Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Gold, iron and silver nanoparticles: Synthesis, characterization and applications in antibacterial, cytotoxic and wastewater treatment: A comprehensive review

DOI
https://doi.org/10.14719/pst.12830
Submitted
19 November 2025
Published
13-02-2026

Abstract

Advances in nanotechnology have positioned metal nanoparticles, especially gold (Au), iron (Fe) and silver (Ag), at the forefront of innovations in biomedical, environmental and catalytic applications. These qualities have enabled wide-ranging applications in wastewater cleanup, bio sensing, cancer treatment and antibacterial treatment. However, the synthesis method, structural characteristics, surface chemistry and colloidal stability of these nanoparticles significantly impact their performance and safety. This paper covers in detail the mechanics, benefits, drawbacks and environmental effects of both conventional and green synthesis techniques for creating Au, Fe and Ag nanoparticles. To illustrate their significance in determining nanoparticle size, shape, composition and surface functionality, key characterization techniques, including UV-Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), forier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS) and zeta potential, are reviewed. The review also examines these nanoparticles' cytotoxicity to both healthy and malignant cells, as well as their antibacterial mechanisms, including membrane rupture, the production of reactive oxygen species (ROS) and biomolecular interference. Their functions in wastewater treatment are also investigated, with particular attention to catalytic reduction, heavy-metal removal, dye degradation and disinfection procedures. Significant obstacles still exist despite tremendous advancements, such as concerns about the toxicity of nanoparticles, their persistence in the environment, their economic viability and the scalability of green synthesis techniques. This analysis tackles existing gaps and proposes the creation of safer, more sustainable and application-oriented nanomaterials.

References

  1. 1. Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization and applications: a comprehensive review for biologists. J Nanobiotechnol. 2022;20(1):262. https://doi.org/10.1186/s12951-022-01477-8
  2. 2. Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress and challenges. Mater Adv. 2021;2(6):1821–71. https://doi.org/10.1039/D0MA00807A
  3. 3. Mughal B, Zaidi SZ, Zhang X, Hassan SU. Biogenic nanoparticles: synthesis, characterisation and applications. Appl Sci. 2021;11(6):2598. https://doi.org/10.3390/app11062598
  4. 4. Chormey DS, Zaman BT, Kustanto TB, Bodur SE, Bodur S, Tekin Z, et al. Biogenic synthesis of novel nanomaterials and their applications. Nanoscale. 2023;15(48):19423–47. https://doi.org/10.1039/D3NR03843B
  5. 5. Heinemann MG, Rosa CH, Rosa GR, Dias D. Biogenic synthesis of gold and silver nanoparticles used in environmental applications: a review. Trends Environ Anal Chem. 2021;30:e00129. https://doi.org/10.1016/j.teac.2021.e00129
  6. 6. Kumari S, Verma R, Chauhan A, Raja V, Kumari S, Kulshrestha S. Biogenic approach for synthesis of nanoparticles via plants for biomedical applications: A review. Mater Today Proc. 2023; In press. https://doi.org/10.1016/j.matpr.2023.04.242
