Role of nano fertilizers on improving drought tolerance of maize

Authors

DOI:

https://doi.org/10.14719/pst.3987

Keywords:

drought, grain, maize, nano, resistance, stay green, stress

Abstract

Maize is a versatile crop that is primarily used as human food and animal feed. It is also a fundamental raw material utilized in various industrial products owing to its nutritional value. One of the most harmful abiotic stresses in maize cultivation is drought. A water shortage caused by drought limits crop development and yield because there is less available moisture. Water shortage stress causes restricted stomatal opening, enhanced photorespiration and accelerated photoreduction of oxygen in the chloroplast. Eventually, this causes oxidative damage in maize owing to ROS accumulation. Plants respond to drought stress by producing the phytohormone abscisic acid, closing their stomata, changing gene expression and preserving their osmotic balance. Nano micro fertilizers are a phenomenal tool for drought tolerance when combined with deficit soil moisture in maize. When it is paired with deficit soil moisture, nano micro fertilizers are an incredible weapon for drought tolerance under changing climatic conditions. It aids in keeping maize's green characteristics. The greater advantages of using nano micro fertilizers in maize are retention of chlorophyll, regulation of stomatal openings, the activities of antioxidant enzymes, the proliferation of roots and higher grain filling, which resulted in higher productivity. The development of stay-green character and drought resistance in maize is positively influenced by nano micro fertilizer with suitable form and dose. Under drought conditions, nanomicronutrients play a critical role in controlling physiological processes, reducing oxidative stress and preserving cellular homeostasis. Additionally, every micronutrient acts differently and produces a different physiological response related to drought tolerance.

Downloads

Download data is not yet available.

Author Biography

M Djanaguiraman, Department of Plant Physiology, Tamil Nadu Agricultural University, Coimbatore-641 003, Tamil Nadu, India

  

References

Kennett DJ, Prufer KM, Culleton BJ, George RJ, Robinson M, Trask WR, Gutierrez SM. Early isotopic evidence for maize as a staple grain in the Americas. Science Advances. 2020;6(23):3245. https://doi.org/10.1126/sciadv.aba3245

USDA. Economic research service. Maize Data Product. 2016. https://www.usda.gov/topics/data.

Serna-Saldivar SO, Carrillo EP. Food uses of whole corn and dry-milled fractions. In: Corn. AACC International Press; 2019. p 435-67. https://doi.org/10.1016/B978-0-12-811971-6.00016-4

Kumar S, Bhatt B. Status and production technology of maize. Status of Agricultural Development in Eastern India; Bhatt BP, Sikka A, Mukherjee J, Islam A, Dey A, Eds. 2012;151-67. https://www.researchgate.net/publication/308918939 Status and production technology of maize.

Prasad PVV, Djanaguiraman M, Jagadish SVK, Ciampitti IA. Drought and high temperature stress and traits associated with tolerance. Sorghum: A State of the Art and Future Perspetives. 2019;58:241-65. https://doi.org/10.2134/agronmonogr58.c11

Earl HJ, Davis RF. Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agronomy Journal. 2003;95(3):688-96. https://doi.org/10.2134/agronj2003.6880

Rajendra Prasad VB, Govindaraj M, Djanaguiraman M, Djalovic I, Shailani A, Rawat N, et al. Drought and high temperature stress in Sorghum: Physiological, genetic and molecular insights and breeding approaches. International Journal of Molecular Sciences. 2021;22:9826. https://doi.org/10.3390/ijms22189826

Tabosa JN, Reis OV, Brito ARMB, Monteiro MCD, Simplício JB, Oliveira JAC, Oliveira LR. Comportamento de cultivares de sorgo forrageiro em diferentes ambientes agroecológicos dos Estados de Pernambuco e Alagoas. Revista Brasileira de Milho e Sorgo. 2020;1(2):47-58. https://doi.org/10.18512/1980-6477/rbms.v1n2p47-58.

