Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 9 No. 4 (2022)

Effect of some Pseudomonas strains and Agave americana L. on wheat germination under salt stress

DOI
https://doi.org/10.14719/pst.1868
Submitted
30 April 2022
Published
02-10-2022

Abstract

Currently, several efforts focus remedying the problem of agricultural soil salinity using eco-friendly strategies. This study aimed particularly the study of Triticum durum (durum wheat) seeds germination in the presence of Pseudomonas strains and hydro-alcoholic extract of Agave americana L. under saline stress conditions. The preliminary phytochemical screening of A. americana, phylogenetic identification and production of indole-3-acetic acid (IAA) by Pseudomonas strains, in vitro impact of hydro-alcoholic extract and Pseudomonas strains combination on salt stress resistance, preliminary effects of A. americana on Triticum durum germination and phytopathogenic fungi inhibition under salt stress were carried out using corresponding protocols. In in vitro trials, phytochemical screening revealed the richness of A. americana in polyphenols (1014.062±161.017 mM GA equivalent/g FW) and flavonoids (51.065±27.391 mg quercetin equivalent/g FW). The ability of Pseudomonas strains to produce the phytohormone indole-3-acetic acid (IAA) varied from 116.67±8.25 µg/ml to 857.14±80.50 µg/ml. The leaf extract of A. americana is an effective osmoprotectant that improves the resistance of the strain P1 Pseudomonas plecoglissicida to saline stress. In in vivo experiments, the extract of A. americana did not show any effect on the germination of wheat seeds. However, it effectively inhibited the contamination of seeds by phytopathogenic fungi during germination and saline conditions. Findings of the study revealed that Pseudomonas plecoglissicida and A. americana extract are very promising for the inhibition of phytopathogenic fungi and the alleviation of salt stress.

References

  1. Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651-81.
  2. Belkhodja M, Bidai Y. Réponse de la germination des graines d’Atriplex halimus L. sous stress salin. Sécheresse. 2004;15:331-35.
  3. Ayala-Astorga GI, Alcaraz-Meléndez L. Salinity effects on protein content, lipidperoxydation, pigments and proline in Paulownia imperialis (Siebols & Zuccarini) and Paulownia fortune (Seemann & Hemsley) grown in vitro. Electron J Biotechnol. 2010;13:1-15. https://doi.org/10.2225/vol13-issue5-fulltext-13
  4. Maghsoudi AM, Maghsoudi K. Salt stress effects on respiration and growth of germinated seeds of different wheat (Triticum aestivum L.) cultivars WJ Agric Sc. 2008;4:351-58.
  5. Garcia-Caparros P, Lao MT. The effects of salt stress on ornamental plants and integrative cultivation practices. Sci Hortic. 2018;240:430-39. https://doi.org/10.1016/j.scienta.2018.06.022
  6. Shahid MA, Sarkhosh A, Khan N, Balal RM, Ali S et al. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy. 2020;10:1-34. https://doi.org/10.3390/agronomy10070938
  7. Mushtaq Z, Faizan S, Gulzar B. Salt stress, its impacts on plants and the strategies plants are employing against it: A review. J Appl Biol Biotechnol. 2020;8:81-91. https://doi.org/10.7324/jabb.2020.80315
  8. Mahajan S, Tuteja N. Cold, salinity and drought stresses: An overview. Arch Biochem Biophys. 2005;444:139-58. https://doi.org/10.1016/j.abb.2005.10.018
  9. Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M. Plant responses and tolerance to abiotic oxidative stress: antioxidant defenses is a key factors. In: Bandi V, Shanker AK, Shanker C, Mandapaka M editors. Crop stress and its management: perspectives and strategies. Berlin: Springer; 2012a. p. 261-316.
  10. Sun Y, Kong X, Li C, Liu Y, Ding Z. Potassium retention under salt stress is associated with natural variation in salinity tolerance among Arabidopsis accessions. PLoS One. 2015;10:1-25. https://doi.org/10.1371/journal.pone.0124032
  11. Ghoul M. L’halotolérance de E. coli. Effet des osmoprotecteurs naturels. Pharmacie, [Thèse de doctorat]. Rennes: Université de Rennes I; 1990.
  12. Nabti E. Restauration de la croissance d’Azospirillum brasilense et de Blé dur et leur osmoprotection par Ulva lactuca en Milieux Salés. Sciences biologiques, [Thèse de doctorat], Béjaia: Université Abderrahmane Mira; 2007.