  7. 7. Naseem K, Aziz A, Tahir MH, Ameen A, Ahmad A, Ahmad K, et al. Biogenic synthesized nanocatalysts and their potential for the treatment of toxic pollutants: environmental remediation. Int J Environ Sci Technol. 2024;21(2):2163–94. https://doi.org/10.1007/s13762-023-05166-3
  8. 8. Xiong P, Huang X, Ye N, Lu Q, Zhang G, Peng S, et al. Cytotoxicity of metal-based nanoparticles: mechanisms, evaluation methods and pathological manifestations. Adv Sci. 2022;9(16):2106049. https://doi.org/10.1002/advs.202106049
  9. 9. Soenen SJ, Parak WJ, Rejman J, Manshian B. Intracellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality and biomedical applications. Chem Rev. 2015;115(5):2109–35. https://doi.org/10.1021/cr400714j
  10. 10. Din MI, Arshad F, Hussain Z, Mukhtar M. Green adeptness in synthesis and stabilization of copper nanoparticles: catalytic, antibacterial, cytotoxicity and antioxidant activities. Nanoscale Res Lett. 2017;12(1):638. https://doi.org/10.1186/s11671-017-2399-8
  11. 11. Afonso IS, Cardoso B, Nobrega G, Minas G, Ribeiro JE, Lima RA. Green synthesis of nanoparticles from olive oil waste for environmental and health applications: a review. J Environ Chem Eng. 2024;12(5):114022. https://doi.org/10.1016/j.jece.2024.114022
  12. 12. Zhou S, Peng H, Zhao A, Zhang R, Li T, Yang X, et al. Synthesis of bacterial cellulose nanofibers/Ag nanoparticles: structure, characterization and antibacterial activity. Int J Biol Macromol. 2024;259:129392. https://doi.org/10.1016/j.ijbiomac.2024.129392
  13. 13. Zhou S, Peng H, Zhao A, Zhang R, Li T, Yang X, et al. Synthesis of bacterial cellulose nanofibers/Ag nanoparticles: structure, characterization and antibacterial activity. Int J Biol Macromol. 2024;259:129392. https://doi.org/10.1016/j.ijbiomac.2024.129392
  14. 14. Li S, Yan J, Liu M, Su H. Localized enrichment of nitrate/proton on reconstituted Fe nanoparticles boosting electrocatalytic nitrate reduction to ammonia. J Energy Chem. 2025;103:682–91. https://doi.org/10.1016/j.jechem.2024.12.011
  15. 15. Thakur N, Thakur N, Kumar A, Thakur VK, Kalia S, Arya V, et al. Recent trends in photocatalytic, antibacterial, antioxidant and nanohybrid applications of anatase and rutile TiO₂ nanoparticles. Sci Total Environ. 2024;914:169815. https://doi.org/10.1016/j.scitotenv.2023.169815
  16. 16. Ni ZL, Li BH, Nazarov AA, Ma JS, Yuan ZP, Wang XX, et al. Simulation of ultrasonic welding of Cu/Cu joints with a Cu nanoparticle interlayer. Mater Today Commun. 2024;39:109330. https://doi.org/10.1016/j.mtcomm.2024.109330
  17. 17. Azra BH, Fatima T. Zinc nanoparticles mediated by Costus pictus leaf extract: GC–MS and FTIR analysis. Plant Sci Arch. 2024;11:15. https://doi.org/10.51470/PSA.2024.9.1.11
  18. 18. Gul M, Kashif M, Muhammad S, Azizi S, Sun H. Methods of synthesis and applications of gold-based nanomaterials. Cryst Growth Des. 2025;25(7):2227–66. https://doi.org/10.1021/acs.cgd.4c01687
  19. 19. Bai RG, Muthoosamy K, Zhou M, Ashokkumar M, Huang NM, Manickam S. Sonochemical synthesis of graphene–gold nanocomposites for electrochemical nitric oxide detection. Biosens Bioelectron. 2017;87:622–9. https://doi.org/10.1016/j.bios.2016.09.003
