Viruses unleashed: Revolutionary approaches to gene transfer in plants
DOI:
https://doi.org/10.14719/pst.6041Keywords:
agroinfiltration, viral vectors, virus-induced gene silencing (VIGS), virus-induced genome editing (VIGE)Abstract
Gene editing has become the new era for crop improvement. Agrobacterium-mediated gene transfer and tissue culture for that plant regeneration have become the bottleneck for the gene transfer. Plant viral vectors have emerged as a significant tool in plant genome editing. Vectors like tobacco rattle virus (TRV) and potato virus X (PVX) are particularly effective due to their broad host range, enabling their use across various plant species for crop improvement, disease resistance and functional genomics. An ideal viral vector should achieve high gene transfer efficiency while maintaining transient expression to minimize lasting genetic alterations for optimal results. Recent advancements in techniques such as virus-induced gene silencing (VIGS) and virus-induced genome editing (VIGE) showcase the potential of these vectors for precise gene modifications is also discussed VIGS leverages the plants' innate antiviral response to silence target genes, enabling rapid functional analysis without permanent changes, while VIGE uses viral vectors to deliver cas9 components for targeted genome editing, minimizing off-target effects. However, challenges such as cargo size limitations and regulatory hurdles persist. The future direction of this field is anticipated to advance genome engineering via viral vectors in more sophisticated ways, including using these vectors for genome editing and cargo capacity optimization. This progress will open up new possibilities for the scientific community in plant genome engineering. Overall, this review provides a comprehensive understanding of the current and future potential of virus-mediated gene transfer in plant biotechnology, from the selection of suitable viral vectors to the stable integration of foreign genes into the plant genome and insights into the challenges and future prospects of virus-mediated gene transfer in plants are also presented.
Downloads
References
Li J-F, Norville JE, Aach J, McCormack M, Zhang D, Bush J, et al. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology. 2013;31(8):688–91. https://doi.org/10.1038/nbt.2654
Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, et al. A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants. 2017;3(3):17018. https://doi.org/10.1038/nplants.2017.18
Tatineni S, Stewart LR, Sanfaçon H, Wang X, Navas-Castillo J, Hajimorad MR. Fundamental Aspects of plant viruses- an overview on focus issue articles. Phytopathology. 2020;110(1):6–9. https://doi.org/10.1094/phyto-10-19-0404-fi
Sicard A, Michalakis Y, Gutiérrez S, Blanc S. The strange lifestyle of multipartite viruses. PLoS Pathogens. 2016;12(11):e1005819. https://doi.org/10.1371/journal.ppat.1005819
Chaitanya KV. Structure and organization of virus genomes. In: Chaitanya KV, editor. Genome and genomics: from archaea to eukaryotes. Springer, Singapore; 2019. p. 1–30. https://doi.org/10.1007/978-981-15-0702-1_1
Lee WS, Hammond-Kosack KE, Kanyuka K. Barley stripe mosaic virus-mediated tools for investigating gene function in cereal plants and their pathogens: virus-induced gene silencing, host-mediated gene silencing and virus-mediated overexpression of heterologous protein. Plant Physiology. 2012;160(2):582–90. https://doi.org/10.1104/pp.112.203489
