Unveiling thermosensitive genetic male sterility in rice - molecular insights and approaches
DOI:
https://doi.org/10.14719/pst.4441Keywords:
cellular mechanism, EGMS, molecular mechanism, TGMS, two-line hybridsAbstract
The application of male sterility has facilitated the commercialization of heterosis in rice, resulting in an enhanced yield and output of this staple food crop. The application of three-line hybrid rice technology is decreasing due to limited heterosis, lack of good combiner in cytoplasmic male sterile lines, poor reproducibility of hybrid seeds and limited commercial acceptance. Two-line heterosis breeding can overcome these issues. Two-line breeding allows for more diverse germplasm as parents, including any line as female and 97% of germplasm as male. Moreover, two-line breeding can lead to lower production costs. Systematic research can enable the widespread deployment of two-line hybrid rice technology. Identifying the novel genetic, molecular, and cellular factors and understanding the regulatory networks regulating male sterility in rice is vital for maximizing heterosis and ensuring global food security. In this review, we have briefly discussed the types of environment-sensitive genetic male sterility systems for two-line hybrid seed production. Furthermore, we have discussed the genetic, molecular and cellular basis for the thermosensitive genetic male sterility (TGMS) mechanism. We have provided insights on molecular and biotechnological interventions such as CRISPR and omics techniques in the TGMS system to address the existing concerns and to overcome the problems related to two-line rice breeding.
Downloads
References
Khush GS. Strategies for increasing the yield potential of cereals: case of rice as an example. Plant Breed. 2013;132(5):433?36. https://doi.org/10.1111/pbr.1991
Srimathi K, Pillai MA, Aananthi N, Rajababu C. Genetic studies on TGMS lines for development of superior two line rice hybrids. Electro J Plant Breed. 2019;10(2):620?26. https://doi.org/10.5958/0975-928X.2019.00078.4
Cheng SH, Zhuang JY, Fan YY, Du JH, Cao LY. Progress in research and development on hybrid rice: a super-domesticate in China. Ann of Bot. 2007 Oct 1;100(5):959?66. https://doi.org/10.1093/aob/mcm121
Zheng X, Wei F, Cheng C, Qian Q. A historical review of hybrid rice breeding. J Integrative Plant Biol. 2024;66(3):532?45. https://doi.org/10.1111/jipb.13598
Rice | USDA Foreign Agricultural Service [Internet]. [cited 2024 Nov 15]. Available from: https://fas.usda.gov/data/production/commodity/0422110
Li S, Yang D, Zhu Y. Characterization and use of male sterility in hybrid rice breeding. J Integrative Plant Biol. 2007;49(6):791?804. https://doi.org/10.1111/j.1744-7909.2007.00513.x
Yu J, Han J, Kim YJ, Song M, Yang Z, He Y, et al. Two rice receptor-like kinases maintain male fertility under changing temperatures. Proc Nat Academy of Sci. 2017;114(46):12327?32. https://doi.org/10.1073/pnas.1705189114
Oard JH, Hu J. Inheritance and characterization of pollen fertility in photoperiodically sensitive rice mutants. Euphytica. 1995;82:17?23. https://doi.org/10.1007/BF00028705
Ashraf MF, Peng G, Liu Z, Noman A, Alamri S, Hashem M, et al. Molecular control and application of male fertility for two-line hybrid rice breeding. Int J Mol Sci. 2020;21(21):7868. https://doi.org/10.3390/ijms21217868
Chun Y, Kumar A, Li X. Genetic and molecular pathways controlling rice inflorescence architecture. Front in Plant Sci. 2022 Sep 28;13:1010138.https://doi.org/10.3389/fpls.2022.1010138
Abbas A, Yu P, Sun L, Yang Z, Chen D, Cheng S, Cao L. Exploiting genic male sterility in rice: from molecular dissection to breeding applications. Front in Plant Sci. 2021 Mar 2;12:629314.https://doi.org/10.3389/fpls.2021.629314
Mishra VK, Dwivedi D, Upadhyay D, Pandey D. Molecular and genetic basis of male sterility in development of hybrid varieties. A review. Int J Curr Res. 2013;5:191?97.
