Marchantia polymorpha L.: An Emerging Model Plant System to Study Contemporary Plant Biology – A Review

Authors

DOI:

https://doi.org/10.14719/pst.2016.3.2.221

Keywords:

Bryophyta, Evolution, Liverworts, Molecular Genetics, Transformation

Abstract

The liverwort, Marchantia polymorpha L., one of the species of first land plants is a promising model plant system for the analysis of diverse facets of contemporary plant biology. The unique characteristics of the plant such as dominant haploid gametophytic generation enables the isolation and disruption of mutant for genetic analysis, rapid sexual and asexual reproduction can be induced under controlled conditions which leads to the formation of genetically homogenous lines and also the complete organelle genome sequence of chloroplast and mitochondria has been established. In addition, the ongoing whole genome sequencing of M. polymorpha by the community sequencing plan at the Joint Genome Institute specifies the conservation of several mechanisms of biological science that are instituted in other terrestrial plants in a smaller extent of intricacy. Thus, with the development of several feasible and reliable genetic transformation strategies, in vitro cell culture, gene silencing, targeted gene modification and its critical evolutionary position make this plant as a potential model plant to study evolutionary and developmental biology in detail.

Downloads

Download data is not yet available.

Author Biographies

Afroz Alam, Banasthali University

Associate Professor

Department of Bioscience and Biotechnology
Banasthali University
Rajasthan
India

Saumya Pandey, Banasthali Vidyapith

Research Scholar

Department of Bioscience & Biotechnology

Banasthali Vidyapith

Banasthali

Rajasthan

References

Alvarez, J. P., I. Pekker, A. Goldshmidt, E. Blum, Z. Amsellem, and Y. Eshed Y. 2006. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18: 1134–1151. doi: 10.1105/tpc.105.040725.

Banks, J. A., T. Nishiyama, M. Hasebe, J. L. Bowman, M. Gribskov, C. dePamphilis, et al. 2011. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332: 960–963. doi: 10.1126.1203810.

Barnes, C. R., and W. J. G. Land. 1908. Bryological papers. II. The origin of the cupule of Marchantia. Bot Gaz 46:404–409.

Belhaj, K., A. Chaparro-Garcia, S. Kamoun, and V. Nekrasov. 2013. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39. doi:10.1186/1746-4811-9-39.

Bennici, A. 2008. Origin and early evolution of land plants: Problems and considerations. Commun Intgr Biol 1: 212-218. doi:10.4161/cib.1.2.6987.

Benson-Evans, K. 1961. Environmental factors and bryophytes. Nature 191: 255–260.

Bezanilla, M., A. Pan, and R. S. Quatrano. 2003. RNA interference in the moss Physcomitrella patens. Plant Physiol 133: 470-474. doi: ​10.​1104/​pp.​103.​024901.

Bowmam, J. L., T. Araki, and T. Kohchi. 2016. Marchantia: Past, Present and Future. Plant Cell Physiol 57: 205-209. doi: 10.1093/pcp/pcw023.

Bowman, J. L., S. K. Floyd, and K. Sakakibara. 2007. Green genes— comparative genomics of the green branch of life. Cell 129: 229–234. doi: 10.1016/j.cell.2007.04.004

Brand, L., M. Horler, E. Nuesch, S. Vassalli, P. Barrell, W. Yang W, et al. 2006. A versatile and reliable two-component system for tissue-specific gene induction in Arabidopsis. Plant Physiol 141: 1194–1204. doi: 10.1104/pp.106.081299.

Burgeff, H. 1943. Genetische Studien an Marchantia. Gustav Fisher, Jena.

Chang, Y., and S. W. Graham. 2011. Inferring the higher-order phylogeny of mosses (Bryophyta) and relatives using a large, multigene plastid data set. Am J. Bot 98: 839–849. doi: 10.3732/ajb.0900384.

Chaung, C. F., and E. M. Meyerowitz. 2000. Specific and heritable genetic interference by double stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci 97: 4985-4990.doi: 10.1073/pnas.060034297.

Chiyoda, S., K. Ishizaki, H. Kataoka, Y. T. Yamato, and T. Kohchi. 2008. Direct transformation of the liverwort Marchantia polymorpha L. by particle bombardment using immature thalli developing from spores. Plant Cell Rep 27: 1467–1473. doi: 10.1007/s00299-008-0570-5.

Chiyoda, S., K. T. Yamato, and T. Kohchi. 2014. Plastid transformation of sporelings and suspension-cultured cells from the liverwort Marchantia polymorpha L. Methods Mol Biol 1132: 439–447. doi: 10.1007/978-1-62703-995-6_30.

