Skip to main navigation menu Skip to main content Skip to site footer

Special issue on Mini Reviews

Early Access

The role of polyamines in plants: A review

DOI
https://doi.org/10.14719/pst.2520
Submitted
21 March 2023
Published
07-08-2023
Versions

Abstract

Polyamines (PAs) are linear alkali nitrogenous with two, three or more amino groups that have a low molecular weight. PAs are created by organisms thru metabolism and can be found in nearly wholly cells. They are considered a unique type of plant stimulant because they acts significant roles in many kinds of plant growth and developmental stages as well as stress responses. More evidence suggests that the PA can be produced endogenously or exogenously applied to improve plant reproduction, productivity, and bear stress. While the mechanism of polyamines influencing plant growth and stress responses is still not clear. We are making an attempt to supply an inclusive review of the available literature that explained the association between PAs and flowering, stress responses and senescence. This review aimed at this is focused and abbreviates how PAs enhances and increase plant productivity and then serve as a foundation for forthcoming study on the mechanisms of  PAs exploit in plant reproduction and growth.

References

  1. Vuosku J, Karppinen K, Muilu-Mäkelä R, Kusano T, Sagor GHM, Avia K. Scots pine aminopropyltransferases shed new light on evolution of the polyamine biosynthesis pathway in seed plants. Ann Bot. 2018;121:1243-56. https://doi: 0.1093/aob/mcy012.
  2. Zahedi K, Barone S, Soleimani M. Polyamines and their metabolism: From the maintenance of physiological homeostasis to the mediation of disease. Med Sci. 2022;10:38. https://doi.org/10.3390/medsci10030038.
  3. Liu W, Tan M, Zhang C, Al E. Functional characterization of murB-potABCD operon for polyamine uptake and peptidoglycan synthesis in Streptococcus suis. Microbiol Res. 2017;207:177-87. https://doi:10.1016/j.micres.2017.11.008.
  4. Mustafavi SH, Badi HN, Sekara A, Al E. Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. Acta Physiol Plant. 2018;40:102. https://doi:10.1007/s11738-018-2671-2.
  5. Chen D, Shaho Q, Yin L, Younis A. Polyamine function in plants: Metabolism, regulation on development and roles in abiotic stress responses. Plant Abiotic stress. 2018;9. https://doi.org/10.3389/fpls.2018.01945.
  6. Reis RS, Vale EM, Heringer AS, Al E. Putrescine induces somatic embryo development and proteomic changes in embryogenic callus of sugarcane. J Proteomics. 2016;130:170-79. https://doi:10.1016/j.jprot.2015.09.029
  7. Tiburcio AF, Alcazar R. Potential applications of polyamines in agriculture and plant biotechnology. Methods Mol Biol. 2018;1694:489-508. https://doi:10.1007/978-1-4939-7398-9_40
  8. Miyamoto M, Shimao S, Tong W, Motose H, Takahashi T. Effect of thermospermine on the growth and expression of polyamine-related genes in rice seedlings. Plants. 2019;269. https://doi.org/10.3390/plants8080269
  9. Mohammadi H, Ghorbanpour M, Brestic M. Exogenous putrescine changes redox regulations and essential oil constituents in field-grown Thymus vulgaris L. under well-watered and drought stress conditions. Ind Crops Prod. 2018;122:119-32. https://doi:10.1016/j.indcrop.2018.05.064