Athwal DS. Hybrid bajara-1 marks a new era. Indian Farm. 1965;15:6–7.
Fan Y, Zhang Q. Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice. Plant Reproduction. 2018;31:3?14. https://doi.org/10.1007/s00497-017-0310-5
Zhang GQ. Prospects of utilization of inter-subspecific heterosis between indica and japonica rice. J Integrat Agri. 2020;19(1):1?10. https://doi.org/10.1016/S2095-3119(19)62843-1
Shi M. Preliminary report of later japonica natural 2-lines and applications. Hubei Agric Sci. 1981;7:1?3.
Xu Y, Yu D, Chen J, Duan M. A review of rice male sterility types and their sterility mechanisms. Heliyon. 2023. https://doi.org/10.1016/j.heliyon.2023.e18204
Xue GX, Zhao JZ. A preliminary study on the critical-daylengths for photoperiod-sensitive male sterility of rice and their responses to other environmental factors. Acta Agronomica Sinica. 1990;16(2):112?22.
Zhang H, Chen X, Huang J, Zhi-Guo E, Gong J, Shu Q. Identification and transition analysis of photo-/thermo-sensitive genic male sterile genes in two-line hybrid rice in China. Sci Agr Sin. 2015;48:1?9.
Sun ZX. A temperature-sensitive male-sterile line found in rice. Rice Genet Newslett. 1989;6:116?17.
Maruyama K, Araki H, Kato H. Thermosensitive genetic male sterility induced by irradiation. Rice Genetics II: (In 2 Parts): World Scientific; 1991;227?32. https://doi.org/10.1142/9789812814272_0023
Virmani S, Voc P. Induction of photo-and thermo-sensitive male sterility in indica rice. Agron Abstr. 1991;119.
Ali J, Siddiq EA, Zaman F, Abraham M, Ahmed I. Identification and characterization of temperature sensitive genic male sterile sources in rice (Oryza sativa L.). Indian J Genet and Plant Breed. 1995;55(03):243?59.
Yang Q, Liang C, Zhuang W, Li J, Deng H, Deng Q, Wang B. Characterization and identification of the candidate gene of rice thermo-sensitive genic male sterile gene tms5 by mapping. Planta. 2007;225:321?30. https://doi.org/10.1007/s00425-006-0353-6
Zhou H, Liu Q, Li J, Jiang D, Zhou L, Wu P, et al. Photoperiod-and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res. 2012;22(4):649?60. https://doi.org/10.1038/cr.2012.28
Jia JH, Zhang DS, Li CY, Qu XP, Wang SW, Chamarerk V, et al. Molecular mapping of the reverse thermosensitive genic male-sterile gene (rtms1) in rice. Theoretical and Appl Genet. 2001;103:607?12. https://doi.org/10.1007/PL00002916
ALI AJ, Siddiq EA. Isolation and characterization of a reverse temperature sensitive genic male sterile mutant in rice. Ind J of Genet and Plant Breed. 1999 Nov 25;59(04):423?28.
Liu X, Li X, Zhang X, Wang S. Genetic analysis and mapping of a thermosensitive genic male sterility gene, tms6 (t), in rice (Oryza sativa L.). Genome. 2010;53(2):119?24. https://doi.org/10.1139/G09-092
Jin-long NI, De-zheng WA, Da-hu NI, Feng-shun SO, Jian-bo YA, Da-nian YA. Characterization and fine mapping of RTMS10, a semi-dominant reverse thermo-sensitive genic male sterile locus in rice. J of Integrative Agri. 2022;21(2):316?25. https://doi.org/10.1016/S2095-3119(20)63563-8
Swaminathan M. Progress and prospects of two line rice breeding in India. Integrative Adv in Rice Res. 2021. https://doi.org/10.1016/S2095-3119(20)63563-8
Lu X. Sterility ecology of Chinese photoperiod-/temperature-sensitive genic male sterile rice. Science Press: Beijing, China; 2003
Min SH, Ping FY, Zhen LW, Xiu SZ, Cheng HG. Pedigree analysis of photoperiod-thermo sensitive genic male sterile rice. Acta Agron Sinica. 2012;38(3):394?407. https://doi.org/10.3724/SP.J.1006.2012.0039 4.