Schaeffer SM, Nakata PA. The expanding footprint of CRISPR/Cas9 in the plant sciences. Plant Cell Reports. 2016;35(7):1451–68. https://doi.org/10.1007/s00299-016-1987-x
Kaur M, Manchanda P, Kalia A, Ahmed FK, Nepovimova E, Kuca K, et al. Agroinfiltration mediated scalable transient gene expression in genome edited crop plants. International Journal of Molecular Sciences. 2021;22(19):10882. https://doi.org/10.3390/ijms221910882
Cody WB, Scholthof HB. Plant virus vectors 3.0: transitioning into synthetic genomics. Annual Review of Phytopathology. 2019;57:211–30. https://doi.org/10.1146/annurev-phyto-082718-100301
Potrykus I. Gene transfer to plants: assessment and perspectives. Physiologia Plantarum. 1990;79(1):125–34. https://doi.org/10.1034/j.1399-3054.1990.790117.x
Zaidi SS-e-A, Mansoor S. Viral vectors for plant genome engineering. Frontiers in Plant Science. 2017;8:539. https://doi.org/10.3389/fpls.2017.00539
Uranga M, Aragonés V, García A, Mirabel S, Gianoglio S, Presa S, et al. RNA virus-mediated gene editing for tomato trait breeding. Horticulture Research. 2024;11(1):279. https://doi.org/10.1093/hr/uhad279
Regnard GL, Halley-Stott RP, Tanzer FL, Hitzeroth II, Rybicki EP. High level protein expression in plants through the use of a novel autonomously replicating geminivirus shuttle vector. Plant Biotechnology Journal. 2010;8(1):38–46. https://doi.org/10.1111/j.1467-7652.2009.00462.x
Abrahamian P, Hammond RW, Hammond J. Plant virus–derived vectors: Applications in agricultural and medical biotechnology. Annual Review of Virology. 2020;7:513–35. https://doi.org/10.1146/annurev-virology-010720-054958
Liu Y, Lyu R, Singleton JJ, Patra B, Pattanaik S, Yuan L. A Cotyledon-based Virus-induced gene silencing (Cotyledon-VIGS) approach to study specialized metabolism in medicinal plants. Plant Methods. 2024;20(1):26. https://doi.org/10.1186/s13007-024-01154-x
Oh Y, Kim S-G. RPS5A promoter-driven Cas9 Produces heritable virus-induced genome editing in Nicotiana attenuata. Molecules and Cells. 2021;44(12):911–9. https://doi.org/10.14348/molcells.2021.0237
Sang S, Liu Y, Li X, Ma J, Liu X, Yang Y. A novel gene silencing strategy based on tobacco rattle virus in Hibiscus mutabilis. PeerJ. 2024;12:e18211. https://doi.org/10.7717/peerj.18211
Kalia D, Jose-Santhi J, Sheikh FR, Singh D, Singh RK. Tobacco rattle virus-based virus-induced gene silencing (VIGS) as an aid for functional genomics in Saffron (Crocus sativus L.). Physiology and Molecular Biology of Plants. 2024;30(5):749–55. https://doi.org/10.1007/s12298-024-01459-0
Lee S-Y, Kang B, Venkatesh J, Lee J-H, Lee S, Kim J-M, et al. Development of virus-induced genome editing methods in Solanaceous crops. Horticulture Research. 2023;11(1). https://doi.org/10.1093/hr/uhad233
Ariga H, Toki S, Ishibashi K. Potato Virus X Vector-Mediated DNA-Free Genome Editing in Plants. Plant and Cell Physiology. 2020;61(11):1946–53. https://doi.org/10.1093/pcp/pcaa123
Uranga M, Aragonés V, Selma S, Vázquez-Vilar M, Orzáez D, Daròs JA. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector. The Plant Journal. 2021;106(2):555–65. https://doi.org/10.1111/tpj.15164
Venkatesh J, Lee SY, Kang HJ, Lee S, Lee JH, Kang BC. Heat Stress-Induced Potato virus X-mediated CRISPR/Cas9 Genome Editing in Nicotiana benthamiana. Plant Breed Biotech. 2022;10(3):186–96. https://doi.org/10.9787/PBB.2022.10.3.186
Kumar J, Alok A, Steffenson BJ, Kianian S. A geminivirus crosses the monocot-dicot boundary and acts as a viral vector for gene silencing and genome editing. Journal of Advanced Research. 2024;61:35–45.