  10. Xu L, Xing ST, Sun X. Effects of polyamines on hormones contents and the relationship with the flower bud differentiation in chrysanthemum. Plant Physiol. 2014;50:1195-202. https://doi:10.13592/j.cnki.ppj.2014.0212
  11. de Oliveira LF, Elbl P, Navarro BV, Al E. Elucidation of the polyamine biosynthesis pathway during Brazilian pine (Araucaria angustifolia) seed development. Tree Physiol. 2016;37:116-30. https://doi:10.1093/treephys/tpw107
  12. Anshika T, Sajad A, Goriparthi R, Anupam S, Suvin P, Henda M, Hanhong B. Revisiting the role of polyamines in plant growth and abiotic stress resilience: Mechanisms, crosstalk and future perspectives. Journal of Plant Growth Regulation. 2022; https://doi.org/10.1007/s00344-022-10847-3
  13. Holbert CE, Foley JR, Yu A, Murray Stewart T, Phanstiel OIV, Oupicky D, Casero RA Jr. Polyamine-based nanostructures share polyamine transport mechanisms with native polyamines and their analogues: Significance for polyamine-targeted therapy. Med Sci. 2022;10:44. https://doi.org/10.3390/medsci10030044
  14. Ezekiel PR, Singh N, Sharma S, Kaur A . Beneficial phytochemicals in potato a review. Food Research International. 2013;50(2).487-96. https://doi.org/10.1016/j.foodres. 2011.04.025
  15. Kubís J, Floryszak-Wieczorek J, Arasimowicz-Jelonek M. Polyamines induce adaptive responses in water deficit stressed cucumber roots. J Plant Res. 2014;127:151-58. https://doi:10.1007/s10265-013-0585-z
  16. Li J, Hu L, Zhang L, Pan X, Hu X. Exogenous spermidine is enhancing tomato tolerance to salinity–alkalinity stress by regulating chloroplast antioxidant system and chlorophyll metabolism. BMC Plant Biol. 2015;15:303. https://doi:10.1186/s12870-015-0699-7
  17. Dandan C, Qingsong S, Lianghong Y, Adnan Y, Bingsong Z. Polyamine function in plants: Metabolism, regulation on development and roles in abiotic stress responses. Front Plant Sci. 2019;9:1945. https://doi:10.3389/fpls.2018.01945
  18. Bograh A, Gingras Y, Tajmir RH, Carpentiev R. The effects of spermine and spermidine on the structure of photo system II proteins in relation to inhibition of electron transport. FEBS Lett. 1997;402(1):41-44. https://:doi:10.1016/s0014-5793(96)01453-6
  19. Takahashi Y, Tahara M, Yamada Y, Al E. Characterization of the polyamine biosynthetic pathways and salt stress response in Brachypodium distachyon. J Plant Growth Regul. 2017;37:625-34. https://doi:10.1007/s00344-017-9761-z
  20. Del Duca S, Serafini-Fracassini D, Cai G. Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase. Plant Polyamines in Stress and Development. 2014;98. https://doi.org/10.3389/fpls.2014.00120
  21. Nishimurea K, Kashiwagi SK, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Bioche. 2006;139:81-90. https://doi:10.1093/jb/mvj003
  22. Igarashi K, Kashiwagi K. Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun. 2000;19;271(3):559-64. https://doi:10.1006/bbrc.2000.2601
  23. Goni S, Pathak AK, Sharma RK, Rastogi A. Polyamines: As futuristic feed additives. Appro Poult Dairy and Vet Sci. 2018;4(5). https://doi:10.31031/APDV.2018.04.000600
  24. Antognoni F, Fornale S, Grimmer C, Komor E, Bagni N. Long-distance translocation of polyamines in phloem and xylem of Ricinus communis L. plants. Planta. 1998;204(4):520-27. https://doi:10.1007/s004250050287
  25. Tassoni A, Germanà MA, Bagni N. Free and conjugated polyamine content in Citrus sinensis Osbeck, cultivar Brasiliano NL. A navel orange, at deferent maturation stages. Food Chem. 2004;87:537-41. https://doi:10.1016/j.foodchem.2004.01.001