Hua SI. Current situation and suggestions for development of two-line hybrid rice in China. Chinese J Rice Sci. 2011;25(5):544.
Agarwala SC, Sharma PN, Chatterjee C, Sharma CP. Copper deficiency induced changes in wheat anther. Proc Indian Natl Sci. 1981;46(2):172?76.
Rerkasem B, Jamjod S. Boron deficiency induced male sterility in wheat (Triticum aestivum L.) and implications for plant breeding. Euphytica. 1997;96:257?62. https://doi.org/10.1023/A:1003093532561
Garg OK, Sharma AN, Kona GR. Effect of boron on the pollen vitality and yield of rice plants (Oryza sativa L. var. Jaya). Plant and Soil. 1979;1:591?94. https://doi.org/10.1007/BF02277956
Ni E, Zhou L, Li J, Jiang D, Wang Z, Zheng S, et al. OsCER1 plays a pivotal role in very-long-chain alkane biosynthesis and affects plastid development and programmed cell death of tapetum in rice (Oryza sativa L.). Front in Plant Sci. 2018;9:384778. https://doi.org/10.3389/fpls.2018.01217
Xue Z, Xu X, Zhou Y, Wang X, Zhang Y, Liu D, et al. Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice. Nat Commun. 2018;9(1):604. https://doi.org/10.1038/s41467-018-03048-8
Yun D, Liang W, Dreni L, Yin C, Zhou Z, Kater MM, Zhang D. OsMADS16 genetically interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice. Mol Plant. 2013;6(3):743?56. https://doi.org/10.1093/mp/sst003
Virmani SS. Two-line hybrid rice breeding manual. Int Rice Res Inst.; 2003.
Rekha KS, Kumar M, Saraswathi R, Mannonmani S, Raveendran M. Study on critical stages and critical sterility point of thermo-sensitive genic male sterile lines of rice for two line hybrid production. Int J Curr Microbiol and Appli Sci. 2017;6(5):2128?35. https://doi.org/10.20546/ijcmas.2017.605.238
Kanimozhi P, Pushpam R, Binodh AK, Kannan R, Pillai MA. Evaluation of TGMS lines for good floral and outcrossing related traits in rice. Electron J Plant Breed. 2018;9(4):1497?502. https://doi.org/10.5958/0975-928X.2018.00185.0
Wang B, Xu WW, Wang JZ, Wu W, Zheng HG, Yang ZY, et al. Tagging and mapping the thermo-sensitive genic malesterile gene in rice (Oryza sativa L.) with molecular markers. Theoretical and Appl Genet. 1995 Nov;91:1111?14. https://doi.org/10.1007/BF00223928
Pitnjam K, Chakhonkaen S, Toojinda T, Muangprom A. Identification of a deletion in tms2 and development of gene-based markers for selection. Planta. 2008;228:813?22. https://doi.org/10.1007/s00425-008-0784-3
Lang NT, Subudhi PK, Virmani SS, Brar DS, Khush GS, Li Z, Huang N. Development of PCR?based markers for thermosensitive genetic male sterility gene tms3 (t) in rice (Oryza sativa L.). Hereditas. 1999;131(2):121?27. https://doi.org/10.1111/j.1601-5223.1999.00121.x
Dong NV, Subudhi PK, Luong PN, Quang VD, Quy TD, Zheng HG, et al. Molecular mapping of a rice gene conditioning thermosensitive genic male sterility using AFLP, RFLP and SSR techniques. Theoretical and Appl Genet. 2000 Mar;100:727?34. https://doi.org/10.1007/s001220051345
Jiang L, Liu S, Hou M, Tang J, Chen L, Zhai H, Wan J. Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). Field Crops Res. 2006;98(1):68?75. https://doi.org/10.1016/j.fcr.2005.12.015
Lee DS, Chen LJ, Suh HS. Genetic characterization and fine mapping of a novel thermo-sensitive genic male-sterile gene tms6 in rice (Oryza sativa L.). Theoretical and appl genet. 2005;111:1271?77. https://doi.org/10.1007/s00122-005-0044-x
Rongbai L, Pandey MP, Sharma P. Inheritance of thermosensitive genic male sterility in rice (Oryza sativa L.). Curr Sci. 2005;10:1809?15.