  20. 20. Alkhursani SA, Aldaleeli NY, Al-Gahtany SA, Ghobashy MM, Alharthi S, Amin LG, et al. Gold nanoclusters in hydrogen storage and environmental treatment applications. Nanotechnol Rev. 2024;13(1):20240087. https://doi.org/10.1515/ntrev-2024-0087
  21. 21. Macovei I, Luca SV, Skalicka-Woźniak K, Horhogea CE, Rimbu CM, Sacarescu L, et al. Silver nanoparticles synthesized from Abies alba and Pinus sylvestris bark extracts: biological effects. Antioxidants. 2023;12(4):797. https://doi.org/10.3390/antiox12040797
  22. 22. Mahmoodi Esfanddarani H, Abbasi Kajani A, Bordbar AK. Green synthesis of silver nanoparticles using Malva sylvestris flower extract. IET Nanobiotechnol. 2018;12(4):412–6. https://doi.org/10.1049/iet-nbt.2017.0166
  23. 23. Sultana Z, Mallick T, Swarnakar A, Sarkar S, Begum NA, Rahaman CH. Green synthesized Au nanoparticles from Bignoniaceae plants and DNA damage mitigation activity. Appl Biochem Biotechnol. 2025;197(9):6045–73. https://doi.org/10.1007/s12010-025-05303-3
  24. 24. Zafar S, Farooq A, Batool S, Tariq T, Hasan M, Mustafa G. Green synthesis of iron oxide nanoparticles for mitigation of chromium stress in Triticum aestivum. Hybrid Adv. 2024;5:100156. https://doi.org/10.1016/j.hybadv.2024.100156
  25. 25. Dilbar S, Sher H, Ali A, Ullah Z, Ali I. Biological synthesis of Ag nanoparticles using Stachys parviflora and antibacterial activity. S Afr J Bot. 2023;157:409–22. https://doi.org/10.1016/j.sajb.2023.04.034
  26. 26. Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A andronescu E. Biomedical applications of silver nanoparticles. Nanomaterials. 2018;8:681. https://doi.org/10.3390/nano8090681
  27. 27. Ahmad S, Ahmad S, Ali S, Esa M, Khan A, Yan H. Biomedical applications of green synthesized Ag and Au nanoparticles. Int J Nanomedicine. 2024;19:3187–215. https://doi.org/10.2147/IJN.S453775
  28. 28. McNamara K, Tofail SA. Nanoparticles in biomedical applications. Adv Phys X. 2017;2(1):54–88. https://doi.org/10.1080/23746149.2016.1254570
  29. 29. Montiel Schneider MG, Martín MJ, Otarola J, Vakarelska E, Simeonov V, Lassalle V, et al. Biomedical applications of iron oxide nanoparticles. Pharmaceutics. 2022;14(1):204. https://doi.org/10.3390/pharmaceutics14010204
  30. 30. Meng YQ, Shi YN, Zhu YP, Liu YQ, Gu LW, Liu DD, et al. Trends in preparation and biomedical applications of iron oxide nanoparticles. J Nanobiotechnol. 2024;22(1):24. https://doi.org/10.1186/s12951-023-02235-0
  31. 31. Tang B, Lin X, Zou F, Fan Y, Li D, Zhou J, et al. In situ synthesis of gold nanoparticles on cotton fabric. Cellulose. 2017;24(10):4547–60. https://doi.org/10.1007/s10570-017-1413-8
  32. 32. Zhou X, Zhao Z, He Y, Ye Y, Zhou J, Zhang J, et al. Photoinduced synthesis of gold nanoparticle–bacterial cellulose nanocomposites. Cellulose. 2018;25(7):3941–53. https://doi.org/10.1007/s10570-018-1850-z
  33. 33. Velmurugan P, Shim J, Bang KS, Oh BT. Gold nanoparticle-mediated coloring of fabrics for antibacterial activity. J Photochem Photobiol B. 2016;160:102–9. https://doi.org/10.1016/j.jphotobiol.2016.03.051
  34. 34. Sivakavinesan M, Vanaja M, Annadurai G. Dyeing of cotton fabric using biogenic gold nanoparticles. Sci Rep. 2021;11(1):13249. https://doi.org/10.1038/s41598-021-92662-6
  35. 35. Debjani Baruah D, Monmi Goswami M, Yadav RN, Archana Yadav A, Das AM. Biogenic synthesis of gold nanoparticles for photocatalytic dye degradation. J Environ Chem Eng. In press.