Queiroz MS, Oliveira CE, Steiner F, Zuffo AM, Zoz T, Vendruscolo EP, Menis FT. Drought stresses seed germination and early growth of maize and sorghum. Journal of Agricultural Science. 2019;11(2):310. https://doi.org/10.5539/jas.v11n2p310

Ahmad S, Ahmad R, Ashraf MY, Ashraf M, Waraich EA. Sunflower (Helianthus annuus L.) response to drought stress at germination and seedling growth stages. Pakistan Journal of Botany. 2009;41(2):647-54. https://www.cabidigitallibrary.org/doi/full/10.5555/20103003727.

Meneses CHSG, Bruno RLA, Fernandes PD, Pereira WE, Lima LHGM, Lima MMA, Vidal MS. Germination of cotton cultivar seeds under water stress induced by polyethyleneglycol-6000. Scientia Agricola. 2011;68(2):131-38.https://doi.org/10.1590/S0103-90162011000200001.

Harrison MT, Tardieu F, Dong Z, Messina CD, Hammer GL. We are characterizing drought stress and trait influence on maize yield under current and future conditions. Global Change Biology. 2014;20(3):867-78. https://doi.org/10.1111/gcb.12381

Ngugi K. Anthesis to silking interval usefulness in developing drought tolerant maize. 2021. http://www.repository.tuc.ac.ke:8080/xmlui/handle/123456789/505.

Dale RF, Shaw RH. Effect on corn yields of moisture stress and stand at two different fertility levels. Agron J. 1965;57:475-79.https://doi.org/10.2134/agronj1965.00021962005700050021x

Christian JI, Basara JB, Otkin JA, Hunt ED. Regional characteristics of flash droughts across the United States. Environmental Research Communications. 2019;1(12):125004. https://doi.org/10.1088/2515-7620/ab50ca

Denmead OT, Shaw RH. The effects of soil moisture stress at different stages of growth on the development and yield of corn. Agron J. 1960;52:272-74.https://doi.org/10.2134/agronj1960.00021962005200050010x

Cakir R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res. 2004;89:1-16.https://doi.org/10.1016/j.fcr.2004.01.005

Svoboda M, Lecomte D, Hayes M, Heim R, Gleason K, Angel J, et al. The drought monitor. Bull Am Meteorol Soc. 2002;83(8):1181-90. https://doi.org/10.1175/1520-0477-83.8.1181

Otkin JA, Anderson MC, Hain C, Mladenova IE, Basara JB, Svoboda M. Examining rapid onset drought development using the thermal infrared–based evaporative stress index. Journal of Hydrometeorology. 2013;14(4):1057-74. https://doi.org/10.1175/JHM-D-12-0144.1

Hunt ED, Svoboda M, Wardlow B, Hubbard K, Hayes M, Arkebauer T. Monitoring the effects of rapid onset of drought on non-irrigated maize with agronomic data and climate-based drought indices. Agricultural and Forest Meteorology. 2014;191:1-11. https://doi.org/10.1016/j.agrformet.2014.02.001

Prodhan FA, Zhang J, Sharma TPP, Nanzad L, Zhang D, Seka AM, et al. Projection of future drought and its impact on simulated crop yield over South Asia using ensemble machine learning approach. Science of The Total Environment. 2022;807(3):151029. https://doi.org/10.1016/j.scitotenv.2021.151029

Ball P. Natural strategies for the molecular engineer. Nanotechnology. 2002;13:15-28. https://iopscience.iop.org/article/10.1088/0957-4484/13/5/201/meta.

Roco MC. Broader societal issues of nanotechnology. Journal of Nanoparticle Research. 2003;5:181-89. https://link.springer.com/article/10.1023/A:1025548512438.

Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nano level. Science. 2006;311:622-27. https://doi.org/10.1126/science.1114397

Brunner TI, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, et al. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica and effect of particle solubility. Environmental Science and Technology. 2006;40:4374-81. https://doi.org/10.1021/es052069i

Mortvedt JJ. Crop response to level of water-soluble zinc in granular zinc fertilizers. Fertilizer Research. 1992;33:249-55.https://link.springer.com/article/10.1007/BF01050880.