  13. Ayuso-Calles M, Flores-Félix JD, Rivas R. Overview of the role of rhizobacteria in plant salt stress tolerance. Agronomy. 2021;11:1-20. https://doi.org/10.3390/agronomy11091759
  14. Saberi Riseh R, Ebrahimi-Zarandi M, Tamanadar E, Moradi Pour M, Thakur VK. Salinity stress: toward sustainable plant strategies and using plant growth-promoting rhizobacteria encapsulation for reducing it. Sustainability. 2021;13:1-17. https://doi.org/10.3390/su132212758
  15. Abbas R, Rasul S, Aslam K, Baber M, Shahid M, Mubeen F et al. Halotolerant PGPR: A hope for cultivation of saline soils. J King Saud Univ Sci. 2019;31:1195-1201.
  16. Neshat M, Abbasi A, Hosseinzadeh A, Sarikhani MR, Dadashi Chavan D, Rasoulnia A. Plant growth promoting bacteria (PGPR) induce antioxidant tolerance against salinity stress through biochemical and physiological mechanisms. Physiol Mol Biol Plants. 2022;28:347-61. https://doi.org/10.1007/s12298-022-01128-0
  17. Shabaan M, Asghar HN, Zahir ZA, Zhang X, Sardar MF, Li H. Salt-tolerant PGPR confer salt tolerance to maize through enhanced soil biological health, enzymatic activities, njutrient uptake and antioxidant defense. Front. Microbiol. 2022;13:1-13. https://doi.org/10.3389/fmicb.2022.901865
  18. Hoque M, Hannan A, Imran S, Paul NC, Mondal M, Sadhin M et al. Plant growth-promoting rhizobacteria-mediated adaptive responses of plants under salinity stress. J Plant Growth Regul. 2022;1-20. https://doi.org/10.1007/s00344-022-10633-1
  19. Shultana R, Kee Zuan AT, Yusop MR, Saud HM. Characterization of salt-tolerant plant growth-promoting rhizobacteria and the effect on growth and yield of saline-affected rice. PLoS One. 2020;15:1-16. https://doi.org/10.1371/journal.pone.0238537
  20. Hassan F, Al-Yasi H, Ali E, Alamer K, Hessini K, Attia H et al. Mitigation of salt-stress effects by moringa leaf extract or salicylic acid through motivating antioxidant machinery in damask rose. Can J Plant Sci. 2020;101:157-65. https://doi.org/10.1139/cjps-2020-0127
  21. Mayak S, Tirosh T, Glick BR. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem. 2004;42:565-72.? https://doi.org/10.1016/j.plaphy.2004.05.009
  22. Parihar P, Singh S, Singh R, Singh VP, Prasad SM. Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res. 2014;22:4056-75. https://doi.org/10.1007/s11356-014-3739-1
  23. Shereen A, Ansari A, Raza S, Mumtaz S, Khan MA. Salinity induced metabolic changes in rice (Oryza sativa L.) seeds during germination. Pak J Bot. 2011;43:1659-61.
  24. Mokrani S, Nabti EH, Cruz C. Recent Trends in Microbial Approaches for Soil Desalination. Appl. Sci. 2022;12:1-16. https://doi.org/10.3390/app12073586
  25. Sohaib M, Zahir ZA, Khan MY, Ans M, Asghar HN, Yasin S, et al. Comparative evaluation of different carrier-based multi-strain bacterial formulations to mitigate the salt stress in wheat. Saudi J. Biol. Sci. 2020;27:777-87. https://doi.org/10.1016/j.sjbs.2019.12.034
  26. William S, Feil H, Copeland A. Bacterial genomic DNA isolation using CTAB Sigma. 2012;50:68-76.
  27. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al. Clustal W and Clustal X version 2.0 Bioinformatics. 2007;23:2947-48. https://doi.org/10.1093/bioinformatics/btm404
  28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111-20. https://doi.org/10.1007/bf01731581
  29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;63:406-25. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  30. Tamura K, Dudby J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596-99. https://doi.org/10.1093/molbev/msm092
  31. Bric JM, Bostock RM, Silverstone SE. Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Appl Environ Microbiol. 1991;57:535-38. https://doi.org/10.1128/aem.57.2.535-538.1991
  32. Sasirekha B, Shivakumar S. Statistical optimization for improved indole-3-acetic acid (IAA) production by Pseudomonas aeruginosa and demonstration of enhanced plant growth promotion. J Soil Sci Plant Nutr. 2012;12:863-73. https://doi.org/10.4067/s0718-95162012005000038
  33. Mokrani S. Recherche de bactéries PGPR/B isolées de l’ouest algérien et leurs effets de biofertilisation et de lutte biologique à l’égard de quelques microorganismes phytopathogènes de Phaseolus vulgaris L. Sciences biologiques, [Thèse de doctorat], Béjaia: Université Abderrahmane Mira; 2019.