  36. 36. Nadaf NY, Kanase SS. Biosynthesis of gold nanoparticles by Bacillus marisflavi for catalytic dye degradation. Arab J Chem. 2019;12(8):4806–14. https://doi.org/10.1016/j.arabjc.2016.09.020
  37. 37. Narasaiah P, Mandal BK, Nallani Chakravarthula S. Synthesis of gold nanoparticles using cotton peel extract. IET Nanobiotechnol. 2018;12(2):156–65. https://doi.org/10.1049/iet-nbt.2017.0039
  38. 38. Garg N, Bera S, Rastogi L, Ballal A, Balaramakrishna MV. L-asparagine stabilized gold nanoparticles for dye degradation. Spectrochim Acta A Mol Biomol Spectrosc. 2020;232:118126. https://doi.org/10.1016/j.saa.2020.118126
  39. 39. Ganesan RM, Prabu HG. Gold nanoparticles synthesized using Acorus calamus rhizome extract for textile applications. Arab J Chem. 2019;12(8):2166–74. https://doi.org/10.1016/j.arabjc.2014.12.017
  40. 40. Ullah F, Khan A, Khan R, Khan SB, Alzahrani KA, Ali N, et al. Catalytic degradation of dyes using gold nanoparticles on cotton cloth. Mater Res Express. 2025;12(1):015008. https://doi.org/10.1088/2053-1591/adaac6
  41. 41. Raman CD, Sellappa K, Mkandawire M. Green synthesis of iron nanoparticles using grape leaf extract for wastewater treatment. Water Sci Technol. 2021;83(9):2242–58. https://doi.org/10.2166/wst.2021.140
  42. 42. Bibi I, Nazar N, Ata S, Sultan M, Ali A, Abbas A, et al. Green synthesis of iron oxide nanoparticles using pomegranate seed extract. J Mater Res Technol. 2019;8(6):6115–24. https://doi.org/10.1016/j.jmrt.2019.10.006
  43. 43. Parvin F, Nayna OK, Tareq SM, Rikta SY, Kamal AK. Iron oxide nanoparticles for degradation of textile wastewater DOM. Appl Water Sci. 2018;8(2):73. https://doi.org/10.1007/s13201-018-0719-5
  44. 44. Hammad EN, Salem SS, Mohamed AA, El-Dougdoug W. Environmental impacts of ecofriendly iron oxide nanoparticles. Appl Biochem Biotechnol. 2022;194(12):6053–67. https://doi.org/10.1007/s12010-022-04105-1
  45. 45. Vitta Y, Figueroa M, Calderon M, Ciangherotti C. Iron nanoparticles synthesized from Eucalyptus robusta extract. Mater Sci Energy Technol. 2020;3:97–103. https://doi.org/10.1016/j.mset.2019.10.014
  46. 46. Fatih HJ, Ashengroph M, Sharifi A, Zorab MM. Green synthesized α-Fe₂O₃ nanoparticles as antibacterial agents. BMC Microbiol. 2024;24(1):535. https://doi.org/10.1186/s12866-024-03699-2
  47. 47. Bhuiyan MSH, Miah MY, Paul SC, Aka TD, Saha O, Rahaman MM, et al. Iron oxide nanoparticles from Carica papaya leaf extract. Heliyon. 2020;6(8):e04603. https://doi.org/10.1016/j.heliyon.2020.e04603
  48. 48. Vasantharaj S, Sathiyavimal S, Senthilkumar P, LewisOscar F, Pugazhendhi A. Iron oxide nanoparticles synthesized using Ruellia tuberosa. J Photochem Photobiol B. 2019;192:74–82. https://doi.org/10.1016/j.jphotobiol.2018.12.025
  49. 49. Elkhateeb O, Atta MB, Mahmoud E. Plant-mediated synthesis of iron oxide nanoparticles. AMB Express. 2024;14(1):92. https://doi.org/10.1186/s13568-024-01746-9
  50. 50. Nagajyothi PC, Pandurangan M, Kim DH, Sreekanth TVM, Shim J. Green synthesis of iron oxide nanoparticles and anticancer activity. J Cluster Sci. 2017;28(1):245–57. https://doi.org/10.1007/s10876-016-1082-z
  51. 51. Ibrahim NH, Taha GM, Hagaggi NSA, Moghazy MA. Green synthesis of silver nanoparticles and its environmental sensor ability to some heavy metals. BMC Chem. 2024;18(1):7. https://doi.org/10.1186/s13065-023-01105-y