Hussain AJ, Ali J, Siddiq EA, Gupta VS, Reddy UK, Ranjekar PK. Mapping of tms8 gene for temperature?sensitive genic male sterility (TGMS) in rice (Oryza sativa L.). Plant Breed. 2012;131(1):42?47. https://doi.org/10.1111/j.1439-0523.2011.01897.x
Sheng Z, Wei X, Shao G, Chen M, Song J, Tang S, et al. Genetic analysis and fine mapping of tms9, a novel thermosensitive genic male?sterile gene in rice (Oryza sativa L.). Plant Breed. 2013;132(2):159?64. https://doi.org/10.1111/pbr.12024
Qi Y, Liu Q, Zhang L, Mao B, Yan D, Jin Q, He Z. Fine mapping and candidate gene analysis of the novel thermo-sensitive genic male sterility tms9-1 gene in rice. Theoretical and Appl Genet. 2014;127:1173?82. https://doi.org/10.1007/s00122-014-2289-8
Peng HF, Chen XH, Lu YP, Peng YF, Wan BH, Chen ND, et al. Fine mapping of a gene for non-pollen type thermosensitive genic male sterility in rice (Oryza sativa L.). Theoretical and Appl Genet. 2010 Mar;120:1013?20. https://doi.org/10.1007/s00122-009-1229-5
Xu J, Wang B, Wu Y, Du P, Wang J, Wang M, et al. Fine mapping and candidate gene analysis of ptgms2-1, the photoperiod-thermo-sensitive genic male sterile gene in rice (Oryza sativa L.). Theoretical and Appl Genet. 2011;122:365?72. https://doi.org/10.1007/s00122-010-1452-0
Zhang H, Xu C, He Y, Zong J, Yang X, Si H, et al. Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production. Proc Nat Acad Sci. 2013;110(1):76?81. https://doi.org/10.1073/pnas.1213041110
Borkakati R, Virmani SS. Inheritance of a thermosensitive genic male-sterile mutant of indica rice. Rice Genet Newsl. 1993;10:92?94.
Lu XG, Zhang ZG, Maruyama K, Virmani SS. Current status of two-line method of hybrid rice breeding. Hybrid Rice Breeding: New Developments and Future Prospects. IRRI, Manila, Philippines; 1994. 37–50.
Zhouci T, Xunzhen L, Liangbi C, Guangqia Z, Yiyan L, Shudong X. Studies on ecological adaptability of dual-purpose line An-nong S-1 of rice. Hybrid Rice (China). 1990;(3):35–38.
Reddy O, Siddiq E, Sarma N, Ali J, Hussain A, Nimmakayala P, et al. Genetic analysis of temperature-sensitive male sterility in rice. Theoretical and Appl Genet. 2000;100:794?801. https://doi.org/10.1007/s00122-010-1452-0
Li RB, Pandey MP. Complexity of inheritance of thermosensitive genic male sterility in rice. In: Adv in Rice Genet: (In 2 Parts); 2003. pp. 20?23. https://doi.org/10.1142/9789812814319_0009
Zhang Z, Zeng H, Yang J, Yuan S, Zhang D. Conditions inducing fertility alteration and ecological adaptation of photoperiod-sensitive genic male-sterile rice. Field Crops Res. 1994;38(2):111?20. https://doi.org/10.1016/0378-4290(94)90005-1
Canino G, Bocian E, Barbezier N, Echeverría M, Forner J, Binder S, Marchfelder A. Arabidopsis encodes four tRNase Z enzymes. Plant Physio. 2009;150(3):1494?502. https://doi.org/10.1104/pp.109.137950
Cartalas J, Coudray L, Gobert A. How RNases shape mitochondrial transcriptomes. Inter J of Mol Sci. 2022;23(11):6141. https://doi.org/10.3390/ijms23116141
Zhou H, Zhou M, Yang Y, Li J, Zhu L, Jiang D, et al. RNase ZS1 processes Ub L40 mRNAs and controls thermosensitive genic male sterility in rice. Nat Commun. 2014;5(1):4884. https://doi.org/10.1038/ncomms5884
Li S, Shen L, Hu P, Liu Q, Zhu X, Qian Q, et al. Developing disease?resistant thermosensitive male sterile rice by multiplex gene editing. J Integrative Plant Bio. 2019;61(12):1201?05. https://doi.org/10.1111/jipb.12774