  34. Ghoul M, Minet J, Bernard T, Dupray E, Cornier M. Marine macroalgae as a source for osmoprotection for Escherichia coli. Microb Ecol. 1995;30:171-81. https://doi.org/10.1007/bf00172572
  35. Barka AE, Nowak J, Clément C. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol. 2006;72:7246-52. https://doi.org/10.1128/aem.01047-06
  36. Dehpeur AA, MIbrahimzadeh MA, seyed FN, Seyed MN. Antioxydant activity of the methanol extract of Ferula assafoetida and its essential oil composition. Grasas Y Aceites. 2009;60:405-12. https://doi.org/10.3989/gya.010109
  37. Praveen kumar R, Kim B, Choi E, Lee K, Park JY, Lee JS et al. Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas. Bioresour Technol. 2014;171:500-05. https://doi.org/10.1016/j.biortech.2014.08.112
  38. Lehout R, Laib M. Comparaison de trois méthodes d’extraction des composés phénoliques et des flavonoïdes à partir de la plante médicinale: Artemisia herba alba Asso. Biochimie moléculaire et santé, [Diplôme de Master]. Constantine: Université de Frère Menturi; 2015. Available from: https://fac.umc.edu.dz/snv/faculte/biblio/mmf/2015/25-2015.pdf
  39. Götz D, Mereghetti S, Tiengo A, Esposito P. Magnetars as persistent hard X-ray sources: Integral discovery of a hard tail in SGR 1900+14. Astron Astrophys. 2006;449:L31-L34. https://doi.org/10.1051/0004-6361:20064870
  40. Dabiré GT. Etude de l’efficacité d’extrait végétaux contre les agents pathogènes fongiques transmis par les semences de mil et de sorgho. [Mémoire d’Ingénieur de développement rural]. Bobo-Dioulasso: Université Polytechnique de Bobo-Dioulasso (UPB); 2004. Available from: https://beep.ird.fr/collect/upb/index/assoc/IDR-2004-DAB-ETU/IDR-2004-DAB-ETU.pdf
  41. Vásquez-Ponce F, Higuera-Llantén S, Pavlov MS, Marshall SH, Olivares-Pacheco J. Phylogenetic MLSA and phenotypic analysis identification of three probable novel Pseudomonas species isolated on King George Island, South Shetland, Antarctica. Braz J Microbiol. 2018;49:695-702. https://doi.org/10.1016/j.bjm.2018.02.005
  42. Lauritsen JG, Hansen ML, Bech PK, Jelsbak L, Gram L, Strube ML. Identification and differentiation of Pseudomonas species in field samples using an rpoD amplicon sequencing methodology. Msystems. 2021;6:e00704-21. https://doi.org/10.1128/msystems.00704-21
  43. Mulet M, Gomila M, Lemaitre B, Lalucat J, García-Valdés E. Taxonomic characterisation of Pseudomonas strain L48 and formal proposal of Pseudomonas entomophila sp. nov. Syst Appl Microbiol. 2012;35:145-49. https://doi.org/10.1016/j.syapm.2011.12.003
  44. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas. Front Microbiol. 2015;6:1-13. https://doi.org/10.3389/fmicb.2015.00214
  45. Forlani G, Pastorelli R, Branzoni M, Favilli F. Root colonization efficiency, plant growth promoting activity and potentially related properties in plant associated bacteria. J Gen Breeding. 1995;49:343-52.
  46. Persello-Cartieaux F, Nussaume L, Robaglia C. Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ. 2003;26:189-99. https://doi.org/10.1046/j.1365-3040.2003.00956.x
  47. Kamble KD, Galerao DK. Indole acetic acid production from Pseudomonas species isolated from rhizosphere of garden plants in Amravati. Int J Adv Pharm Biol Chem. 2015;4:23-31.