Taiz L, Zeiger E. Plant physiology. 5th ed. Sinauer Associates Inc., Massachusetts. 2010; p. 781.https://www.scirp.org/reference/referencespapers?referenceid=1273207.

Dey JK, Das S, Mawlong LG. Nanotechnology and its importance in micronutrient fertilization. Int J Curr Microbiol App Sci. 2018;7(05):2306-25. https://doi.org/10.20546/ijcmas.2018.705.267

Kandil EE, Ibrahim AM. Response of maize to organic fertilization and some nano-micronutrients. Egyptian Academic Journal of Biological Sciences. H Botany. 2020;11(1):13-21. https://doi.org/10.21608/eajbsh.2020.81409

Naderi MR, Danesh-Shahraki A. Nanofertilizers and their roles in sustainable agriculture. 2013. https://www.cabidigitallibrary.org/doi/full/10.5555/20133304426.

Kasivelu G, Selvaraj T, Malaichamy K, Kathickeyan D, Shkolnik D, Chaturvedi S. Nano-micronutrients [?-Fe2O3 (iron) and ZnO (zinc)]: green preparation, characterization, agro-morphological characteristics and crop productivity studies in two crops (rice and maize). New Journal of Chemistry. 2020;44(26):11373-83. https://doi.org/10.1039/D0NJ02634D

Subbaiah LV, Prasad TNVKV, Krishna TG, Sudhakar P, Reddy BR, Pradeep T. J Agric Food Chem. 2016;64:3778-88. https://doi.org/10.1021/acs.jafc.6b00838

Malakouti M, Tehrani M. Micronutrient role in increasing yield and improving the quality of agricultural products. 1st ed. Tehran: Tarbiat Modarres Press. 2005. https://scholar.google.com/citations?view op=view citation & hl=en & user = 4b0qXbsAAAAJ&cstart = 20&pagesize=80&citation for view = 4b0qXbsAAAAJ:6ZxmRoH8BuwC.

Elanchezhian R, Kumar D, Ramesh K, Biswas AK, Guhey A, Patra AK. Morpho-physiological and biochemical response of maize (Zea mays L.) plants fertilized with nano-iron (Fe3O4) micronutrient. Journal of Plant Nutrition. 2017;40(14):1969-77. https://doi.org/10.1080/01904167.2016.1270320

Ghafari H, Razmjoo J. Effect of foliar application of nano-iron oxidase, iron chelate and iron sulphate rates on yield and quality of wheat. International Journal of Agronomy and Plant Production. 2013;4(11):2997-3003. http://www.ijappjournal.com

Adhikari TS, Kundu AK, Biswas JC, Tarafdar, Subba Rao A. Characterization of zinc oxide nanoparticles and their effect on the growth of maize (Zea mays L.) plant. Journal of Plant Nutrition. 2015;38:1505-15. https://doi.org/10.1080/01904167.2014.992536

Zhang HM, Zhang YQ. Melatonin: A well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res. 2014;57:131-46. https://doi.org/10.1111/jpi.12162

Kobylinska A, Borek S, Posmyk MM. Melatonin redirects carbohydrate metabolism during sugar starvation in plant cells. J Pineal Res. 2018;64:e12466. https://doi.org/10.1111/jpi.12466

Sun L, Song F, Guo J, Zhu X, Liu S, Liu F, Li X. Nano-ZnO-induced drought tolerance is associated with melatonin synthesis and metabolism in maize. International Journal of Molecular Sciences. 2020;21(3):782. https://doi.org/10.3390/ijms21030782

Karimian Z, Samiei L. ZnO nanoparticles efficiently enhance drought tolerance in Dracocephalum kotschyi by altering physiological, biochemical and elemental contents. Frontiers in Plant Science. 2023;14:1063618.https://doi.org/10.3389/fpls.2023.1063618