Chen R, Zhao X, Shao Z, Wei Z, Wang Y, Zhu L, et al. Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its co-suppression results in a new type of thermosensitive genic male sterility. The Plant Cell. 2007;19(3):847?61. https://doi.org/10.1105/tpc.106.044123
Wu S, Tan H, Hao X, Xie Z, Wang X, Li D, Tian L. Profiling miRNA expression in photo-thermo-sensitive male genic sterility line (PTGMS) PA64S under high and low temperature. Plant Signaling and Behavior. 2019;14(12):1679015. https://doi.org/10.1080/15592324.2019.1679015
Shi C, Zhang J, Wu B, Jouni R, Yu C, Meyers BC, et al. Temperature?sensitive male sterility in rice determined by the roles of AGO1d in reproductive phasiRNA biogenesis and function. New Phytologist. 2022;236(4):1529?44. https://doi.org/10.1111/nph.18446
Zhai J, Zhang H, Arikit S, Huang K, Nan G-L, Walbot V, Meyers BC. Spatiotemporally dynamic, cell-type–dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc Nat Academy Sci. 2015;112(10):3146?51. https://doi.org/10.1073/pnas.1418918112
Fei Q, Yang L, Liang W, Zhang D, Meyers BC. Dynamic changes of small RNAs in rice spikelet development reveal specialized reproductive phasiRNA pathways. J Experi Bot. 2016;67(21):6037?49. https://doi.org/10.1093/jxb/erw361
Araki S, Le NT, Koizumi K, Villar-Briones A, Nonomura KI, Endo M, et al. miR2118-dependent U-rich phasiRNA production in rice anther wall development. Nat Commun. 2020;11(1):3115. https://doi.org/10.1038/s41467-020-16637-3
Teng C, Zhang H, Hammond R, Huang K, Meyers BC, Walbot V. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nat Commun. 2020;11(1):2912. https://doi.org/10.1038/s41467-020-16634-6
Nonomura KI, Nakano M, Murata K, Miyoshi K, Eiguchi M, Miyao A, et al. An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis. Mol Genet and Genomics. 2004;271:121?29. https://doi.org/10.1007/s00438-003-0934-z
Yang L, Qian X, Chen M, Fei Q, Meyers BC, Liang W, Zhang D. Regulatory role of a receptor-like kinase in specifying anther cell identity. Plant Physio. 2016;171(3):2085?100. https://doi.org/10.1104/pp.16.00016
Han Y, Jiang SZ, Zhong X, Chen X, Ma CK, Yang YM, et al. Low temperature compensates for defective tapetum initiation to restore the fertility of the novel TGMS line ostms15. Plant Biotech J. 2023;21(8):1659?70. https://doi.org/10.1111/pbi.14066
Wang KQ, Yu YH, Jia XL, Zhou SD, Zhang F, Zhao X, et al. Delayed callose degradation restores the fertility of multiple P/TGMS lines in Arabidopsis. JIntegrative Plant Bio. 2022;64(3):717?30. https://doi.org/10.1111/jipb.13205
Sanchez R, Zhou MM. The PHD finger: a versatile epigenome reader. Trends in Biochem Sci. 2011;36(7):364?72. https://doi.org/10.1016/j.tibs.2011.03.005
Wu L, Jing X, Zhang B, Chen S, Xu R, Duan P, et al. A natural allele of OsMS1 responds to temperature changes and confers thermosensitive genic male sterility. Nat Commun. 2022;13(1):2055. https://doi.org/10.1038/s41467-022-29648-z
Marchant DB, Walbot V. Anther development-The long road to making pollen. The Plant Cell. 2022;34(12):4677?95. https://doi.org/10.1093/plcell/koac287
Wen J, Wang L, Wang J, Zeng Y, Xu Y, Li S. The transcription factor OsbHLH138 regulates thermosensitive genic male sterility in rice via activation of TMS5. Theoretical and Appl Genet. 2019;132:1721?32. https://doi.org/10.1007/s00122-019-03310-7
Jin J, Gui S, Li Q, Wang Y, Zhang H, Zhu Z, et al. The transcription factor GATA10 regulates fertility conversion of a two?line hybrid tms5 mutant rice via the modulation of UbL40 expression. J Integrative Plant Bio. 2020;62(7):1034?56. https://doi.org/10.1111/jipb.12871
