):261–74. https://doi.org/10.1016/B978-0-323-90613-5.00015-7
- 12. Aycan M, Nahar L, Baslam M, Mitsui T. B-type response regulator hst1 controls salinity tolerance in rice by regulating transcription factors and antioxidant mechanisms. Plant Physiol Biochem. 2023; 196:542–55. https://doi.org/10.1016/j.plaphy.2023.02.008
- 13. Wang F, Itai RN, Nozoye T, Kobayashi T, Nishizawa NK, Nakanishi H. The bHLH protein OsIRO3 is critical for plant survival and iron homeostasis in rice (Oryza sativa L.) under Fe-deficient conditions. Soil Sci Plant Nutr. 2020;66(4):579–92. https://doi.org/10.1080/00380768.2020.1783966
- 14. Liu J, Shen Y, Cao H, He K, Chu Z, Li N. OsbHLH057 targets the AATCA cis-element to regulate disease resistance and drought tolerance in rice. Plant Cell Rep. 2022;41(5):1285–99. https://doi.org/10.1007/s00299-022-02859-w
- 15. Sakai H, Lee SS, Tanaka T, Numa H, Kim J, Kawahara Y, et al. Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol. 2013;54(2): e6. https://doi.org/10.1093/pcp/pcs183
- 16. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. In: Walker JM, editor. The proteomics protocols handbook. Totowa (NJ): Humana Press; 2005.
- 17. Ikai A. Thermostability and aliphatic index of globular proteins. J Biochem. 1980;88(6):1895–98. https://doi.org/10.1093/oxfordjournals.jbchem.a133168
- 18. Gill SC, Von Hippel PH. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989;182(2):319–26. https://doi.org/10.1016/0003-2697(89)90602-7
- 19. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157(1):105–32. https://doi.org/10.1016/0022-2836(82)90515-0
- 20. Geourjon C, Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics. 1995;11(6):681–84. https://doi.org/10.1093/bioinformatics/11.6.681
- 21. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008; 9:40. https://doi.org/10.1186/1471-2105-9-40
- 22. Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 1993;2(9):1511–9. https://doi.org/10.1002/pro.5560020916
- 23. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, et al. The string database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011;39(Suppl_1): D561–8. https://doi.org/10.1093/nar/gkq973
- 24. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2012;41(D1): D808–15. https://doi.org/10.1093/nar/gks1094
- 25. Hirokawa T, Boon-Chieng S, Mitaku S. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics. 1998;14(4):378–79. https://doi.org/10.1093/bioinformatics/14.4.378
- 26. Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, et al. PSORTb v. 2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics. 2005;21(5):617–23. https://doi.org/10.1093/bioinformatics/bti057
- 27. Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, et al. InterPro in 2022. Nucleic Acids Res. 2023;51(D1): D418–27. https://doi.org/10.1093/nar/gkac993
- 28. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022–7. https://doi.org/10.1093/molbev/msab120
- 29. Guan Y, Zhu Q, Huang D, Zhao S, Lo LJ, Peng J. An equation to estimate the difference between theoretically predicted and SDS PAGE-displayed molecular weights for an acidic peptide. Sci Rep. 2015; 5:13370. https://doi.org/10.1038/srep13370
- 30. Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 2015;43: W174–81. https://doi.org/10.1093/nar/gkv342
- 31. Bowie JU, Luthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991; 253:164–70. DOI: 10.1126/science.1853201
- 32. Sohail R, Kalsoom S, Masood R, Tahir Y, Aftab AA, Muhammad I, et al. In silico analysis of four structural proteins of aphthovirus serotypes revealed significant B and T cell epitopes. Microb Pathog. 2019; 128:254–62. https://doi.org/10.1016/j.micpath.2019.01.007
- 33. Li J, Zhang M, Zhou L. Protein S-acyltransferases and acyl protein thioesterases, regulation executors of protein S-acylation in plants. Front Plant Sci. 2022; 13:956231. https://doi.org/10.3389/fpls.2022.956231
- 34. Zhang Y, Ge J, Huang B, Tong L, Shu Y, Qi C, et al. Genome-wide identification and expression analysis of the homeodomain–leucine zipper family in rice (Oryza sativa L.) under abiotic stress and in seed development. Preprint. 2022 Nov 30; Version. https://doi.org/10.21203/rs.3.rs-2324496/v1
- 35. Kobayashi T, Ogo Y, Nakanishi Itai R, Nakanishi H, Takahashi M, Mori S, et al. The novel transcription factor IDEF1 regulates iron-deficiency response and tolerance. Proc Int Plant Nutr Colloq XVI. 2009.
- 36. Liang G, Zhang H, Li Y, Pu M, Yang Y, Li C, et al. Fer-like fe deficiency-induced transcription factor (OsFIT) interacts with OsIRO2 to regulate iron homeostasis. bioRxiv. 2020;2020-03. https://doi.org/10.1101/2020.03.06.981126
- 37. Jang YH, Park JR, Kim EG, Kim KM. OsbHLHq11, the basic helix-loop-helix transcription factor, involved in regulation of chlorophyll content in rice. Biology. 2022;11(7):1000. https://doi.org/10.3390/biology11071000
- 38. Ebel C, BenFeki A, Hanin M, Solano R, Chini A. Characterization of wheat (Triticum aestivum) TIFY family and role of Triticum durum Td TIFY11a in salt stress tolerance. PLoS One. 2018;13(7): e0200566. https://doi.org/10.1371/journal.pone.0200566
- 39. Wang Y, Mostafa S, Zeng W, Jin B. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int J Mol Sci. 2021;22(16):8568. https://doi.org/10.3390/ijms22168568
- 40. Hedin LE, Illergard K, Elofsson A. An introduction to membrane proteins. J Proteome Res. 2011;10(8):3324–31. https://doi.org/10.1021/pr200145a
- 41. Sakulsingharoj C, Inta P, Sukkasem R, Pongjaroenkit S, Chowpongpang S, Sangtong V. Cloning and characterization of OSB1 gene controlling anthocyanin biosynthesis from Thai black rice. Genomics Genet. 2016;9(1):7–18. https://doi.org/10.14456/gag.2016.2
- 42. Giri MK, Gautam JK, Babu Rajendra Prasad V, Chattopadhyay S, Nandi AK. Rice MYC2 (OsMYC2) modulates light-dependent seedling phenotype, disease defence but not ABA signalling. J Biosci. 2017; 42:501–08. https://doi.org/10.1007/s12038-017-9703-8
- 43. Ogo Y, Itai RN, Kobayashi T, Aung MS, Nakanishi H, Nishizawa NK. OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol Biol. 2011; 75:593–605. https://doi.org/10.1007/s11103-011-9752-6
- 44. Wang YJ, Zhang ZG, He XJ, Zhou HL, Wen YX, Dai JX, et al. A rice transcription factor OsbHLH1 is involved in cold stress response. Theor Appl Genet. 2003; 107:1402–9. https://doi.org/10.1007/s00122-003-1378-x
Downloads
Download data is not yet available.