  26. Shahid MA, Balal RM, Khan N, Rossi L, Rathinasabapathi B, Liu G, Khan J, Cámara-Zapata JM, Martínez-Nicolas JJ, Garcia-Sanchez F. Polyamines provide new insights into the biochemical basis of Cr-tolerance in Kinnow mandarin grafted on diploid and double-diploid rootstocks. Environ Exp Bot. 2018;156:248-60. https://doi:10.1016/j.envexpbot.2018.09.015
  27. Yahia EM, Contreras M, Gonazalez-Aguilar G. Ascorbic acid content in relation to ascorbic acid oxidase activity and polyamine content in tomato and bell paper fruits during development, maturation and senescence. Lebensm Wiss Technol Food Sci Technol. 2001;34(7):452-57. https://doi.org/10.1006/fstl.2001.0790
  28. Xu C,Wu X, Zhang H. Impact of D-Arg on drought resistance and endogenous polyamines in mycorrhizal Pinus massoniana. J Nanjing Forestry Univ. 2009;33:019-023. https://doi:10.3969/j.issn.1000-2006.2009.04.004
  29. Cai Q, Zhang J, Guo C, Al E. Reviews of the physiological roles and molecular biology of polyamines in higher plants. J Fujian Educ Coll. 2006;7:118-24. https://doi:10.3969/j.issn.1673-9884.2006.10.039
  30. Bruno MDala-Paula B, Maria de Fátima V Starling AC, M Beatriz AG. Vegetables consumed in Brazilian cuisine as sources of bioactive amines. Food Bioscience. 2021;40(6):100856. https://doi.org/10.1016/j.fbio.2020.100856
  31. Tatsuya S, Dhaka RB, Bernhard S, Johann V. Spermidine and other functional phytochemicals in soybean seeds: Spatial distribution as visualized by mass spectrometry imaging. Food Sci Nutr. 2019;8:675-82. https://doi.org/10.1002/fsn3.1356
  32. Koc EC, Bagga S, Songstad DD, Betz SR, Kuehn GD, Phillips GC. Occurrence of uncommon polyamines in cultured tissues of maize. In Vitro Cellular & Developmental Biology- Plant. 1998;34:252-55. https://doi:10.1104/pp.94.3.855
  33. Eliassen KA, Reistad R, Risoen U, Ronning HF. Dietary polyamines. Food Chem. 2002;78:273-80. https://doi:10.1016/S0308-8146(01)00405-8
  34. Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in olyamines with aging and their ingestion from food and drink. J Biochem. 2006;139:81-90. https://doi:10.1093/jb/mvj003
  35. Okamoto A, Sugi E, Koizumi Y, Yanadiga F, Udaka S. Polyamine content of ordinary foodstuffs and various fermented foods. Biosci Biotechnol Biochem. 1997;61:1582-84. https://doi:10.1271/bbb.61.1582
  36. Brian MD, Jeff SR. Determination of biogenic amines in alcoholic beverages by ion chromatography with suppressed conductivity detection and integrated pulsed amperometric detection. J chrom A. 2007;1155(1):22-30. https://doi:10.1016/j.chroma.2007.01.114
  37. Byun BY, Bai X, Mah JH. Occurrence of biogenic amines in Doubanjiang and Tofu. Food Sci Biotech. 2013;22:55-62. https://doi:10.1007/s10068-013-0008-x
  38. Kala?c P, Krízek M, Pelikánová T, Langová M, Veskrna O. Contentes of polyamines in selected foods. Food Chem. 2005;90:561-64. https://doi:10.1016/j.foodchem
  39. Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100:491-97. https://doi:10.1016/j.foodchem.2005.09.070
  40. Moret S, Smela D, Populin T, Conte L. A survey on free biogenic amine content of fresh and preserved vegetables. Food Chem. 2005;89:355-61. https://doi:10.1016/j.foodchem.2004.02.050