Zhang D, Wilson ZA. Stamen specification and anther development in rice. Chinese Sci Bull. 2009;54(14):2342?53. https://doi.org/10.1007/s11434-009-0348-3
Feng X, Zilberman D, Dickinson H. A conversation across generations: soma-germ cell crosstalk in plants. Developmental Cell. 2013;24(3):215?25. https://doi.org/10.1016/j.devcel.2013.01.014
Matsuo Y, Arimura SI, Tsutsumi N. Distribution of cellulosic wall in the anthers of Arabidopsis during microsporogenesis. Plant Cell Reports. 2013;32:1743?50. https://doi.org/10.1007/s00299-013-1487-1
Dong X, Hong Z, Sivaramakrishnan M, Mahfouz M, Verma DPS. Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. The Plant J. 2005;42(3):315?28. https://doi.org/10.1111/j.1365-313X.2005.02379.x
Quilichini TD, Grienenberger E, Douglas CJ. The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochem. 2015;113:170?82. https://doi.org/10.1016/j.phytochem.2014.05.002
Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, et al. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. The Plant Cell. 2006;18(11):2999?3014. https://doi.org/10.1105/tpc.106.044107
Huang H, Wang C, Tian H, Sun Y, Xie D, Song S. Amino acid substitutions of GLY98, LEU245 and GLU543 in COI1 distinctively affect jasmonate-regulated male fertility in Arabidopsis. Sci China Life Sci. 2014;57:145?54. https://doi.org/10.1007/s11427-013-4590-1
Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, Zong J, et al. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physio. 2011;156(2):615?30. https://doi.org/10.1104/pp.111.175760
Zhu J, Lou Y, Shi QS, Zhang S, Zhou WT, Yang J, et al. Slowing development restores the fertility of thermo-sensitive male-sterile plant lines. Nat Plants. 2020;6(4):360?67. https://doi.org/10.1038/s41477-020-0622-6
Shi QS, Lou Y, Shen SY, Wang SH, Zhou L, Wang JJ, et al. A cellular mechanism underlying the restoration of thermo/photoperiod-sensitive genic male sterility. Mol Plant. 2021;14(12):2104?14. https://doi.org/10.1016/j.molp.2021.08.019
Zhang YF, Li YL, Zhong X, Wang JJ, Zhou L, Han Y, et al. Mutation of glucose?methanol?choline oxidoreductase leads to thermosensitive genic male sterility in rice and Arabidopsis. Plant Biotech J. 2022;20(10):2023?35. https://doi.org/10.1111/pbi.13886
Peng G, Liu M, Luo Z, Deng S, Wang Q, Wang M, et al. An E3 ubiquitin ligase CSIT2 controls critical sterility?inducing temperature of thermo?sensitive genic male sterile rice. New Phytologist. 2024;241(5):2059?74. https://doi.org/10.1111/nph.19520
Peng G, Liu M, Zhu L, Luo W, Wang Q, Wang M, et al. The E3 ubiquitin ligase CSIT1 regulates critical sterility-inducing temperature by ribosome-associated quality control to safeguard two-line hybrid breeding in rice. Mol Plant. 2023;16(10):1695?709. https://doi.org/10.1016/j.molp.2023.09.016
Chen RR, Zhou YB, Wang DJ, Zhao XH, Tang XD, Xu SC, et al. CRISPR/Cas9-mediated editing of the thermo-sensitive genic male-sterile gene TMS5 in rice. Acta Agron Sinica. 2020;46(8):1157?65. https://doi.org/10.3724/SP.J.1006.2020.92059
Pohl C, Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Sci. 2019;366(6467):818?22. https://doi.org/10.1126/science.aax3769
Brandman O, Hegde RS. Ribosome-associated protein quality control. Nat Struc and Mol Bio. 2016;23(1):7?15. https://doi.org/10.1038/nsmb.3147