Chiyoda, S., P. J. Linley, K. T. Yamato, H. Fukuzawa, A. Yokota, and T. Kohchi. 2007. Simple and efficient plastid transformation system for the liverwort Marchantia polymorpha L. suspension-culture cells. Transgenic Res 16: 41–49.doi: 10.1007/s11248-006-9027-1.

Cong, L., F. A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib N, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819-823. doi: 10.1126/science.1231143.

Cooke TJ, Poli D, Sztein AE, Cohen JD. (2002) Evolutionary patterns in auxin action. Plant Mol Biol 49: 319–338.

Dugas, D. V., and B. Bartel. 2004. MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol 7: 512–520. doi:10.1016/j.pbi.2004.07.011.

Eklund, D. M., K. Ishizaki, E. Flores-Sandoval, S. Kikuchi, Y. Takebayashi, et al. 2015. Auxin produced by the indole-3-pyruvic acid pathway regulates development and gemmae dormancy in the liverwort Marchantia polymorpha. Plant Cell Physiol 56: 1-20. doi: 10.1105/tpc.15.00065.

Floyd, S., and J. L. Bowman. 2007. The ancestral developmental tool kit of land plants. Int J Plant Sci 168: 1–35. doi:10.1086/509079.

Glime, J. M. 2013. Marchantiophyta. In: Physiological Ecology. J. M. Glime. Bryophyte Ecology. Vol. 1. Ebook. Sponsored by Michigan Technological University and the international Association of Bryophytes. p. 1-22.

Goebel, K. 1908. Einleitung in die experimentelle Morphologie der Pflanzen. Science 28:650-651. doi: 10.1126/science.28.723.650.

Goffinet, B. 2000. Origin and phylogenetic relationships of bryophytes. In: Bryophyte Biology. A. W. Shaw, and B. Goffinet (eds.), Cambridge University Press, Cambridge. p. 124–149.

Graham, L. E. 1993. Origin of land plants. Wiley, New York, New York, USA.

Hanin, M. and J. Paszkowski. 2003. Plant genome modification by homologous recombination. Curr Opin Plant Biol 6: 157–162. doi: 10.1016/S1369-5266(03)00016-5.

Hanin, M., S. Volrath, A. Bogucki, M. Briker, E. Ward, J. Paszkowski. 2001. Gene targeting in Arabidopsis. Plant J 28: 671–677. DOI: 10.1046/j.1365-313x.2001.01183.

Hohe, A., and R. Reski. 2005. From axenic spore germination to molecular farming One century of bryophyte in vitro culture. Plant Cell Rep 23: 513-521.

Hughes, S. J. 1971. On conidia of fungi, and gemmae of algae, bryophytes, and pteridophytes. Can J Bot 49:1319–1339. doi: 10.1139/b71-187.

Iida, S., and R. Terada. 2004. A tale of two integrations, transgene and T-DNA: gene targeting by homologous recombination in rice. Curr Opin Biotechnol 15: 132–138. doi:10.1016/j.copbio.2004.02.005.

Irifune, K., K. Ono, M. Takahashi, H. Murakami, and H. Morikawa. 1996. Stable transformation of cultured cells of the liverwort Marchantia polymorpha by particle bombardment. Transgenic Res 5: 337-341. Doi: 10.1007/BF01968943.

Ishizaki, K., M. Mizutani, M. Shimamura, A. Masuda, R. Nishihama, and T. Kohchi. 2013b. Essential role of the E3 ubiquitin ligase NOPPERABO1 in schizogenous intercellular space formation in the liverwort Marchantia polymorpha. Plant Cell 25: 4075–4084. doi: 10.1105/tpc.113.117051.

Ishizaki, K., M. Nonomura, H. Kato, K. T. Yamato, and T. Kohchi. 2012. Visualization of auxin-mediated transcriptional activation using a common auxin-responsive reporter system in the liverwort Marchantia polymorpha. J Plant Res 125: 643-651. doi: 10.1007/s10265-012-0477-7.

Ishizaki, K., S. Chiyoda, K. T. Yamato, and T. Kohchi. 2008. Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol 49: 1084– 1091. doi:10.1093/pcp/pcn085.

Ishizaki, K., T. Kohchi, and K. T. Yamato. 2015. Molecular genetic tools and techniques for Marchantia polymorpha research. Plant Cell Physiol 57: 1-9. doi: 10.1093/pcp/pcv097.