  41. Ziegler W, Hahn M, Wallnöfer PR. Changes in biogenic amine contents during processing of several plant foods. Deut Lebensm Rundsch. 1994;90:108-12. https://doi:10.3390/food7120205
  42. Kalac P, Svecová S, Pelikánová T. Levels of biogenic mines in typical vegetable products. Food Chem. 2002;77:349-51. https://doi:10.1016/S0308-8146(01)00360-0
  43. Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: A basis for polyamine reduced diet and a study of its long-term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33:203-12. https://doi:10.1007/s00726-007-0524-1
  44. Preti R, Rapa M, Vinci G. Effect of Steaming and boiling on the antioxidant properties and biogenic amines content in Green Bean (Phaeseolus vulgaris) varieties of different colours. J Food Qual. 2017;5329070. https://doi:10.1155/2017/5329070
  45. Toro Funes N, Bosch Fusté J, Latorre Moratalla ML, Veciana Nogués MT, Vidal Carou MC. Biologically active amines in fermented and non-fermented commercial soybean products from the Spanish market. Food Chem. 2015;173:1119-24. https://doi:10.1016/j.foodchem.2014.10.118
  46. Kabir A, Kumar GS. Binding of the biogenic polyamines to deoxyribonucleic acids of varying base composition: Base specificity and the associated energetics of the interaction. PLoS ONE. 2013;8:e70510. https://doi.org/10.1371/journal.pone.0070510
  47. Sagar NA, Tarafdar S, Agarwa S, Tarafdar A, Sharma1 S. Polyamines: functions, metabolism and role in human disease management. Med Sci (Basel). 2021;9(2):44. https://doi:10.3390/medsci9020044
  48. Koc EC, Bagga S, Songstad DD, Betz SR, Kuehn GD, Phillips GC. Occurrence of uncommon polyamines in cultured tissues of maize. In Vitro Cellular & Developmental Biology- Plant. 1998;34:252-55. https://doi:10.1104/pp.94.3.855
  49. Eliassen KA, Reistad R, Risoen U, Ronning HF. Dietary polyamines. Food Chem. 2002;78:273-80. https://doi:10.1016/S0308-8146(01)00405-8
  50. Xu C,Wu X, Zhang H. Impact of D-Arg on drought resistance and endogenous polyamines in mycorrhizal Pinus massoniana. J Nanjing Forestry Univ. 2009;33:019-023. https://doi:10.3969/j.issn.1000-2006.2009.04.004
  51. Pegg AE. Functions of polyamines in mammals. J Biol Chem. 2016;291:14904-912. https://doi:10.1074/jbc.R116.731661
  52. Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139:81-90. https://doi:10.1093/jb/mvj003
  53. Okamoto A, Sugi E, Koizumi Y, Yanadiga F, Udaka S. Polyamine content of ordinary foodstuffs and various fermented foods. Biosci Biotechnol Biochem. 1997;61:1582-84. https://doi:10.1271/bbb.61.1582
  54. Paolo P, Gabriella F, Denis B, Andrea T, Silvano C, Giovanna S. Determination of biogenic amines in fruit, vegetables and chocolate using ion chromatography with suppressed, conductivity and integrated pulsed amperometric detections. Appl Update. 2005;162:1-8. https://doi:10.1016/j.chroma.2005.08.065
  55. Ouyang J, Song C, Chen D. Research progress on heat-tolerance mechanism and transports of polyamfines in plant. Mol Plant Breed. 2017;15:3286-94. https://doi:10.13271/j.mpb.015.003286
  56. De Oliveira LF, Navarro BV, Cerruti G, Al E. Polyamines and amino acid related metabolism: the roles of arginine and ornithine are associated with the embryogenic potential. Plant Cell Physiol. 2018;59:1084-98. https://doi:10.1093/pcp/pcy049