Barman A, Deb B, Chakraborty S. A glance at genome editing with CRISPR–Cas9 technology. Curr Genet. 2020;66:447?62. https://doi.org/10.1007/s00294-019-01040-3
Behera L, Samal KC, Parmeswaran C, Agrawal PK, Achary VMM, Dash M, et al. In silico, evolutionary analysis and designing guide RNA constructs for the precise modification of the thermosensitive genic male sterile (OsTMS5) gene using the CRISPR/Cas9 system in rice (Oryza sativa L.): A comprehensive study and construct development for crop improvement. Cereal Res Commun. 2024;52:1349?72. https://doi.org/10.1007/s42976-024-00507-5
Zhou H, He M, Li J, Chen L, Huang Z, Zheng S, et al. Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Scientific Reports. 2016;6(1):37395. https://doi.org/10.1038/srep37395
Fang Y, Yang J, Guo X, Qin Y, Zhou H, Liao S, et al. CRISPR/Cas9-induced mutagenesis of TMS5 confers thermosensitive genic male sterility by influencing protein expression in rice (Oryza sativa L.). Inter J of Mol Sci. 2022;23(15):8354. https://doi.org/10.3390/ijms23158354
Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant. 2015;8(8):1274?84. https://doi.org/10.1016/j.molp.2015.04.007
Li C, Tao RF, Li Y, Duan MH, Xu JH. Transcriptome analysis of the thermosensitive genic male-sterile line provides new insights into fertility alteration in rice (Oryza sativa). Genomics. 2020;112(3):2119?29. https://doi.org/10.1016/j.ygeno.2019.12.006
Sun Y, Fu M, Ang Y, Zhu L, Wei L, He Y, Zeng H. Combined analysis of transcriptome and metabolome reveals that sugar, lipid and phenylpropane metabolism are essential for male fertility in temperature-induced male sterile rice. Front in Plant Sci. 2022;13:945105. https://doi.org/10.3389/fpls.2022.945105
Wang X, Li L, Yang Z, Zheng X, Yu S, Xu C, Hu Z. Predicting rice hybrid performance using univariate and multivariate GBLUP models based on North Carolina mating design II. Heredity. 2017;118(3):302?10. https://doi.org/10.1038/hdy.2016.87
Wang FP, Xu CG, Li XH. Analysis of fertility QTL loci of Indica photoperiod sensitive male sterile combination (32001S/Minghui 63). J Xiamen Univ. 1999;3:143?46.
Mei MH, Dai XK, Xu CG, Zhang Q. Mapping and genetic analysis of the genes for photoperiod?sensitive genic male sterility in rice using the original mutant Nongken 58S. Crop Sci. 1999;39(6):1711?15.https://doi.org/10.2135/cropsci1999.3961711x
Huang TY, Wang Z, Hu YG, Shi SP, Peng T, Chu XD, et al. Genetic analysis and primary mapping of pms4, a photoperiod-sensitive genic male sterility gene in rice (Oryza sativa). Rice Sci. 2008;15(2):153?56.https://doi.org/10.1016/S1672-6308(08)60035-9
Peng HF, Zhang ZF, Wu B, Chen XH, Zhang GQ, Zhang ZM, et al. Molecular mapping of two reverse photoperiod-sensitive genic male sterility genes (rpms1 and rpms2) in rice (Oryza sativa L.). Theoretical and Appl Genet. 2008 Dec;118:77?83.https://doi.org/10.1007/s00122-008-0877-1
Yamaguchi Y, Hirasawa H, Minami M, Ujihara A. Linkage analysis of thermosensitive genic male sterility gene, tms-2 in rice (Oryza sativa L.). Japanese J Breed. 1997;47(4):371?73.https://doi.org/10.1270/jsbbs1951.47.371
Lopez MT, Toojinda T, Vanavichit A, Tragoonrung S. Microsatellite markers flanking the tms2 gene facilitated tropical TGMS rice line development. Crop Sci. 2003;43(6):2267?71.https://doi.org/10.2135/cropsci2003.2267
Subudhi PK, Borkakati RP, Virmani SS, Huang N. Identification of RAPD markers linked to rice thermosensitive genetic male sterility gene by bulk segregant analysis. Rice Genet Newsl. 1995;12:228?31.