Ishizaki, K., Y. Johzuka-Hisatomi, S. Ishida, S. Iida, and T. Kohchi. 2013a. Homologous recombination-mediated gene targeting in the liverwort Marchantia polymorpha L. Sci Rep 3: 1532. doi: 10.1038/srep01532.

Johnston, S. A., P. Q. Anziano, K. Shark, J. C. Sanford, R. A. Butow. 1988. Mitochondrial transformation in yeast by bombardment with microprojectiles. Science 240: 1538-1541. doi: 10.1126/science.2836954.

Jones-Rhoades MW, Bartel DP and Bartel B. 2006. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57: 19–53. doi: 10.1146/annurev.arplant.57.032905.105218.

Kajikawa, M., K. Matsui, M. Ochiai, Y. Tanaka, Y. Kita, M. Ishimoto, et al. 2008. Production of arachidonic and eicosapentaenoic acids in plants using bryophyte fatty acid _6-desaturase, _6-elongase, and _5-desaturase genes. Biosci Biotechnol Biochem 72: 435–444.

Kajikawa, M., S. Yamaoka, K. T. Yamato, H. Kanamaru, E. Sakuradani, et al. 2003. Functional analysis of a b-ketoacyl-CoA synthase gene, MpFAE2, by gene silencing in the liverwort Marchantia polymorpha L. Biosci Biotechnol Biochem 67: 605–612.

Kanno, T., S. Naito, and K. Shimamoto. 2000. Post-transcriptional gene silencing in cultured rice cells. Plant Cell Physiol 41: 321-326.

Kato, M. 2010. Evolution of Primitive land plants: A review. Bull Natl Mus Nat Sci, Ser. B, 36: 1–11. doi: 20123009716.

Katoh, K. 1983. Kinetics of photoautotrophic growth of Marchantia polymorpha cells in suspension culture. Physiol Plant 59:242–248. doi: 10.1111/j.1399-3054.1983.tb00765.x.

Kenrick, P., and Crane P. R. 1997a. The origin and early evolution of plants on land. Nature 389: 33–39.doi:10.1038/37918.

Khraiwesh, B., S. Ossowski, D. Weigel, R. Reski, and W. Frank. 2008. Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol 148: 684–693. doi: ​10.​1104/​pp.​108.​128025.

Kohli, A., R. M. Twyman, R. Abranches, E. Wegel, E. Stoger, and P. Christou. 2003. Transgene integration, organization and interaction in plants. Plant Mol Biol 52: 247–258.

Komatsu, A., M. Terai, K. Ishizaki, N. Suetsugu, H. Tsuboi, R. Nishihama, et al. 2014. Phototropin encoded by a single-copy gene mediates chloroplast photorelocation movements in the liverwort Marchantia polymorpha. Plant Physiol 166: 411–427. doi: 10.1104/pp.114.245100.

Kubota, A., K. Ishizaki, M. Hosaka, and T. Kohchi. 2013. Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Biosci Biotechnol Biochem 77: 167–172. doi: 10.1271/bbb.12070.

Kubota, A., S. Kita, K. Ishizaki, R. Nishihama, K. T. Yamato, and T. Kohchi. 2014. Co-option of a photoperiodic growth-phase transition system during land plant evolution. Nat Commun 5: 3668. doi:10.1038/ncomms4668.

Lau S, Jürgens G, De Smet I. (2008) The evolving complexity of the auxin pathway. Plant Cell20: 1738–1746. doi: ​10.​1105/​tpc.​108.​060418.

Ligrone, R., J. G. Duckett, and K. S. Renzaglia. 2012. Major transitions in the evolution of early land plants: a bryological perspective. Ann Bot 109: 851–871. doi: 10.1093/aob/mcs017.

Mali, P., L. Yang, K. M. Esvelt, J. Aach, M. Guell, J. E. DiCarlo. et al. 2013. RNA-guided human genome engineering via Cas9. Science 339: 823-826. Doi: 10.1126/science.1232033.

Millar, M.W., E. D. Garber, and P. D. Voth. 1962. Biosynthetic pathways in nutritionally deficient mutants of Marchantia polymorpha L. Nature 195: 1220–1221.

Mishler, B. D., and S. P. Churchill. 1984. A cladistic approach to the phylogeny of the ‘bryophytes’. Brittonia 36: 406–424. doi: 10.2307/2806602.

Molnar, A., A. Bassett, E. Thuenemann, F. Schwach, and S. Karkare. 2009. Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 58: 165-174. doi: 10.1111/j.1365-313X.2008.03767.x.