  52. 52. Narayanan M, Divya S, Natarajan D, Senthil-Nathan S, Kandasamy S, Chinnathambi A, et al. Green synthesis of silver nanoparticles from aqueous extract of Ctenolepis garcini L. and assessment of their possible biological applications. Process Biochem. 2021;107:91–9. https://doi.org/10.1016/j.procbio.2021.05.008
  53. 53. Nosrati F, Fakheri B, Ghaznavi H, Mahdinezhad N, Sheervalilou R, Fazeli-Nasab B. Green synthesis of silver nanoparticles from Astragalus fasciculifolius Bioss and evaluation of cytotoxic effects on MCF7 human breast cancer cells. Sci Rep. 2025;15(1):25474. https://doi.org/10.1038/s41598-025-05224-5
  54. 54. Girón-Vázquez NG, Gómez-Gutiérrez CM, Soto-Robles CA, Nava O, Lugo-Medina E, Castrejón-Sánchez VH, et al. Effect of Persea americana seed in green synthesis of silver nanoparticles and their antimicrobial properties. Results Phys. 2019;13:102142. https://doi.org/10.1016/j.rinp.2019.02.078
  55. 55. Qidwai A, Kumar R, Dikshit A. Green synthesis of silver nanoparticles by seed of Phoenix sylvestris L. and their role in management of cosmetics embarrassment. Green Chem Lett Rev. 2018;11(2):176–88. https://doi.org/10.1080/17518253.2018.1445301
  56. 56. Yazdi M, Yousefvand A, Hosseini HM, Mirhosseini SA. Green synthesis of silver nanoparticles using nisin and antibacterial activity against Pseudomonas aeruginosa. Adv Biomed Res. 2022;11(1):56. https://doi.org/10.4103/abr.abr_99_21
  57. 57. Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, et al. Biogenic synthesis of silver nanoparticles using pod extract of Cola nitida: antibacterial, antioxidant activities and paint additive application. J Taibah Univ Sci. 2016;10(4):551–62. https://doi.org/10.1016/j.jtusci.2015.10.010
  58. 58. Bergal A, Matar GH andaç M. Olive and green tea leaf extract-mediated synthesis of silver nanoparticles: characterization and antibacterial activity comparison. BioNanoScience. 2022;12(2):307–21. https://doi.org/10.1007/s12668-022-00958-2
  59. 59. Keskin C, Aslan S, Baran MF, Baran A, Eftekhari A, Adıcan MT, et al. Green synthesis of silver nanoparticles using Anchusa officinalis: antimicrobial and cytotoxic potential. Int J Nanomedicine. 2025; In press. https://doi.org/10.2147/IJN.S511217
  60. 60. Banerjee A, Das D, andler R, Bandopadhyay R. Green synthesis of silver nanoparticles using exopolysaccharides from Bacillus anthracis PFAB2 and biocidal properties. J Polym Environ. 2021;29(8):2701–9. https://doi.org/10.1007/s10924-021-02051-3
  61. 61. Saqib S, Munis MFH, Zaman W, Ullah F, Shah SN, Ayaz A, et al. Synthesis, characterization and antibacterial activity of iron oxide nanoparticles. Microsc Res Tech. 2019;82(4):415–20. https://doi.org/10.1002/jemt.23182
  62. 62. Khatami M, Aflatoonian MR, Azizi H, Mosazade F, Hooshmand A, Nobre MAL, et al. Antibacterial activity of iron oxide nanoparticles against Escherichia coli. Int J Basic Sci Med. 2017;2(4):166–9. https://doi.org/10.15171/ijbsm.2017.31
  63. 63. Gu X, Xu Z, Gu L, Xu H, Han F, Chen B, et al. Preparation and antibacterial properties of gold nanoparticles: A review. Environ Chem Lett. 2021;19(1):167–87. https://doi.org/10.1007/s10311-020-01071-0
  64. 64. Jumaa T, Chasib M, Hamid MK, Al-Haddad R. Effect of electric field on antibacterial activity of gold nanoparticles against Gram-positive and Gram-negative bacteria. Nanosci Nanotechnol Res. 2014;2(1):1–7.