Wang YG, Xing QH, Deng QY, Liang FS, Yuan LP, Weng ML, Wang B. Fine mapping of the rice thermo-sensitive genic male-sterile gene tms5. Theoretical and Appl Genet. 2003;107:917?21.https://doi.org/10.1007/s00122-003-1327-8
Nas TM, Sanchez DL, Diaz GQ, Mendioro MS, Virmani SS. Pyramiding of thermosensitive genetic male sterility (TGMS) genes and identification of a candidate tms5 gene in rice. Euphytica. 2005;145:67?75.https://doi.org/10.1007/s10681-005-0206-6
Hien V, Yoshimura A. Identifying map location and markers linked to thermosensitive genic male sterility gene in 103S line. J Sci Dev. 2015;13(3):331?36.
Khlaimongkhon S, Chakhonkaen S, Pitngam K, Ditthab K, Sangarwut N, Panyawut N, et al. Molecular markers and candidate genes for thermo-sensitive genic male sterile in rice. Rice Sci. 2019;26(3):147?56.https://doi.org/10.1016/j.rsci.2018.08.006
Li RB, Pandey MP, Sharma P. Inheritance of thermosensitive genic male sterility in rice (Oryza sativa L.). Curr Sci. 2005;88(11):1805–15.
Yang RC, Wang NY, Liang KJ, Chen QH. Temperature-sensitive genetically male-sterile rice R59TS. Scientia Agricultura Sinica. 1990;23(2):90.
Chueasiri C, Chunthong K, Pitnjam K, Chakhonkaen S, Sangarwut N, Sangsawang K, et al. Rice ORMDL controls sphingolipid homeostasis affecting fertility resulting from abnormal pollen development. PLoS One. 2014;9(9):e106386. https://doi.org/10.1371/journal.pone.0106386
Deng Y, Srivastava R, Quilichini TD, Dong H, Bao Y, Horner HT, Howell SH. IRE 1, a component of the unfolded protein response signaling pathway, protects pollen development in Arabidopsis from heat stress. The Plant J. 2016;88(2):193?204.https://doi.org/10.1111/tpj.13239
Mitterreiter MJ, Bosch FA, Brylok T, Schwenkert S. The ER luminal C?terminus of AtSec62 is critical for male fertility and plant growth in Arabidopsis thaliana. The Plant J. 2020;101(1):5?17.https://doi.org/10.1111/tpj.14483
Mou Z, Wang X, Fu Z, Dai Y, Han C, Ouyang J, et al. Silencing of phosphoethanolamine N-methyltransferase results in temperature-sensitive male sterility and salt hypersensitivity in Arabidopsis. The Plant Cell. 2002;14(9):2031?43.https://doi.org/10.1105/tpc.001701
Li J, Zhang H, Si X, Tian Y, Chen K, Liu J, et al. Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. J of Genet and Genomics= Yi chuan xue bao. 2017;44(9):465?68.https://doi.org/10.1016/j.jgg.2017.02.002
Lee YS, Maple R, Dürr J, Dawson A, Tamim S, Genio DC, et al. A transposon surveillance mechanism that safeguards plant male fertility during stress. Nat Plants. 2021;7(1):34?41.https://doi.org/10.1038/s41477-020-00818-5
Fernández-Gómez J, Talle B, Wilson ZA. Increased expression of the MALE STERILITY1 transcription factor gene results in temperature-sensitive male sterility in barley. J of Exp Bot. 2020;71(20):6328?39.https://doi.org/10.1093/jxb/eraa382

Downloads
Published
Versions
- 18-03-2025 (2)
- 04-03-2025 (1)
How to Cite
Issue
Section
License
Copyright (c) 2025 B Bhavna, T Kalaimagal, S Manonmani, B Anita, N Sritharan, G S Kumar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).