  48. Chandra S, Askari K, Kumari M. Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth. J Genet Eng Biotechnol. 2018;16:581-86.
  49. Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and Microorganism-plant signaling. FEMS Microbiol Rev. 2007;31:425-48. https://doi.org/10.1111/j.1574-6976.2007.00072.x
  50. Kaya C, Tuna AL, Okant AM. Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Urk J Agric For. 2010;34:529-38.
  51. Ribaut JM, Pilet PE. Effect of water stress on growth, osmotic potential and abscisic acid content of maize roots. Physiol Plant. 1991;81:156-62. https://doi.org/10.1111/j.1399-3054.1991.tb02123.x
  52. Ribaut JM, Pilet PE. Water stress and indole-3-acetic acid content of maize roots. Planta. 1994;193:502-07. https://doi.org/10.1007/bf02411554
  53. Saleem S, Iqbal A, Ahmed F, Ahmad M. Phytobeneficial and salt stress mitigating efficacy of IAA producing salt tolerant strains in Gossypium hirsutum. Saudi J Biol Sci. 2021;28:5317-24. https://doi.org/10.1016/j.sjbs.2021.05.056
  54. Zafar S, Bano A, Hassan T. Evaluation of indole-3-acetic acid deficient mutants of pseudomonas moraviensis and its role in mitigation of salt stress in Cicer arietinum L. Pak J Bot. 2021;54:1-10. https://doi.org/10.30848/pjb2022-2(6)
  55. Rahmani H. Contribution à l’étude phytochimique et valorisation de l’espèce Agave americana L. de l’Ouest algérien [Thèse de Doctorat]. Sidi Bel Abbès: Universite Djillali Liabes; 2017.
  56. Nasri S, Ben Salem H. Effect of oral administration of Agave americana or Quillaja saponaria extracts on digestion and growth of Barbarine female lamb. Livest. Sci. 2012;147:59-65 . https://doi.org/10.1016/j.livsci.2012.04.001
  57. Bouaziz MA, Bchir B, Chalbi H, Sebii H, Karra S, Smaoui S et al. Techno-functional characterization and biological potential of Agave americana leaves: Impact on yoghurt qualities. J Food Meas Charact. 2021;15:309-26. https://doi.org/10.1007/s11694-020-00632-9
  58. Galvez J, Rodríguez?Cabezas ME. Zarzuelo A. Effects of dietary fiber on inflammatory bowel disease. Mol Nutr Food Res. 2005;49:601-08.? https://doi.org/10.1002/mnfr.200500013
  59. Rhazi N, Hannache H, Oumam M, Sesbou A, Charrier B, Pizzi A et al. Green extraction process of tannins obtained from Moroccan Acacia mollissima barks by microwave: Modeling and optimization of the process using the response surface methodology RSM. Arab J Chem. 2019;12:2668-84. https://doi.org/10.1016/j.arabjc.2015.04.032
  60. Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S et al. Effect of extraction solvent on total phenol content, total flavonoid content and antioxidant activity of Limnophila aromatica. J Food Drug Anal. 2014;22:296-302. https://doi.org/10.1016/j.jfda.2013.11.001
  61. Macheix JJ, Fleuriet A, Jay-Allemand C. Les composés phénoliques des végétaux: un exemple de métabolites secondaires d'importance économique. Lausanne (Swiss): Presses polytechniques et universitaires romandes; 2005.
  62. Liu Y, Tikunov Y, Schouten RE, Marcelis LFM, Visser RGF, Bovy A. Anthocyanin biosynthesis and degradation mechanisms in solanaceous vegetables: A review. Front Chem. 2018;6:1-17. https://doi.org/10.3389/fchem.2018.00052
  63. Kiani R, Arzani A, Mirmohammady Maibody SAM. Polyphenols, flavonoids and antioxidant activity involved in salt tolerance in wheat, Aegilops cylindrica and their amphidiploids. Front Plant Sci. 2021;12:1-13. https://doi.org/10.3389/fpls.2021.646221
  64. Zhang Y, Li G, Si L, Liu N, Gao T, Yang Y. Effects of tea polyphenols on the activities of antioxidant enzymes and the expression of related gene in the leaves of wheat seedlings under salt stress. Environ Sci Pollut Res. 2021;28:65447-61. https://doi.org/10.1007/s11356-021-15492-z
  65. Rizwan K, Zubair M, Rasool N, Riaz M, Zia-Ul-Haq M, De Feo V. Phytochemical and biological studies of Agave attenuata. Int J Mol Sci. 2012; 13;6440-51. https://doi.org/10.3390/ijms13056440
  66. Maazoun AM, Hamdi SH, Belhadj F, Jemâa JMB, Messaoud C, Marzouki MN. Phytochemical profile and insecticidal activity of Agave americana leaf extract towards Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Environ Sci Pollut Res. 2019;26:19468-80. https://doi.org/10.1007/s11356-019-05316-6