  65. 65. Tang S, Zheng J. Antibacterial activity of silver nanoparticles: structural effects. Adv Healthc Mater. 2018;7(13):1701503. https://doi.org/10.1002/adhm.201701503
  66. 66. Gao M, Sun L, Wang Z, Zhao Y. Controlled synthesis of silver nanoparticles with different morphologies and antibacterial properties. Mater Sci Eng C. 2013;33(1):397–404. https://doi.org/10.1016/j.msec.2012.09.005
  67. 67. Wei L, Wang H, Wang Z, Yu M, Chen S. Long-term antibacterial activity of TiO₂ nanotubes loaded with silver nanoparticles and ions. RSC Adv. 2015;5(91):74347–52. https://doi.org/10.1039/C5RA12404B
  68. 68. Mudhafar M, Zainol I, Jaafar CNA, Alsailawi HA, Desa ShA. Synthesis methods of silver nanoparticles: antibacterial and cytotoxicity review. Int J Drug Deliv Technol. 2021;11(2):635–40.
  69. 69. Pang C, Brunelli A, Zhu C, Hristozov D, Liu Y, Semenzin E, et al. Surface modification of silver nanoparticles influencing cytotoxicity and biodistribution. Nanotoxicology. 2016;10(2):129–39.
  70. 70. Kanagesan S, Hashim M, Tamilselvan S, Alitheen NBM, Ismail I, Hajalilou A, et al. Synthesis, characterization and cytotoxicity of iron oxide nanoparticles. Adv Mater Sci Eng. 2013;2013:710432. https://doi.org/10.1155/2013/710432
  71. 71. Valdiglesias V, Kiliç G, Costa C, Fernández-Bertólez N, Pásaro E, Teixeira JP, et al. Toxicological effects of iron oxide nanoparticles. Environ Mol Mutagen. 2015;56(2):125–48. https://doi.org/10.1002/em.21909
  72. 72. Vijayakumar S, Ganesan S. In vitro cytotoxicity of gold nanoparticles with different stabilizers. J Nanomater. 2012;2012:734398. https://doi.org/10.1155/2012/734398
  73. 73. Zhou Y, Tang Y, Wang L. Advanced nanomaterials for wastewater treatment. J Environ Manag. 2019;250:109–18.
  74. 74. Sharma V, Singh P, Pandey S. Nanotechnology in water purification. Environ Nanotechnol. 2020;5(4):221–33.
  75. 75. Sharma A, Goel H, Sharma S, Rathore HS, Jamir I, Kumar A, et al. Smart nanomaterials for wastewater treatment: trends and future perspectives. Environ Sci Pollut Res. 2024;31(48):58263–93. https://doi.org/10.1007/s11356-024-34977-1
  76. 76. Crane RA, Scott TB. Nanoscale zero-valent iron: synthesis, properties and applications. J Hazard Mater. 2012;211–212:112–25. https://doi.org/10.1016/j.jhazmat.2011.11.073
  77. 77. Rai M, Yadav A, Gade A. Silver nanoparticles as antimicrobials. Biotechnol Adv. 2012;30(5):1139–50.