Ahluwalia O, Singh PC, Bhatia R. A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Res Envir Sustai. 2021;5:100032. doi: 10.1016/j.resenv.2021.100032.2021. https://doi.org/10.1016/j.resenv.2021.100032

Verma KK, Song XP, Zeng Y, Li DM, Guo DJ, Rajput VD. Characteristics of leaf stomata and their relationship with photosynthesis in Saccharum officinarum under drought and silicon application. ACS Omega. 5:24145-53. https://doi.org/10.1021/acsomega.0c03820

Tripathi DK, Singh S, Singh S, Mishra S, Chauhan DK, Dubey NK. Micronutrients and their diverse role in crops: advances and future prospective. Acta Physiologiae Plantarum. 2015;37:1-14. https://link.springer.com/article/10.1007/s11738-015-1870-3.

Ambrosini VG, et al. High copper content in vineyard soils promotes modifications in photosynthetic parameters and morphological changes in the root system of 'Red Niagara' plantlets. Plant Physiol Biochem. 2018;128:89-98. https://doi.org/10.1016/j.plaphy. 2018.05.011.

Casimiro A, Arrabaça MC. Effect of copper deficiency on photosynthesis in wheat. In: Sybesma C. (eds) Advances in Photosynthesis Research. Advances in Agricultural Biotechnology. Springer, Dordrecht; 2015.4:pp. 435-37. https://doi.org/10.1007/978-94-017-4971-895.

Din MI, Arshad F, Hussain Z, Mukhtar M. Green adeptness in the synthesis and stabilization of copper nanoparticles: Catalytic, antibacterial, cytotoxicity and antioxidant activities. Nanoscale Res Lett. 2017;12:638. https://doi.org/10.1186/s11671-017-2399-8.

Regier N, Cosio C, von Moos N, Slaveykova VI. Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii. Chemosphere. 2015;128:56-61. https://doi.org/10.1016/j.chemosphere.2014.12.078

Singh A, Singh NB, Hussain I, Singh H. Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis. Journal of Biotechnology. 2017;262:11-27. https://doi.org/10.1016/j.jbiotec.2017.09.016.

Nguyen TC, Nguyen TD, Vu DT, Dinh DP, Nguyen AH, Ly TNL, Thai H. Modification of titanium dioxide nanoparticles with 3-(trimethoxysilyl) propyl methacrylate silane coupling agent. Journal of Chemistry. 2020;1-10. https://doi.org/10.1155/2020/1381407

Maswada HF, Mazrou YS, Elzaawely AA,d Eldein SMA. Nanomaterials. Effective tools for field and horticultural crops to cope with drought stress: A review. Spanish Journal of Agricultural Research. 2020;18(2):15.https://doi.org/10.5424/sjar/2020182-16181

de Melo GSR, Constantin RP, Abrahão J, de Paiva Foletto-Felipe M, Constantin RP, dos Santos WD, Marchiosi R. Titanium dioxide nanoparticles induce root growth inhibition in soybeans due to physical damage. Water, Air and Soil Pollution. 2021;232(1). https://link.springer.com/article/10.1007/s11270-020-04955-7.

Wang T, Zang Z, Wang S, Liu Y, Wang H, Wang W, He R. Quaternary ammonium imino fullerenes promote root growth and osmotic-stress tolerance in maize via ROS neutralization and improved energy status. Plant Physiology and Biochemistry. 2021;164:122-31. https://doi.org/10.1016/j.plaphy.2021.04.019

Muscolo A, Sidari M, Anastasi U, Santonoceto C, Maggio A. Effect of PEG-induced drought stress on seed germination of four lentil genotypes. Journal of Plant Interactions. 2014;9(1):354-63. https://doi.org/10.1080/17429145.2013.835880

Desikan R, Mackerness SAH, Hancock JT, Neill SJ. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 2001;127:159-72. https://doi.org/10.1104/pp.127.1.159

Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Schroeder JI. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature. 2000;406(6797):731-34. https://www.nature.com/articles/35021067.