  57. Hanzawa Y, Takahashi T, Michael AJ, Burtin D, Long D, Pineiro M, Coupland G, Komeda Y. ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J. 2000;19:4248-56. https://doi:10.1093/emboj/19.16.4248
  58. Byun BY, Bai X, Mah JH. Occurrence of biogenic amines in Doubanjiang and Tofu. Food Sci Biotech. 2013;22:55-62. https://doi:10.1007/s10068-013-0008-x
  59. Kalac P, Krízek M, Pelikánová T, Langová M, Veskrna O. Contents of polyamines in selected foods. Food Chem. 2005;90:561-64. https://doi:10.1016/j.foodchem
  60. Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100:491-97. https://doi:10.1016/j.foodchem.2005.09.070
  61. Moret S, Smela D, Populin T, Conte L. A survey on free biogenic amine content of fresh and preserved vegetables. Food Chem. 2005;89:355-61. https://doi:10.1016/j.foodchem.2004.02.050
  62. Hao Y, Huang B, Jia D, Al E. Identification of seven polyamine oxidase genes in tomato (Solanum lycopersicum L.) and their expression profiles under physiological and various stress conditions. J Plant Physiol. 2018;228:1-11. https://doi:10.1016/j.jplph.2018.05.004
  63. Liu T, Kim DW, Niitsu M, Al E. Polyamine oxidase 7 is a terminal catabolism-type enzyme in Oryza sativa and is specifically expressed in anthers. Plant Cell Physiol. 2014;55:1110-22. https://doi:10.1093/pcp/pcu047
  64. Tassoni A, Buuren MV, Franceschetti M, Al E. Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development. Plant Physiol Biochem. 2000;38:383-93. https://doi:10.1016/S0981-9428(00)00757-9
  65. Freitas VS, Miranda RDS, Costa JH, Al E. Ethylene triggers salt tolerance in maize genotypes by modulating polyamine catabolism enzymes associated with H2O2 production. Environ Exp Bot. 2017;145:75-86. https://doi.org/10.1016/j.envexpbot.2017.10.022
  66. Sen S, Ghosh D, Mohapatra S. Modulation of polyamine biosynthesis in Arabidopsis thaliana by a drought mitigating Pseudomonas putida strain. Plant Physiol Biochem. 2018;129:180-88. https://doi:10.1016/j.plaphy.2018.05.034
  67. Baniasadi F, Saffari VR, Moud AAM. Physiological and growth responses of Calendula officinalis L. plants to the interaction effects of polyamines and salt stress. Sci Horticult. 2018;234:312-17. https://doi.org/10.1016/j.scienta.2018.02.069
  68. Pál M, Szalai G, Janda T. Speculation: polyamines are important in abiotic stress signaling. Plant Sci. 2015;237:16-23. https://doi:10.1016/j.plantsci.2015.05.003
  69. Agurla S, Gayatri G, Raghavendra AS. Polyamines increase nitric oxide and reactive oxygen species in guard cells of Arabidopsis thaliana during stomatal closure. Protoplasma. 2017;255:153-62. https://doi:10.1007/s00709-017-1139-3
  70. Bassard JE, Ullmann P, Bernier F, Al E. Phenolamides: bridging polyamines to the phenolic metabolism. Phytochemistry. 2010;71:1808-24. https://doi:10.1016/j.phytochem.2010.08.003
  71. Cai G, Sobieszczuknowicka E, Aloisi I, Al E. Polyamines are common players in different facets of plant programmed cell death. Amino Acids. 2015;47:27-44. https://doi:10.1007/s00726-014-1865-
  72. Bachrach U, Abu-Elheiga L, Talmi M, Schnur LF, El-On J, Greenblatt CL. Polyamines and the growth of leishmanial parasites. Med Biol. 1981Dec;59(5-6):441-47. https://doi.org/10.3390/medsci10020024
  73. Guo J, Tian L, Sun XZ, Al E. Relationship between endogenous polyamines and floral bud differentiation in Chrysanthemum morifolium under short-day conditions. Wonye kwahak kisulchi. 2015;33:31-38. https://doi:10.7235/hort.2015.14043
