Skip to main navigation menu Skip to main content Skip to site footer

Special issue on Int Conf Spices

Vol. 11 No. sp3 (2024): International Seminar on Spices KAU - 2024

Genomic variation in self-pollinated clove (Syzygium aromaticum (L.) Merr. & Perry) accessions from the Western Ghats

DOI
https://doi.org/10.14719/pst.4453
Submitted
25 July 2024
Published
30-12-2024 — Updated on 23-05-2025
Versions

Abstract

Clove, the dried, unopened flower buds of Syzygium aromaticum (L.) Merr. & Perry, is the mainstay of income for farmers in India, Indonesia, Tanzania and Sri Lanka and is a self-pollinated crop. A study conducted in the Southern Western Ghats of India identified phenotypic variations in the clustering of clove flower buds. Four clove accessions (Acc. 1, Acc. 3, Acc. 5 and Acc. 7) that showed superior yield and variation in floral characteristics were selected and DNA was isolated from the floral tissue using the CTAB method. Random Amplified Polymorphic DNA (RAPD) analysis using Operon primers (OPB 01 to OPB 10) detected polymorphism among the accessions, with OPB-01 showing the highest Polymorphic Information Content (PIC), followed by OPB-04 and OPB-06. Similarity coefficients were calculated based on the presence or absence of polymorphic bands, with coefficients ranging from 0.47 - 0.72. The resulting phylogenetic tree classified the accessions into 2 main groups based on their bud clustering habit (branching): branching (Acc. 1 and Acc. 5) and non branching (Acc. 3 and Acc. 7). Acc. 3 showed distinct separation from the other genotypes at a coefficient of 0.47, while Acc. 7 separated from Acc. 1 and Acc. 5 at a coefficient of 0.60. Acc. 5 appeared genetically distinct, as it showed separation from the other accessions based on RAPD analysis. The distinctiveness of Acc. 5 was further confirmed through 18S rRNA sequencing, suggesting potential intra-species genomic variations among the 4 clove phenotypes and hinting at the possibility of cross pollination.