  67. Dif M. Phenolic quantification and Agave americana leaves de geoclimatic area. Adv Environ Biol. 2016;10:194-200.
  68. Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat Energy. 2017;2:1-7. https://doi.org/10.1038/nenergy.2016.177
  69. Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules. 2019;24: 2452. https://doi.org/10.3390/molecules24132452
  70. Naikoo MI, Dar MI, Raghib F, Jaleel H, Ahmad B, Raina A et al. Role and regulation of plants phenolics in abiotic stress tolerance: An overview. In: Khan MIR, Reddy PS, Ferrante A, Khan NA editors. Plant Signaling Molecules. Southston: Woodhead Publishing; 2019. p. 157-68.
  71. Genzel F, Dicke MD, Junker-Frohn LV, Neuwohner A, Thiele B, Putz A et al. Impact of moderate cold and salt stress on the accumulation of antioxidant flavonoids in the leaves of two Capsicum cultivars. J Agric Food Chem. 2021;69:6431-43. https://doi.org/10.1021/acs.jafc.1c00908.s001
  72. Stefanov M, Yotsova E, Gesheva E, Dimitrova V, Markovska Y, Doncheva S et al. Role of flavonoids and proline in the protection of photosynthetic apparatus in Paulownia under salt stress. S Afr J Bot. 2021;139:246-53. https://doi.org/10.1016/j.sajb.2021.02.008
  73. Jan R, Kim N, Lee SH, Khan MA, Asaf S, Park JR et al. Enhanced flavonoid accumulation reduces combined salt and heat stress through regulation of transcriptional and hormonal mechanisms. Front Plant Sci. 2021;12:1-14. https://doi.org/10.3389/fpls.2021.796956
  74. Mbarki S, Sytar O, Zivcak M, Abdelly C, Cerda A, Brestic M. Anthocyanins of coloured wheat genotypes in specific response to salstress. Molecules. 2018;23:1-15. https://doi.org/10.3390/molecules23071518
  75. Larsen I, Sydney LK, Landfald B StrØm AR. Osmoregulation in Escherichia coli by accumulation of organics osmolytes: betaines, glutamic acid, andtrehalose. Arch Microbiol. 1987;132:1-7. https://doi.org/10.1007/bf00492896
  76. Kushner DJ. Growth and nutrition of halophilic bacteria. In: Vreeland RH, Hochstein LI, editors. The biology fhalophilic bacteria. Boca Raton: CRC Press Inc; 1993. p. 87-103.
  77. Tripathi AK, Nagarajan T, Verma SC, Rudulier DL. Inhibition of biosynthesis and activity of nitrogenase in A. brasilense Sp7 under salinity stress. Curr Microbiol. 2002;44:363-67. https://doi.org/10.1007/s00284-001-0022-8
  78. Ahmad F, Ahmad I, Khan MS. Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk J Biol. 2005;29:29-34.
  79. Sreedevi S, Sajith S, Benjamin S. Cellulase producing bacteria from the wood-yards on kallai river bank. Adv Microbiol. 2013;3:326-32. https://doi.org/10.4236/aim.2013.34046
  80. Hua SS, Tsai Y, Uchens GM, Noma AT. Accumulation of amino acids in Rhizobium sp. Strain WR 1001 in response to sodium chloride salinity. Appl Environ Microbial. 1982;441:135-40. https://doi.org/10.1128/aem.44.1.135-140.1982
  81. Hanson AD, Scott NA. Betaine synthesis from radioactive precursors inattached, water-stressed bareley leaves. Plant Physiol. 1980;66:342-48. https://doi.org/10.1104/pp.66.2.342
  82. Ashraf MFMR, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot. 2007;59:206-16. https://doi.org/10.1016/j.envexpbot.2005.12.006
  83. Nabti E, Sahnoune M, Ghoul M, Fischer D, Hofmann A, Rothballer M et al. Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J Plant Growth Regul. 2010;29:6-22.? https://doi.org/10.1007/s00344-009-9107-6
  84. Bensellam EH, Moutiq R, ElyacoubI H, RochdI A. Effet allélopathique de quelques plantes médicinales sur la germination des graines de Phalaris canariensis L. et Lactuca sativa L. Rev Maroc Prot Plant. 2019;13:1-7.