  74. Agudelo-Romero P, Bortolloti C, Pais MS, Al E. Study of polyamines during grape ripening indicate an important role of polyamine catabolism. Plant Physiol Biochem. 2013;67:105-19. https://doi:10.1016/j.plaphy.2013.02.024
  75. Cona A, Rea G, Angelini R, Al E. Functions of amine oxidases in plant development and defence. Trends Plant Sci. 2006;11:80-88. https://doi:10.1016/j.tplants.2005.12.009
  76. Applewhite PB, Kaur-Sawhney R, Galston AW. A role for spermidine in the bolting and flowering of Arabidopsis. Physiol Plant. 2003;108:314-20. https://doi:10.1034/j.1399-3054.2000.108003314.x
  77. Simões ADN, Diniz NB, Vieira MRDS, Al E. Impact of GA3 and spermine on postharvest quality of anthurium cut flowers (Anthurium andraeanum) cv. Arizona. Sci Horticult. 2018;241:178-86. https://doi:10.1016/j.scienta.2018.06.095
  78. Tenriro S, Nunes PA, Viegas CA, Neves MS, Teixeira MC, Cbral MG, Sa-Correia I. AQR1 gene (ORF YNL065w) encodes a plasma membrane transporter of the major facilitator superfamily that confers resistance to short-chain monocarboxylic acids and quinidine in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 2002;292:741-48. https://doi/10.1006/bbrc.2002.6703
  79. Ahmed S, Ariyaratne M, Patel J, Al E. Altered expression of polyamine transporters reveals a role for spermidine in the timing of flowering and other developmental response pathways. Plant Sci. 2017;258:146-55. https://doi:10.1016/j.plantsci.2016.12.002
  80. Takahashi T. Plant polyamines. Plants. 2020;9:511. https://doi:10.3390/plants9040511
  81. Duan G, Huang Z, Lin H. The role of polyamines in the ontogeny of higher plants. Acta Agric Boreali Occidentalis Sinica. 2006;15:190-94. https://doi:10.7606/j.issn.1004-1389.2006.02.050
  82. Sobieszczuk-Nowicka E. Polyamine catabolism adds fuel to leaf senescence. Amino Acids. 2017;49:49-56. https://doi:10.1007/s00726-016-2377-y
  83. Cai G, Sobieszczuknowicka E, Aloisi I, Al E. Polyamines are common players in different facets of plant programmed cell death. Amino Acids. 2015;47:27-44. https://doi:10.1007/s00726-014-1865-1
  84. Nakanishi S, Cleveland JL. Polyamine homeostasis in development and disease. Med Sci. 2021;9:28. https://doi.org/10.3390/medsci9020028
  85. Khajuria A, Ohri P. Exogenously applied putrescine improves the physiological responses of tomato plant during nematode pathogenesis. Sci Hortic. 2018;230:35-42. https://doi:10.1016/j.scienta.2017.11.021
  86. Anna F, Bekebrede JK, Walter JJ, Vincent CJ. The molecular and physiological effects of protein-derived polyamines in the intestine. Nutrients. 2020;12(1):197. https://doi.org/10.3390/nu12010197
  87. Li Y, He J. Advance in metabolism and response to stress of polyamines in plant. Acta Agric Boreali Sinica. 2012;27:240-45. https://doi:10.3969/j.issn.1000-7091.2012.z1.048
  88. Wu M, Yuan L. Research progress in the relationship between polyamine and plant resistance. J Anhui Agric Sci. 2008;36:3516-18. https://doi:10.3969/j.issn.0517-6611.2008.09.020
  89. Anwar R, Fatima Sh, Mattoo AK, K Handa A. Fruit architecture in polyamine-rich tomato germplasm is determined via a medley of cell cycle, cell expansion and fruit shape genes. Plants. 2019;8:387. https://doi:10.3390/plants8100387