References

  1. 1. CortesCortes-Rojas DF, De Souza CRF, Oliveira WP. Clove (Syzygium aromaticum): A precious spice. Asian Pac J Trop Biomed. 2014;4(2):90–96. https://doi.org/10.1016/S2221-1691(14)60215-X
  2. 2. Cock IE, Cheesman MA. Plants of the genus Syzygium (Myrtaceae): A review on ethnobotany, medicinal properties and phytochemistry. In: Goyal MR, Ayeleso AO, editors. Bioactive Compounds of medicinal plants: properties and potential for human health. CRC Press: Boca Raton; 2018;35–84. https://doi.org/10.1201/B22426-20
  3. 3. Kamatou GP, Vermaak I, Viljoen AM. Eugenol-from the remote Maluku Islands to the international market place: A review of a remarkable and versatile molecule. Molecule. 2012;17(6):6953–81. https://doi.org/10.3390/molecules17066953
  4. 4. Sreekala GS, Avinash M, Reddappa JB, Reshma P, Nainu J, Anargha T et al. South Western Ghats: A niche of clove (Syzygium aromaticum (L.) Merr. & Perry) diversification. BioRxiv. 2023;30:2023-07.https://doi.org/10.1101/2023.07.29.551085
  5. 5. Nurdjannah N, Bermawie N. Genetic resources of clove in Indonesia. In: Peter KV editor. Handbook of herbs and spices. England: Woodhead Publishing Limited; 2012. p. 154–61.
  6. 6. Alfian A, Mahulette AS, Zainal M. Bahrun AH. Morphological character of raja clove (Syzygium aromaticum L. Merr & Perry.) native from Ambon Island. In: IOP Conf Ser Earth Environ Sci IOP Publishing. 2019;343(1). p. 012150. https://doi.org/10.1088/1755-1315/343/1/012150
  7. 7. Hariyadi MA, Yahya S, Wachjar A. Agro-morphologies and physicochemical properties of flower bud, stem and leaf oils in two clove varieties (Syzygium aromaticum L. Merr. and Perry) originated from Ambon island. Chiang Mai Univ J Nat Sci. 2020;19(3):516–30. https://doi.org/10.12982/cmujns.2020.0034
  8. 8. Hariyadi MA, Yahya S, Wachjar A. Morphological characters and essential oil constituents extracted of two clove varieties (Syzygium aromaticum (L.) Merr. & LM Perry) from Ambon Island, Indonesia. Plant Arch. 2020;20(1):2208–14. https://doi.org/10.13057/biodiv/d230314
  9. 9. Mahulette AS, Alfian A, Suyadi, Supriyanto, Situmorang J, Matatula AJ et al. Type and morphological character of local clove (Syzygium aromaticum) from Maluku, Indonesia. Biodiversitas 2022;23(3). https://doi.org/10.13057/biodiv/d230314
  10. 10. Susilowati M, Wahyuni S, Setiadi A, Bermawie N. Fruit and seed morphology variation of clove (Syzygium aromaticum L.) from various regions in Indonesia. In: In AIP Conference Proceedings. AIP Publishing. 2023;2972(1).030012. https://doi.org/10.1063/5.0183279
  11. 11. Jaseela VT, Sinisha EK, Pradeep NS. A modified CTAB method for extracting high-quality genomic DNA from aquatic plants. Plant Sci Today. 2024;11(2):125–32. https://doi.org/10.14719/pst.2850
  12. 12. Sundari S, Nurhasanah N, Masud ABDU, Amin M, Arumingtyas EL, Azrianingsih R . Update phylogenetic information of the local varieties of cloves (Syzygium aromaticum) from North Maluku, Indonesia based on ITS sequences data. Biodiversitas. 2019;20(6). https://doi.org/10.13057/biodiv/d200604
  13. 13. Christensen KA, Brunelli JP, Lambert MJ, DeKoning J, Phillips RB, Thorgaard GH. Identification of single nucleotide polymorphisms from the transcriptome of an organism with a whole genome duplication. Bioinformatics. 2013;14:1–10. https://doi.org/10.1186/1471-2105-14-325
  14. 14. Singh AK, Smart J, Simpson CE, Raina SN. Genetic variation vis-a-vis molecular polymorphism in groundnut, Arachis hypogea L. Genet Resour Crop Evol. 1998;45:119–26.
  15. 15. Ousmael K, Whetten RW, Xu J, Nielsen UB, Lamour K, Hansen OK. Identification and high-throughput genotyping of single nucleotide polymorphism markers in a non-model conifer (Abies nordmanniana (Steven) Spach). Sci Rep.2023;13(1):22488. https://doi.org/10.1038/s41598-023-49462-x
  16. 16. Sohrab SS, Azhar EI, Kamal MA, Bhattacharya PS, Rana D. Genetic variability of Cotton leaf curl beta satellite in Northern India. Saudi J Biol Sci. 2014;21(6):626–31. https://doi.org/10.1016/j.sjbs.2014.11.006
  17. 17. Ouadi S, Sierro N, Goepfert S, Bovet L, Glauser G, Vallat A et al. The clove (Syzygium aromaticum) genome provides insights into the eugenol biosynthesis pathway. Commun Biol . 2022;(1):684. https://doi.org/10.1038/s42003-022-03618-z
  18. 18. Sarwat M, Das S, Srivastava PS. Analysis of genetic diversity through AFLP, SAMPL, ISSR and RAPD markers in Tribulus terrestris, a medicinal herb. Plant Cell Rep. 2008;27:519–28. https://doi.org/10.1007/s00299-007-0478-5.
  19. 19. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990;18(22):6531–35. https://doi.org/10.1093/nar/18.22.6531
  20. 20. Saranya D, Ravi R. Syzygium aromaticum: A subtropical tree scrutinized for the genetic differentiation among the altitudes of Nilgiris. Ann Plant Sci. 2018;7(4):2134–38. https://doi.org/10.21746/aps.2018.7.4.10
  21. 21. Temiesak P, Ponpim Y, Harada T. RAPD analysis for varietal identification in Brassica. Agric Nat Resour. 1993;27(5):37–42.
  22. 22. De Benedetti L, Mercuri A, Bruna S, Burchi G. Genotype identification of ornamental species by RAPD analysis. Acta Hortic. 2001;546:391–94. https://doi.org/10.17660/ActaHortic.2001.546.49.
  23. 23. Shinde VM, Dhalwal K, Mahadik KR, Joshi KS, Patwardhan BK. RAPD analysis for determination of components in herbal medicine. Evid Based Compl Altern Med. 2007;4:21–23. https://doi.org/10.1093/ecam/nem109
  24. 24. Tochika-Komatsu Y, Asaka I, Ii I. A random amplified polymorphic DNA (RAPD) primer to assist the identification of a selected strain, aizu K-111 of Panax ginseng and the sequence amplified. Biol Pharm Bull. 2001;24(10):1210–13. https://doi.org/10.1248/bpb.24.1210
  25. 25. Um JY, Chung HS, Kim MS, Na HJ. Molecular authentication of Panax ginseng species by RAPD analysis and PCR-RFLP. Biol Pharm Bull. 2001;24(8):872–75. https://doi.org/10.1248/bpb.24.872

Downloads

Download data is not yet available.