  78. 78. Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic view of silver nanoparticles in antibacterial activity. Front Microbiol. 2016;7:1–17. https://doi.org/10.3389/fmicb.2016.01831
  79. 79. Zhang W. Nanoscale iron particles for environmental remediation. Ind Eng Chem Res. 2003;42:540–7. https://doi.org/10.1023/A:1025520116015
  80. 80. Li X, Elliott DW, Zhang W. Zero-valent iron nanoparticles for groundwater remediation. Chemosphere. 2006;63:463–9.
  81. 81. He F, Zhao D. Polymer-stabilized iron nanoparticles. Environ Sci Technol. 2005;39:3314–20. https://doi.org/10.1021/es048743y
  82. 82. Liu J, Zhang W, Elliott DW, Chen W. Stabilized iron nanoparticles for water treatment. Chem Eng J. 2018;344:45–59.
  83. 83. Fu F, Dionysiou DD, Li J. Iron-based materials for wastewater treatment. Water Res. 2014;51:343–68.
  84. 84. Li L, Elliott DW. Zero-valent iron reactivity in water. Environ Pollut. 2019;45:77–98.
  85. 85. Zhou L, Li X, Zhang W. Green synthesis of iron nanoparticles. Green Chem. 2016;18:2605–12.
  86. 86. Mahdavi M, Namvar F, Rahman MBA. Synthesis and characterization of iron nanoparticles. J Nanomater. 2013;2013:340365.
  87. 87. Sun Y, Li X, Zhang W. Aging of iron nanoparticles in aqueous systems. Environ Sci Technol. 2006;40:5514–9.
  88. 88. Giasuddin ABM, Kanel SR, Choi H. Adsorption and stabilization of iron nanoparticles. J Nanopart Res. 2007;9:107–14.
  89. 89. Liu J, Zhang W, Elliott DW, Chen W, et al. Stabilized iron nanoparticles for water treatment. Chem Eng J. 2018;344:45–59.
  90. 90. Li Y, Zhao J, Shang E, Xia X, Niu J, Crittenden J. Chloride ion effects on dissolution and toxicity of silver nanoparticles under UV. Environ Sci Technol. 2017;52(8):4842–9. https://doi.org/10.1021/acs.est.7b04547
  91. 91. Flores-López LZ, Espinoza-Gómez H, Somanathan R. Silver nanoparticles: ROS, oxidative stress and toxicological effects. J Appl Toxicol. 2019;39(1):16–26. https://doi.org/10.1002/jat.3654
  92. 92. Liu W, Worms I, Slaveykova VI. Interaction of silver nanoparticles with antioxidant enzymes. Environ Sci Nano. 2020;7(5):1507–17. https://doi.org/10.1039/C9EN01284B
  93. 93. Lodeiro P, Achterberg EP, Pampín J, Affatati A, El-Shahawi MS. Aggregation kinetics of polysaccharide-coated silver nanoparticles. Sci Total Environ. 2016;539:7–16. https://doi.org/10.1016/j.scitotenv.2015.08.115
  94. 94. Javanbakht V, Mohammadian M. Photo-assisted oxidation using bentonite/TiO₂/Ag nanophotocatalyst for dye removal. J Mol Struct. 2021;1239:130496. https://doi.org/10.1016/j.molstruc.2021.130496
  95. 95. Chong MN, Jin B, Chow CWK, Saint C. Photocatalytic wastewater treatment. Water Res. 2010;44:2997–3027. https://doi.org/10.1016/j.watres.2010.02.039
  96. 96. Ahmed S, Ahmad M, Swami BL. Silver nanocomposites for sustainable water treatment. Environ Chem Lett. 2021;19:2525–43.
  97. 97. Iravani S. Green synthesis of gold nanoparticles. Green Chem. 2011;13:2638–50. https://doi.org/10.1039/c1gc15386b
  98. 98. Zhang H, Li X, Wang Y, et al. Ag–TiO₂ photocatalysts for wastewater remediation. Appl Catal B. 2014;160–161:575–80.