  90. Durmu N, Kadioglu A. Spermine and putrescine enhance oxidative stress tolerance in maize leaves. Acta Physiol Plant. 2005;27:515-22. https://doi:10.1007/s11738-005-0057-8
  91. Mohammadi H, Ghorbanpour M, Brestic M. Exogenous putrescine changes redox regulations and essential oil constituents in field-grown Thymus vulgaris L. under well-watered and drought stress conditions. Ind Crops Prod. 2018;122:119-32. https://doi:10.1016/j.indcrop.2018.05.064
  92. Wu J, Shu S, Li C, Sun J, Guo S. Spermidine-mediated hydrogen peroxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots. Plant Physiol Biochem. 2018;128:152-62. https://doi:10.1016/j.plaphy.2018.05.002
  93. Peynevandi KM, Razavi SM, Zahri S. The ameliorating effects of polyamine supplement on physiological and biochemical parameters of Stevia rebaudiana Bertoni under cold stress. Plant Prod Sci. 2018;21:123-31. https://doi:10.1080/1343943X.2018.1437756
  94. Mar??a D Groppa, Mar??a L Tomaro, Mar??a P Benavides. Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci. 2001;161:481-88. https://doi.org/10.1016/S0168-9452(01)00432-0
  95. Minocha R, Majumdar R, Minocha SC. Polyamines and abiotic stress in plants: A complex relationship. Front Plant Sci. 2014;5:175. https://doi:10.3389/fpls.2014.00175
  96. Saha J, Brauer EK, Sengupta A, Al E. Polyamines as redox homeostasis regulators during salt stress in plants. Front Environ Sci. 2015;3:21. https://doi:10.3389/fenvs.2015.00021
  97. Cheng XQ, Zhu XF, Tian WG, Al E. Genome-wide identification and expression analysis of polyamine oxidase genes in upland cotton (Gossypium hirsutum L.). Plant Cell Tissue Organ Cult. 2017;129:237-49. https://doi:10.1007/s11240-017-1172-0
  98. Handa AK, Mattoo AK. Differential and functional interactions emphasize the multiple roles of polyamines in plants. Plant Physiology and Biochemistry. 2010;48(7):540-46. https://doi:10.1016/j.plaphy.2010.02.009
  99. Srivastava A, Handa AK. Hormonal regulation of tomato fruit development: A molecular perspective. Journal of Plant Growth Regulation. 2005;24(2):67-82. https://doi10.1093/jxb/eru347
  100. Masson PH, Takahashi T, Angelini R. Editorial: molecular mechanisms underlying polyamine functions in plants Front Plant Sci. 2017;8:14. Published online 2017 Jan 24. https://doi:10.3389/fpls.2017.00014
  101. Ioannidis NE, Malliarakis DM, Torné MT, Santos M, Kotzabasis K. The over-expression of the plastidial transglutaminase from maize in Arabidopsis increases the activation threshold of photoprotection. Front Plant Sci. 2016;7. https://doi.org/10.3389/fpls.2016.00635
  102. Borja Belda P, Carla A, Esmeralda M, Juan C, Alejandro F. Relevance of the axis spermidine/eIF5A for plant growth and development. Front Plant Sci. 2016; https://doi.org/10.3389/fpls.2016.00245
  103. Nambeesan S, Datsenka T, Ferruzzi MG, Malladi A, Mattoo AK, Handa AK. Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. Plant Journal. 2010;63(5):836-47. https://doi:10.1111/j.1365-313X.2010.04286.x
  104. Handa AK, Fatima T, Mattoo AK. Polyamines: Bio-molecules with diverse functions in plant and human health and disease. Frontiers in Chemistry. 2018;6:10-28. https://doi.org/10.3389/fchem.2018.00010
  105. Napieraj N, Janicka M, Reda M. Interactions of polyamines and phytohormones in plant response to abiotic stress. Plants. 2023;12(5):1159. https://doi.org/10.3390/plants12051159

Downloads

Download data is not yet available.