Bhattacharjee B, Hallan V. Geminivirus-derived vectors as tools for functional genomics. Frontiers in Microbiology. 2022;13:799345. https://doi.org/10.1016/j.jare.2023.09.013
Mei Y, Zhang C, Kernodle BM, Hill JH, Whitham SA. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize Plant Physiology. 2016;171(2):760–72. https://doi.org/10.1104/pp.16.00172
Nihranz C, Guzchenko I, Casteel C. Silencing ZmPP2C-A10 with a foxtail mosaic virus (FoMV) derived vector benefits maize growth and development following water limitation. Plant Biology. 2023;25(6):956–64. https://doi.org/10.1111/plb.13568
Constantin GD, Krath BN, MacFarlane SA, Nicolaisen M, Elisabeth Johansen I, Lund OS. Virus-induced gene silencing as a tool for functional genomics in a legume species. The Plant Journal. 2004;40(4):622–31. https://doi.org/10.1111/j.1365-313X.2004.02233.x
Ali Z, Eid A, Ali S, Mahfouz MM. Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis. Virus Research. 2018;244:333–7. https://doi.org/10.1016/j.virusres.2017.10.009
Liu Q, Zhao C, Sun K, Deng Y, Li Z. Engineered biocontainable RNA virus vectors for nontransgenic genome editing across crop species and genotypes. Molecular Plant. 2023;16(3):616–31. https://doi.org/10.1016/j.molp.2023.02.003
Ahmad A, Khan JM, Haque S. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles. Biochimie. 2019;160:61–75. https://doi.org/10.1016/j.biochi.2019.02.012
Abrahamian P, Hammond RW, Hammond J. Plant virus–derived vectors: applications in agricultural and medical biotechnology. Annual Review of Virology. 2020;7(1):513–35. https://doi.org/10.1146/annurev-virology-010720-054958
Mascia T, Nigro F, Abdallah A, Ferrara M, De Stradis A, Faedda R, et al. Gene silencing and gene expression in phytopathogenic fungi using a plant virus vector. Proceedings of the National Academy of Sciences. 2014;111(11):4291–6. https://doi.org/10.1073/pnas.1315668111
Monroy-Borrego AG, Steinmetz NF. Three methods for inoculation of viral vectors into plants. Frontiers in Plant Science. 2022;13:963756. https://doi.org/10.3389/fpls.2022.963756
Tian J, Pei H, Zhang S, Chen J, Chen W, Yang R, et al. TRV–GFP: a modified Tobacco rattle virus vector for efficient and visualizable analysis of gene function. Journal of Experimental Botany. 2013;65(1):311–22. https://doi.org/10.1093/jxb/ert381
Bradamante G, Mittelsten Scheid O, Incarbone M. Under siege: virus control in plant meristems and progeny. The Plant Cell. 2021;33(8):2523–37. https://doi.org/10.1093/plcell/koab140
Kujur S, Senthil-Kumar M, Kumar R. Plant viral vectors: expanding the possibilities of precise gene editing in plant genomes. Plant Cell Reports. 2021;40:931–4. https://doi.org/10.1007/s00299-021-02697-2
Wieczorek P, Budziszewska M, Frackowiak P, Obrepalska-Steplowska A. Development of a new tomato torrado virus-based vector tagged with GFP for monitoring virus movement in plants. Viruses. 2020;12(10):1195. https://doi.org/10.3390/v12101195
van Kammen A. Virus-induced gene silencing in infected and transgenic plants. Trends in Plant Science. 1997;2(11):409-11. https://doi.org/10.1016/S1360-1385(97)01128-x
Kumagai MH, Donson J, della-Cioppa G, Harvey D, Hanley K, Grill LK. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci U S A. 1995;92(5):1679–83. https://doi.org/10.1073/pnas.92.5.1679
Zulfiqar S, Farooq MA, Zhao T, Wang P, Tabusam J, Wang Y, et al. Virus-induced gene silencing (VIGS): a powerful tool for crop improvement and its advancement towards epigenetics. International Journal of Molecular Sciences. 2023;24(6):5608. https://doi.org/10.3390/ijms24065608
Lu R, Martin-Hernandez AM, Peart JR, Malcuit I, Baulcombe DC. Virus-induced gene silencing in plants. Methods. 2003;30(4):296–303. https://doi.org/10.1016/S1046-2023(03)00037-9
Zhang X, Zhu Y, Liu X, Hong X, Xu Y, Zhu P, et al. Suppression of endogenous gene silencing by bidirectional cytoplasmic RNA decay in Arabidopsis. Science. 2015;348(6230):120–3. https://doi.org/10.1126/science.aaa2618