Rizhsky L, Liang H, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology. 2002;130(3):1143-51. https://doi.org/10.1104/pp.006858

Zhang X, Wang L, Meng H, Wen H, Fan Y, Zhao, J. Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Molecular Biology. 2011;75:365-78. http://dx.doi.org/10.1007/s11103-011-9732-x

Abdelaziz HMM, Hasaneen MNA, Omer AM. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span J Agric Res. 2016;14(1):1-9. https://agris.fao.org/search/en/providers/122436/records/64747b36bf943c8c7985c5dd.

Xue W, Han Y, Tan J, Wang Y, Wang G, Wang H. Effects of nano chitin on the enhancement of the grain yield and quality of winter wheat. Journal of Agricultural and Food Chemistry. 2017;66(26):6637-45.https://doi.org/10.1021/acs.jafc.7b00641

Nguyen NTT, Nguyen LM, Nguyen TTT, Nguyen TT, Nguyen DTC, Tran TV. Formation, antimicrobial activity and biomedical performance of plant-based nanoparticles: a review. Environmental Chemistry Letters. 2002;20(4):2531-71. https://doi.org/10.1007/s10311-022-01425-w

Raizada P, Sudhaik A, Patial S, Hasija V, Parwaz Khan AA, Singh P, et al. Engineering nanostructures of CuO-based photocatalysts for water treatment: current progress and future challenges. Arab J Chem. 2020;13:8424-57. https://doi.org/10.1016/J.ARABJC.2020.06.031. https://doi.org/10.1016/j.arabjc.2020.06.031

Mutlag NA, Al-Rawi ASM, El-Jubouri MDY, Cheyed SH. Response of maize grain yield and components to foliar iron nanoparticle application. Revista Bionatura Revis Bionatura. 2023;8(4):70. http://dx.doi.org/10.21931/RB/20 23.08.04.70.

Dávid Ernst, Marek Kolen?ík, Martin Šebesta, Veronika Žitniak ?urná, Yu Qian, Viktor Straka, et al. Enhancing maize yield and quality with metal-based nanoparticles without translocation risks: A brief field study. Plants. 2024;13:1936. https://doi.org/10.3390/plants13141936

Richmond A, Hu Q. Handbook of microalgal culture: applied phycology and biotechnology. John Wiley and Sons. 2013. https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118567166.

Matouke MM, Elewa DT, Abdullahi K. Binary effect of titanium dioxide nanoparticles (nTiO2) and phosphorus on microalgae (Chlorella ellipsoides Gerneck, 1907). Aquatic Toxicology. 2018;19840-48.https://doi.org/10.1016/j.aquatox.2018.02.009

Akhtar N, Ilyas N, Meraj TA, Pour-Aboughadareh A, Sayyed RZ, Mashwani ZUR, Poczai P. Improvement of plant responses by nano biofertilizer: a step towards sustainable agriculture. Nanomaterials. 2022;12(6):965.https://doi.org/10.3390/nano12060965

El-Saadony MT, ALmoshadak AS, Shafi ME, Albaqami NM, Saad AM, El-Tahan AM, Helmy AM. Vital roles of sustainable nano-fertilizers in improving plant quality and quantity-an updated review. Saudi Journal of Biological Sciences. 2021;28(12):7349-59. https://doi.org/10.1016/j.sjbs.2021.08.032

Mosanna R, Behrozyar EK. Morpho-physiological response of maize (Zea mays L.) to zinc nano-chelate foliar and soil application at different growth stages. 2015. https://www.cabidigitallibrary.org/doi/full/10.5555/20153380605.