Nakaoka, Y., T. Miki, R. Fujioka, R. Uehara, A. Tomioka, et al. 2012. An inducible RNA interference system in Physcomitrella patens reveals a dominant role of augmin in phragmoplast microtubule generation. Plant Cell 24: 1478-1493.

Nakazato, T., A. Kadota, and M. Wada. 1999. Photoinduction of spore germination in Marchantia polymorpha L. is mediated by photosynthesis. Plant Cell Physiol 40: 1014–1020.

Nasu, M., K. Tani, C. Hattori, M. Honda, T. Shimaoka, N. Yamaguchi, and K. Kato. 1997. Efficient transformation of Marchantia polymorpha that is haploid and has very small genome DNA. J Ferment Bioeng 84:519-523. doi:10.1016/S0922-338X(97)81904-6.

Nickrent, D. L., C. L. Parkinson, J. D. Palmer, R. J. Duff. 2000. Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. Mol Biol Evol 17:1885–1895.

Nishihama, R., K. Ishizaki, M. Hosaka, Y. Matsuda, A. Kubota, and T. Kohchi. 2015b. Phytochrome-mediated regulation of cell division and growth during regeneration and sporeling development in the liverwort Marchantia polymorpha. J Plant Res 128: 407–421. doi: 10.1007/s10265-015-0724-9.

Nishihama, R., S. Ishida, H. Urawa, Y. Kamei, and T. Kohchi. 2015a. Conditional gene expression/deletion systems for Marchantia polymorpha using its own heat-shock promoter and the Cre/ loxP-mediated site-specific recombination. Plant Cell Physiol 56: 1-10doi: 10.1093/pcp/pcv102.

Nishiyama, T., et al. 2004. Chloroplast phylogeny indicates that bryophytes are monophyletic. Mol Biol Evol 21(10):1813–1819.doi: 10.1093/molbev/msh203.

Nordstrom, K. J. V., M. C. Albani, G. V. James, C. Gutjahr, B. Hartwig, et al. 2013. Mutation identi­fication by direct comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers. Nat Biotechnol 31: 325-330. doi:10.1038/nbt.2515.

Nystedt, B., N. R. Street, A. Wetterbom, A. Zuccolo, Y. C. Lin, et al. 2013. The Norway spruce genome sequence and conifer genome evolution. Nature 497: 579–584. doi: 10.1038/nature12211.

Oda, K., Y. Katsuyuki, E. Ohta, Y. Nakamura, M. Takemura, et al. 1992. Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA: A primitive form of plant mitochondrial genome. J Mol Biol 223: 1-7. doi:10.1016/0022-2836(92)90708-R.

Oho, K. 1973.Callus formation in liverwort Marchantia polymorpha. JpnJ Genet 48: 60-70. doi: 10.1266/jjg.48.69.

Ohta, Y., K. Katoh, and K. Miyake. 1977. Establishment and growth characteristics of a cell suspension culture of Marchantia polymorpha L. with high chlorophyll content. Planta 136:229–232. doi: 10.1007/BF00385989.

Ohyama, K., H. Fukuzawa, T. Kohchi, H. Shirai, T. Sano, et al. 1986. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574. doi: 10.1038/322572a0.

Ono, K., K. Ohyama, and O. L. Gamborg. 1979. Regeneration of the liverwort Marchantiapolymorpha L. from protoplasts isolated from cell suspension culture. Plant Sci Lett 14:225–229. doi: 10.1016/0304-4211(79)90074-9.

Paszkowski, J., M. Baur, A. Bogucki, and I. Potrykus. 1988. Gene targeting in plants. EMBO J 7: 4021–4026.

Pires, N. D., and L. Dolan. 2012. Morphological evolution in land plants: new designs with old genes. Philos Trans R Soc B-Biol Sci 367: 508-518. doi: 10.1098/rstb.2011.0252.

Puchta, H. 2002. Gene replacement by homologous recombination in plants. Plant Mol Biol 48: 173–182. doi: 10.1007/978-94-010-0448-012.

Qiu, Y. L. 2008. Phylogeny and evolution of charophytic algae and land plants. J Syst Evol 46: 287–306. doi: 10.3724/SP.J.1002.2008.08035

Qiu, Y. L., L. B. Li, B. Wang, Z. D. Chen, V. Knoop, et al. 2006. The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci 103: 15511–15516.doi: 10.1073/pnas.0603335103

Qiu, Y. L., L. Li, B. Wang, Z. Chen, O. Dombrowaska, et al. 2007. A nonflowering land plant phylogeny inferred from nucleotide sequences of seven chloroplast, mitochondrial, and nuclear genes. Int J Plant Sci 168:691–708. doi: 10.1086/513474.