Purkayastha A, Mathur S, Verma V, Sharma S, Dasgupta I. Virus-induced gene silencing in rice using a vector derived from a DNA virus. Planta. 2010;232(6):1531–40. https://doi.org/10.1007/s00425-010-1273-z
Liu Y, Schiff M, Dinesh-Kumar SP. Virus-induced gene silencing in tomato. Plant J. 2002;31(6):777–86. https://doi.org/10.1046/j.1365-313X.2002.01394.x
Yang W, Chen X, Chen J, Zheng P, Liu S, Tan X, et al. Virus-Induced Gene Silencing in the Tea Plant (Camellia sinensis). Plants. 2023;12(17). https://doi.org/10.3390/plants12173162
Pandey V, Srivastava A, Ali A, Gupta R, Shahid MS, Gaur RK. Predicting candidate miRNAs for targeting begomovirus to induce sequence-specific gene silencing in chilli plants. Frontiers in Plant Science. 2024;15:1460540. https://doi.org/10.3389/fpls.2024.1460540
Zulfiqar S, Farooq MA, Zhao T, Wang P, Tabusam J, Wang Y, et al. Virus-Induced gene silencing (VIGS): a powerful tool for crop improvement and its advancement towards epigenetics. International Journal of Molecular Sciences. 2023;24(6). https://doi.org/10.3390/ijms24065608
Zhang C, Liu S, Li X, Zhang R, Li J. Virus-induced gene editing and its applications in plants. International Journal of Molecular Sciences. 2022;23(18):10202. https://doi.org/10.3390/ijms231810202
Lee SY, Kang B, Venkatesh J, Lee JH, Lee S, Kim JM, et al. Development of virus-induced genome editing methods in Solanaceous crops. Horticulture Research. 2024;11(1):233. https://doi.org/10.1093/hr/uhad233
Oh Y, Kim H, Kim S-G. Virus-induced plant genome editing. Current Opinion in Plant Biology. 2021;60:101992. https://doi.org/10.1016/j.pbi.2020.101992
Ali Z, Abul-Faraj A, Li L, Ghosh N, Piatek M, Mahjoub A, et al. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Molecular Plant. 2015;8(8):1288–91. https://doi.org/10.1016/j.molp.2015.02.011
Lee SY, Kang B, Venkatesh J, Lee JH, Lee S, Kim JM, et al. Development of virus-induced genome editing methods in Solanaceous crops. Horticulture Research. 2024;11(1):233. https://doi.org/10.1093/hr/uhad233
Ellison EE, Nagalakshmi U, Gamo ME, Huang P-j, Dinesh-Kumar S, Voytas DF. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nature Plants. 2020;6(6):620–4. https://doi.org/10.1038/s41477-020-0670-y
Liu D, Ellison EE, Myers EA, Donahue LI, Xuan S, Swanson R, et al. Heritable gene editing in tomato through viral delivery of isopentenyl transferase and single-guide RNAs to latent axillary meristematic cells. Proceedings of the National Academy of Sciences. 2024;121(39):e2406486121. https://doi.org/10.1073/pnas.2406486121
Vogan AA, Higgs PG. The advantages and disadvantages of horizontal gene transfer and the emergence of the first species. Biol Direct. 2011;6:1. https://doi.org/10.1186/1745-6150-6-1
Nielsen KM, Bones AM, Smalla K, van Elsas JD. Horizontal gene transfer from transgenic plants to terrestrial bacteria – a rare event? FEMS Microbiology Reviews. 1998;22(2):79–103. https://doi.org/10.1016/S0168-6445(98)00009-6
Hefferon KL. DNA virus vectors for vaccine production in plants: Spotlight on geminiviruses. Vaccines. 2014;2(3):642–53. https://doi.org/10.3390/vaccines2030642
Marton I, Zuker A, Shklarman E, Zeevi V, Tovkach A, Roffe S, et al. Nontransgenic genome modification in plant cells. Plant Physiol. 2010;154(3):1079-87. https://doi.org/10.1104/pp.110.164806
Zhong Y, Peng JJ, Chen ZZ, Xie H, Luo D, Dai JR, et al. Dry mycelium of Penicillium chrysogenum activates defense responses and restricts the spread of tobacco mosaic virus in tobacco. Physiological and Molecular Plant Pathology. 2015;92. https://doi.org/10.1016/j.pmpp.2015.08.007
Ali Z, Abul-faraj A, Li L, Ghosh N, Piatek M, Mahjoub A, et al. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 System. Mol Plant. 2015;8(8):1288-91. https://doi.org/10.1016/j.molp.2015.02.011