  85. Aliottag G, Cafiero G, De Feo V, Palumbot AD, Strumia S. Infusion of rue for control of purslane weed: Biological and chemical aspects. Allelopathy J. 1996;3:207-16.
  86. Cherif R, Kemassi A, Boual Z, Bouziane N, Benbrahim F, Hadjseyd A et al. Activités biologiques des extraits aqueux de Pergularia tomentosa L. (Asclepiadaceae). Leban Sci J. 2016;17:37-43. https://doi.org/10.22453/lsj-017.1.037043
  87. Aasifa G. Allelopathic effect of aqueous extracts of different part of Eclipta alba (L.) Hassk. On some crop and weed plants. J Agric Ext Rural Dev. 2014;6:55-60. https://doi.org/10.5897/jaerd2013.0542
  88. Al-Charchafchi FMR, Redha FMJ, Kamel WM. Dormancy of Artemisia herba alba seeds in relation to endogenous chemical constituents. Res J Biol Sci. 1987;18:1-12.
  89. Hussain F, Khan TW. Allelopathic effects of Pakistani weed Cynodon dactylon L. J Weed Sci Res. 1988;1:8-17.
  90. Radwan AM, Alghamdi HA, Kenawy SK. Effect of Calotropis procera L. plant extract on seeds germination and the growth of microorganisms. Ann Agric Sci. 2019;64:183-87. https://doi.org/10.1016/j.aoas.2019.12.001
  91. Maharshi AR, Thaker VS. Antifungal activity of Agave species from Gujarat, India. In: Kharwar R, Upadhyay R, Dubey N, Raghuwanshi R Editors. Microbial Diversity and Biotechnology in Food Security. New Delhi: Springer; 2014. p. 423-30.
  92. López-Romero JC, Ayala-Zavala JF, Peña-Ramos EA, Hernández J, González-Ríos H. Antioxidant and antimicrobial activity of Agave angustifolia extract on overall quality and shelf life of pork patties stored under refrigeration. J Food Sci Technol. 2018;55:4413-23. https://doi.org/10.1007/s13197-018-3351-3
  93. Tucuch-Pérez MA, Arredondo-Valdés R, Hernández-Castillo FD. Antifungal activity of phytochemical compounds of extracts from Mexican semi-desert plants against Fusarium oxysporum from tomato by microdilution in plate method. Nova Scient. 2020;12:1-12. https://doi.org/10.21640/ns.v12i25.2345
  94. Rodríguez-Guadarrama AH, Guevara-González RG, de Jesús RGS, Feregrino-Pérez AA. Antifungal activity of Mexican endemic plants on agricultural phytopathogens: A review. In: 2018 XIV International Engineering Congress (CONIIN). IEEE; 2018. p. 1-11.
  95. Sahnoun M, Saibi W, Brini F, Bejar S. Apigenin isolated from A. americana encodes human and Aspergillus oryzae S2 ?-Amylase inhibitions: Credible approach for antifungal and antidiabetic therapies. J Food Sci Technol. 2018;55:1489-98. https://doi.org/10.1007/s13197-018-3065-6
  96. Naczk M, Shahidi F. Extraction and analysis of phenolics in food. J Chromatogr. 2004;105:95-111. https://doi.org/10.1016/s0021-9673(04)01409-8
  97. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science. 2006;312:436-39. https://doi.org/10.1126/science.1126088
  98. Lattanzio V, Di Venere D, Linsalata V, Bertolini P, Ippolito A, Salerno M. Low temperature metabolism of apple phenolics and quiescence of Phlyctaena vagabunda. J Agric Food Chem. 2001;49:5817-21. https://doi.org/10.1021/jf010255b
  99. Jersh S, Scherer C, Huth G, Schlosser E. Proanthocyanidins as basis for quiescence of Botrytis cinerea in immature strawberry. J Plant Pathol. 1989;22:67-70.

Downloads

Download data is not yet available.