Qiu,Y. L., Y. Cho, J. C. Cox, and J. D. Palmer. 1998. The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394:671–674.doi:10.1038/29286.

Reinhart, B. J., E. G. Weinstein, M. W. Rhoades, B. Bartel and D. P. Bartel. 2002. MicroRNAs in plants. Genes Dev 16: 1616–1626. doi: 10.1101/gad.1004402.

Rensing, S. A., D. Lang, A. D. Zimmer, A. Terry, A. Salamov, et al. 2008. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319: 64–69. Doi: 10.1126/Science.1150646.

Risseeuw, E., R. Offringa, M. E. Franke-van Dijk, and P. J. Hooykaas. 1995. Targeted recombination in plants using Agrobacterium coincides with additional rearrangements at the target locus. Plant J 7: 109–119. doi: 10.1046/j.1365-313X.1995.07010109.x.

Sah, S. K., A. Kaur, G. Kaur, and G. S. Cheema. 2014. Genetic Transformation of Rice: Problems, Progress and Prospects. J Rice Res 3: 1-10. doi: 10.4172/2375-4338.1000132.

Sanderson, M. J., J. L. Thorne, N. Wikstrom, and K. Bremer. 2004. Molecular evidence on plant divergence time. Am J Bot 91: 1656–1665. doi: 10.3732/ajb.91.10.1656.

Sandoval, E. F., T. Dierschke, T. J. Fisher, and J. L. Bowman. 2016. Efficient and Inducible Use of Artificial MicroRNAs in Marchantia polymorpha. Plant Cell Physiol 57: 281-290. doi: 10.1093/pcp/pcv068.

Sandoval, E., T. Dierschke, T. J. Fisher, and J. L. Bowman. 2016. Efficient and inducible use of artificial microRNAs in Marchantia polymorpha. Plant Cell Physiol 57: 281-290. doi: 10.1093/pcp/pcv068.

Sanford, J. C., T. M. Klein, E. D. Wolf, and N. Allen. 1987. A delivery of substances into cells and tissues using a particle bombardment process. Particul Sci Technol 5: 27-37. doi:10.1080/02726358708904533.

Schaefer, D. G., and J. P. Zryd. 1997. Efficient gene targeting in the moss Physcomitrella patens. Plant J 11: 1195–1206. doi: 10.1016/j.devcel.2005.01.018

Schwab, R., J. F. Palatnik, M. Riester, C. Schommer, M. Schmid, and D. Weigel. 2005. Specific effects of microRNAs on the plant transcriptome. Dev Cell 8: 517–527.

Shaw, A. J., and K. S. Renzalia. 2004. Phylogeny and diversification of bryophytes. Am J Bot 91:1557–1581. doi: 10.3732/ajb.91.10.1557.

Shaw, A. J., P. Szövényi, and B. Shaw. 2011. Bryophyte diversity and evolution: Windows into the early evolution of land plants. Am J Bot 98:352–369.doi: 10.3732/ajb.1000316.

Shimamura, M. 2015. Marchantia polymorpha: taxonomy, phylogeny and morphology of a model plant. Plant Cell Physiol 57: 231-256. doi: 10.1093/pcp/pcv192.

Shinozaki, K., M. Ohme, M. Tanaka, T. Wakasugi, N. Hayashida, et al. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043-2049.

Smith, N. A., S. P. Singh, M. B. Wang, P. A. Stoutjesdijk, A. G. Green, and P. M. Waterhouse. 2000. Total silencing by intron-spliced hairpin RNAs. Nature 407: 319-320.doi:10.1038/35030305.

Stoutjesdijk, P. A., S. P. Singh, Q. Liu, C. J. Hurlstone, P. M. Waterhouse, and A. G. Green. 2002. hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 129: 1723-1731.doi: ​10.​1104/​pp.​006353.

Strotbek, C., S. Krinninger, and W. Frank. 2013. The moss Physcomitrella patens: methods and tools from cultivation to targeted analysis of gene function. Int J Dev Biol 57: 553-564. doi: 10.1387/ijdb.130189wf.

Sugano, S. S., M. Shirakawa, J. Takagi, Y. Matsuda, T. Shimada, et al. 2014. CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol 55: 475– 481. doi: 10.1093/pcp/pcu014.