Ali Z, Ali S, Tashkandi M, Zaidi SS-e-A, Mahfouz MM. CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Scientific Reports. 2016;6(1):26912. https://doi.org/10.1038/srep30223
Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, Sánchez-León S, et al. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. The Plant Journal. 2017;89(6):1251-62. https://doi.org/10.1111/tpj.13446
Wang M, Lu Y, Botella JR, Mao Y, Hua K, Zhu J. Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system. Molecular plant. 2017;10(7):1007–10. https://doi.org/10.1016/j.molp.2017.03.002
Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF. DNA replicons for plant genome engineering. The Plant Cell. 2014;26(1):151-63. https://doi.org/10.1105/tpc.113.119792
Cermák T, Baltes NJ, Cegan R, Zhang Y, Voytas DF. High-frequency, precise modification of the tomato genome. Genome biology. 2015;16:1–15. https://doi.org/10.1186/s13059-015-0796-9
Butler NM, Atkins PA, Voytas DF, Douches DS. Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PloS one. 2015;10(12):e0144591. https://doi.org/10.1371/journal.pone.0144591
Butler NM, Baltes NJ, Voytas DF, Douches DS. Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Frontiers in plant science. 2016;7:198468. https://doi.org/10.3389/fpls.2016.01045
Dahan-Meir T, Filler-Hayut S, Melamed-Bessudo C, Bocobza S, Czosnek H, Aharoni A. Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system. The Plant Journal. 2018;95(1):5–16. https://doi.org/10.1111/tpj.13932
Uranga M, Aragonés V, Selma S, Vázquez-Vilar M, Orzáez D, Daròs JA. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector. The Plant Journal. 2021;106(2):555–65. https://doi.org/10.1111/tpj.15164
Cody WB, Scholthof HB, Mirkov TE. Multiplexed gene editing and protein overexpression using a tobacco mosaic virus viral vector. Plant Physiology. 2017;175(1):23–35. https://doi.org/10.1104/pp.17.00411
Kaya H, Ishibashi K, Toki S. A split Staphylococcus aureus Cas9 as a compact genome-editing tool in plants. Plant and Cell Physiology. 2017;58(4):643–9. https://doi.org/10.1093/pcp/pcx034
Gao Q, Xu WY, Yan T, Fang XD, Cao Q, Zhang ZJ, et al. Rescue of a plant cytorhabdovirus as versatile expression platforms for planthopper and cereal genomic studies. New Phytologist. 2019;223(4):2120–33. https://doi.org/10.1111/nph.15889
Senthil-Kumar M, Mysore KS. Tobacco rattle virus–based virus-induced gene silencing in Nicotiana benthamiana. Nature Protocols. 2014;9(7):1549–62. https://doi.org/10.1038/nprot.2014.092
Mustafa R, Shafiq M, Mansoor S, Briddon RW, Scheffler BE, Scheffler J, et al. Virus-Induced Gene Silencing in Cultivated Cotton (Gossypium spp.) Using Tobacco Rattle Virus. Molecular Biotechnology. 2016;58(1):65–72. https://doi.org/10.1007/s12033-015-9904-z
Chong X, Wang Y, Xu X, Zhang F, Wang C, Zhou Y. Efficient Virus-induced gene silencing in Ilex dabieshanensis using tobacco rattle virus. Forests. 2023;14(3):488. https://doi.org/10.3390/f14030488
Pascual S, Rodríguez-Álvarez CI, Kaloshian I, Nombela G. Hsp90 Gene Is Required for Mi-1-Mediated Resistance of Tomato to the Whitefly Bemisia tabaci. Plants. 2023;12(3):641. https://doi.org/10.3390/plants12030641
Yang W, Chen X, Chen J, Zheng P, Liu S, Tan X. Virus-Induced gene silencing in the tea plant (Camellia sinensis). Plants. 2023;12(17):3162. https://doi.org/10.3390/plants12173162
Sajid IA, Tabassum B, Yousaf I, Khan A, Adeyinka OS, Shahid N. In Vivo Gene Silencing of Potato Virus X by Small Interference RNAs in Transgenic Potato. Potato Research. 2020;63(2):143–55. https://doi.org/10.1007/s11540-019-09433-0
Zhao X, Gao Q, Wang H, Yue J, An D, Li B, et al. syn-tasiRnas targeting the coat protein of potato virus Y confer antiviral resistance in Nicotiana benthamiana. Plant Signaling and Behavior. 2024;19(1):2358270. https://doi.org/10.1080/15592324.2024.2358270