  99. 99. Arulsamy JJ, Henry Prunier JP, Arockiasamy FS, Irudhayaraj J, Thaninayagam E, Ravi GR, et al. Silver nanoparticle-modified TiO₂ substrates for photocatalytic oxidation. Nanotechnol Precis Eng. 2025;8(3). https://doi.org/10.1063/10.0034713
  100. 100. Bashir N, Afzaal M, Khan AL, Nawaz R, Irfan A, Almaary KS, et al. Green-synthesized silver nanoparticle-enhanced nanofiltration membranes for water purification. Sci Rep. 2025;15(1):1001. https://doi.org/10.1038/s41598-024-83801-w
  101. 101. Gupta N, Singh R, Sharma A, et al. Au–Fe₃O₄ hybrid nanostructures for pollutant removal. J Mol Liq. 2021;338:116-29.
  102. 102. Kar P, Sardar S, Liu B, Sreemany M, Lemmens P, Ghosh S, et al. Facile synthesis of reduced graphene oxide–gold nanohybrid for potential use in industrial wastewater treatment. Sci Technol Adv Mater. 2016;17(1):375-86. https://doi.org/10.1080/14686996.2016.1201413
  103. 103. Xiong Y, Wan H, Islam M, Wang W, Xie L, Lü S, et al. Hyaluronate macromolecules assist bioreduction (AuIII to Au0) and stabilization of catalytically active gold nanoparticles for azo contaminated wastewater treatment. Environ Technol Innov. 2021;24:102053. https://doi.org/10.1016/j.eti.2021.102053
  104. 104. Singh P, Misra R, Singh R. Au nanoparticles in catalysis and water treatment. J Clean Prod. 2020;258:120130.
  105. 105. Qu X, Alvarez PJJ, Li Q. Applications of nanotechnology in water treatment. Water Res. 2013;47:3931-46. https://doi.org/10.1016/j.watres.2012.09.058
  106. 106. Das R, Kumar A, Singh S, et al. Hybrid Au nanomaterials for sensing and catalysis. Sens Actuators B. 2017;238:923-36.
  107. 107. Iravani S. Green synthesis of metal nanoparticles. Green Chem. 2011;13:2638-50. https://doi.org/10.1039/c1gc15386b
  108. 108. Gupta N, Singh R, Sharma A, et al. Au–Fe₃O₄ hybrid nanostructures for pollutant removal. J Mol Liq. 2021;338:116-29.
  109. 109. Li X, Elliott DW, Zhang W. Iron, silver and gold nanomaterials in environmental remediation. Crit Rev Environ Sci Technol. 2006;36:405-31. https://doi.org/10.1080/10643380600620387
  110. 110. Ahmed M, Khan A, Raza M, et al. Hybrid nanomaterials for wastewater treatment. Environ Sci Nano. 2016;3:123-36.
  111. 111. Sharma V, Patel K, Singh P, et al. Plasmonic nanoparticles for photocatalysis. J Nanophotonics. 2014;8:083597.
  112. 112. Zhao Y, Li J, Chen W, et al. Comparative performance of metallic nanoparticles in water treatment. Environ Sci Technol. 2020;54:451-60.
  113. 113. Zhou Y, Tang Y, Wang L. Advanced nanomaterials for wastewater treatment. J Environ Manag. 2019;250:109018.
  114. 114. Li X, Zhang W, Chen W, et al. Iron nanoparticles for water treatment. Water Treat Adv. 2021;2:105-20.
  115. 115. Singh P, Kumar A, Rai M, et al. Antibacterial performance of silver nanomaterials. J Water Process Eng. 2021;44:102118.
  116. 116. Kumar A, Rai M. Silver nanoparticle toxicity and applications. Environ Pollut. 2020;266:115126.
  117. 117. Tran H, Lee S, Kim J, et al. Environmental implications of silver nanoparticles. Chemosphere. 2022;301:134145.

Downloads

Download data is not yet available.