Takenaka, M., S. Yamaoka, T. Hanajiri, Y. Shimizu-Ueda, K. T. Yamato, et al. 2000. Direct transformation and plant regeneration of the haploid liverwort Marchantia polymorpha L. Transgen. Res 9:179-185.

Terada, R., H. Asao, and S. Iida. 2004. A large-scale Agrobacterium-mediated transformation procedure with a strong positive-negative selection for gene targeting in rice (Oryza sativa L.). Plant Cell Rep 22: 653–659. doi: 10.1007/s00299-003-0752-0.

Terada, R., H. Urawa, Y. Inagaki, K. Tsugane, and S. Iida. 2002. Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20: 1030–1034. doi:10.1038/nbt737.

Terada, R., Y. J. Hisatomi, M. Saitoh, H. Asao, and S. Iida. 2007. Gene targeting by homologous recombination as a biotechnological tool for rice functional genomics. Plant Physiol 144: 846–856. doi: 10.1104/pp.107.095992.

Tsuboyama, S., and Y. Kodama. 2014. AgarTrap: a simplified Agrobacterium-mediated transformation method for sporelings of the liverwort Marchantia polymorpha L. Plant Cell Physiol 55: 229–236. doi: 10.1093/pcp/pct168.

Tsuboyama, S., and Y. Kodama. 2015. AgarTrap-mediated genetic transformation using intact gemmae/gemmalings of the liverwort Marchantia polymorpha L. J Plant Res 128: 337–344. doi: 10.1007/s10265-014-0695-2.

Ueda, M., T. Takami, L. Peng, K. Ishizaki, T. Kohchi, T. Shikanai, et al. 2013. Subfunctionalization of sigma factors during the evolution of land plants based on mutant analysis of liverwort (Marchantia polymorpha L.) MpSIG1. Genome Biol Evol 5: 1836–1848. doi: 10.1093/gbe/evt137.

Van Haute, E., H. Joos, M. Maes, G. Warren, M. Van Montagu, and J. Schell. 1983. Intergeneric transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of the Ti plasmids of Agrobacterium tumefaciens.EMBO J2: 411-417.

Vochting, H. 1885. Ueber die regeneration der Marchantieen. Jahrb Wiss Bot 16: 367–414.

Voinnnet, O. 2001. RNA silencing as a plant immune system against viruses. Trends Genet 17: 449-459. doi: 10.1016/S0168-9525(01)02367-8.

Wann, F. B. 1925. Some of the factors involved in the sexual reproduction of Marchantiapolymorpha.Am J Bot 12: 307–318.

Warthmann, N., H. Chen, S. Ossowski, D. Weigel, and P. Herve. 2008. Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3: e1829. doi: 10.1371/journal.pone.0001829.

Wellman, C. H., P. L. Osterloff, and U. Mohiuddin. 2003. Fragments of the earliest land plants. Nature 425: 282–285. doi:10.1038/nature01884.

Wickett, N.J., S. Mirarab, N. Nguyen, T. Warnow, E. Carpenter, et al. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. PNAS E4859–E4868. doi: 10.1073/pnas.1323926111.

Wiedenheft, B., S. H. Sternberg, and J. A. Doudna. 2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature482: 331-338. doi:10.1038/nature10886.

Yamaoka, S., M. Takenaka, T. Hanajiri, Y. Shimizu-Ueda, H. Nishida, K. T. Yamato, et al. 2004. A mutant with constitutive sexual organ development in Marchantia polymorpha L. Sex. Plant Reprod 16: 253–257. doi: 10.1007/s00497-003-0195-3.

Yamato, K. T., K. Ishizaki, M. Fujisawa, S. Okada, S. Nakayama, M. Fujishita, et al. 2007. Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system. Proc Natl Acad Sci USA 104: 6472–6477. doi: 10.1073/pnas.0609054104.

Zuo, J. R., Q. W. Niu, and N. H. Chua. 2000. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24: 265–273.doi:10.1046/j.1365-313x.2000.00868.x.

Downloads

Published

01-04-2016

How to Cite

1.
Alam A, Pandey S. Marchantia polymorpha L.: An Emerging Model Plant System to Study Contemporary Plant Biology – A Review. Plant Sci. Today [Internet]. 2016 Apr. 1 [cited 2024 Nov. 21];3(2):88-99. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/221

Issue

Section

Special Section: New Frontiers in Cryptogamic Botany

Most read articles by the same author(s)

1 2 > >>