Deng Y, Yarur-Thys A, Baulcombe DC. Virus-induced overexpression of heterologous FLOWERING LOCUS T for efficient speed breeding in tomato. Journal of Experimental Botany. 2023;75(1):36–44. https://doi.org/10.1093/jxb/erad369
Gautam S, Chinnaiah S, Workneh F, Crosby K, Rush C, Gadhave KR. First Report of a Resistance-Breaking Strain of Tomato Spotted Wilt Orthotospovirus Infecting Capsicum annuum with the Tsw Resistance Gene in Texas. Plant Disease. 2023;107(6):1958. https://doi.org/10.1094/PDIS-09-22-2274-pdn
Holzberg S, Brosio P, Gross C, Pogue GP. Barley stripe mosaic virus-induced gene silencing in a monocot plant. The Plant Journal. 2002;30(3):315–27. https://doi.org/10.1046/j.1365-313X.2002.01291.x
Tuo D, Zhou P, Yan P, Cui H, Liu Y, Wang H, et al. A cassava common mosaic virus vector for virus-induced gene silencing in cassava. Plant Methods. 2021;17(1):74. https://doi.org/10.1186/s13007-021-00775-w
Liu M, Liang Z, Aranda MA, Hong N, Liu L, Kang B, et al. A cucumber green mottle mosaic virus vector for virus-induced gene silencing in cucurbit plants. Plant Methods. 2020;16(1):9. https://doi.org/10.1186/s13007-020-0560-3
Xiao Z, Xing M, Liu X, Fang Z, Yang L, Zhang Y, et al. An efficient virus-induced gene silencing (VIGS) system for functional genomics in Brassicas using a cabbage leaf curl virus (CaLCuV)-based vector. Planta. 2020;252(3):42. https://doi.org/10.1007/s00425-020-03454-7
Tiedge K, Destremps J, Solano-Sanchez J, Arce-Rodriguez ML, Zerbe P. Foxtail mosaic virus-induced gene silencing (VIGS) in switchgrass (Panicum virgatum L.). Plant Methods. 2022;18(1):71. https://doi.org/10.1186/s13007-022-00903-0
Wang Y, Chai C, Khatabi B, Scheible W-R, Udvardi MK, Saha MC, et al. An Efficient Brome mosaic virus-Based Gene Silencing Protocol for Hexaploid Wheat (Triticum aestivum L.). Frontiers in Plant Science. 2021;12. https://doi.org/10.3389/fpls.2021.685187
Mahas A, Ali Z, Tashkandi M, Mahfouz MM. Virus-Mediated Genome Editing in Plants Using the CRISPR/Cas9 System. In: Qi Y, editor. Plant Genome Editing with CRISPR Systems: Methods and Protocols. New York, NY: Springer New York; 2019. p. 311-26. https://doi.org/10.1007/978-1-4939-8991-1_23
Uranga M, Aragonés V, García A, Mirabel S, Gianoglio S, Presa S, et al. RNA virus-mediated gene editing for tomato trait breeding. Horticulture Research. 2023;11(1). https://doi.org/10.1093/hr/uhad279
Ma X, Zhang X, Liu H, Li Z. Highly efficient DNA-free plant genome editing using virally delivered CRISPR–Cas9. Nature Plants. 2020;6(7):773–9. https://doi.org/10.1038/s41477-020-0704-5
Dahan-Meir T, Filler-Hayut S, Melamed-Bessudo C, Bocobza S, Czosnek H, Aharoni A, et al. Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system. The Plant Journal. 2018;95(1):5–16. https://doi.org/10.1111/tpj.13932
Olivares F, Loyola R, Olmedo B, Miccono MdlÁ, Aguirre C, Vergara R, et al. CRISPR/Cas9 Targeted editing of genes associated with fungal susceptibility in Vitis vinifera L. cv. Thompson Seedless Using Geminivirus-Derived Replicons. Frontiers in Plant Science. 2021;12. https://doi.org/10.3389/fpls.2021.791030
Mei Y, Beernink BM, Ellison EE, Konecná E, Neelakandan AK, Voytas DF, et al. Protein expression and gene editing in monocots using foxtail mosaic virus vectors. Plant Direct. 2019;3(11):e00181. https://doi.org/10.1002/pld3.181
Li T, Hu J, Sun Y, Li B, Zhang D, Li W, et al. Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture. Molecular Plant. 2021;14(11):1787–98. https://doi.org/10.1016/j.molp.2021.07.010
Zhao C, Lou H, Liu Q, Pei S, Liao Q, Li Z. Efficient and transformation-free genome editing in pepper enabled by RNA virus-mediated delivery of CRISPR/Cas9. Journal of Integrative Plant Biology. 2024;66(10):2079–82. https://doi.org/10.1111/jipb.13741
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 K Bowmiya, L Arul, VA Sathiyamurthy, M Djanaguiraman, KK Kumar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).