Shoukat A, Saqib ZA, Akhtar J, Aslam Z, Pitann B, Hossain MS, Mühling KH. Zinc and silicon nano-fertilizers influence ionomic and metabolite profiles in maize to overcome salt stress. Plants. 2024;13(9):1224. https://doi.org/10.3390/plants13091224

Tondey M, Kalia A, Singh A, Dheri GS, Taggar MS, Nepovimova E, Kuca K.Seed priming and coating by nano-scale zinc oxide particles improved vegetative growth, yield and quality of fodder maize (Zea mays). Agronomy. 2021;11(4):729. https://doi.org/10.3390/agronomy11040729

Saha S, Samad R, Rashid P, Karmoker JL. Effects of sulphur deficiency on growth, sugars, proline and chlorophyll content in mung bean (Vigna radiata L. var. BARI MUNG-6). Bangladesh J Bot. 2016;45:405-10. https://www.researchgate.net/profile/Shukanta-Saha/publication/305166513 Effects of sulphur deficiency on growth sugars proline and chlorophyll content in mungbean Vigna radiata L var BARI MUNG-6/links/5c006662a6fdcc1b8d4a8b94/Effects-of-sulphur-deficiency-on-growth-sugars-proline-and-chlorophyll-content-in-mungbean-Vigna-radiata-L-var-BARI-MUNG-6.pdf.

Jaleel CA, Gopi R, Sankar B, Manivannan P, Kishorekumar A, Sridharan R, Panneerselvam R. Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. South Afr J Bot. 2007;73:190-95. https://doi.org/10.1016/j.sajb.2006.11.001

Muhammad OA, Al-Falahi MH. Effect of spraying nano fertilizer NPK and nano fertilizer microelements on the growth characteristics of maize plants (Zea mays L.). In: IOP Conference Series: Earth and Environmental Science. IOP Publishing. 2023 Dec;1252(1): p. 012063. https://iopscience.iop.org/article/10.1088/1755-1315/1252/1/012063/meta.

Rao S R, Qayyum A, Razzaq A, Ahmad M, Mahmood I, Sher A. Role of foliar application of salicylic acid and l-tryptophan in drought tolerance of maize. J Anim Plant Sci. 2012;22(3):768-72.https://www.academia.edu/download/58902409/Role of foliar application of salicylic acidand l-tryptophan in drought tolerance of maize.pdf .

Kaniska K, Jagadeeswaran R, Kumaraperumal R, Ragunath KP, Kannan B, Muthumanickam D, Pazhanivelan S. Impact of drone spraying of nutrients on growth and yield of maize crop. International Journal of Environment and Climate Change. 2022;12(11):274-82.https://journalijecc.com/index.php/IJECC/article/view/1045.

Tsouros DC, Bibi S, Sarigiannidis PG. A review on UAV-based applications for precision agriculture. Information. 2019;10:349. https://doi.org/10.3390/info10110349

Fernández-Guisuraga JM, Sanz-Ablanedo E, Suárez-Seoane S, Calvo L. Using unmanned aerial vehicles in postfire vegetation survey campaigns through large and heterogeneous areas: Opportunities and challenges. Sensors. 2018;18:586. https://doi.org/10.3390/s18020586

Roy D, Sengupta K, Mondal R, Gunri SK, Ali O, Madhu HS. Effect of nano-fertilizers on growth, yield and economics of summer hybrid maize (Zea mays L.). International Journal of Bio-resource and Stress Management. 2023;14(10):1321-30. https://doi.org/10.23910/1.2023.4790

Uma V, Jayadeva HM, Atheekur rehaman HM, Kadalli GG, Umashankar N. Influence of nano zinc oxide on yield and economics of maize (Zea mays L.). Mysore J Agric Sci. 2019;53(4):44-48. https://www.uasbangalore.edu.in/images/2019-4th-Issue/8.pdf

Published

31-12-2024 — Updated on 06-01-2025

Versions

How to Cite

1.
Vaishnavi S, Perumal K, Manivannan V, Djanaguiraman M, Thiyageshwari S. Role of nano fertilizers on improving drought tolerance of maize. Plant Sci. Today [Internet]. 2025 Jan. 6 [cited 2025 Jan. 7];12(1). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/3987

Issue

Section

Review Articles

Most read articles by the same author(s)

1 2 > >>