Skip to main navigation menu Skip to main content Skip to site footer

Special issue on Int Conf Spices

Vol. 11 No. sp3 (2024): International Seminar on Spices KAU - 2024

Growth, yield and secondary metabolite elicitation in response to chitosan application in turmeric (Curcuma longa L.)

DOI
https://doi.org/10.14719/pst.4834
Submitted
27 August 2024
Published
25-12-2024 — Updated on 09-09-2025
Versions

Abstract

Curcuma longa L., is a rhizomatous, herbaceous plant belonging to Zingiberaceae family and has a wide range of pharmacological activities and cosmetic industrial value. Chitosan, extracted from fungal cell wall and crustacean shells is an emerging plant biostimulant that evokes growth promotion and metabolite elicitation. An experiment was conducted to study the effect of different concentrations and frequencies of foliar application of chitosan on plant growth, yield and secondary metabolite production in turmeric varieties, Sobha and Sona. The experiment was laid out in Randomized Block Design with three replications. The treatments included, F1: Chitosan 1 g/L monthly, F2: Chitosan 2 g/L monthly, F3: Chitosan 3 g/L bimonthly, F4: Chitosan 4 g/L bimonthly, F5: Chitosan 4 g/L trimonthly, F6: Chitosan 5 g/L trimonthly, Cp: Primed control and C: Unprimed control. The growth parameters were recorded at 6 months after transplanting (MAT) and yield at harvest. Curcumin content was analysed through HPTLC and expression profile of curcumin synthase gene was carried out by Quantitative Real-time PCR. Among the treatments, monthly application of Chitosan 2 g/L was observed to give better results in terms of plant height, leaf area, shoot weight and rhizome spread at 6 MAT. Monthly application of Chitosan 2 g/L, F2 and bimonthly application of Chitosan 4 g/L, F4 recorded significantly higher fresh rhizome yield per plant in variety Sobha (312.89 g and 322.85 g, respectively) and Sona (286.37 g and 284.06 g, respectively). Monthly application of Chitosan 2 g L-1 (F2) recorded a significantly higher curcumin content. The curcumin content enhanced by 89 % in Sobha and 54 % in Sona over the unprimed control. Chitosan treatment enhanced the expression of curcumin synthase gene by 1.48 fold in Sobha and 1.77 fold in Sona over control. Thus, monthly foliar application of chitosan 2 g/L gave better growth, yield, curcumin production and regulate curcumin synthase gene expression in turmeric in comparison to other frequencies and concentrations of chitosan.

References

  1. 1. Kumar A, Singh AK, Kaushik MS, Mishra SK, Raj P, Singh PK, et al. Interaction of turmeric (Curcuma longa L.) with beneficial microbes: a review. 3 Biotech. 2017;7:1-8. https://doi.org/10.1007/s13205-017-0971-7
  2. 2. Press Information Bureau (PIB), Government of India. Government of India notifies establishment of National Turmeric Board [Internet]. 2023 Oct 4 [cited 2025 Aug 28]. Available from: https://pib.gov.in/PressReleasePage.aspx?PRID=1964083
  3. 3. Yadav RP, Tarun G. Versatility of turmeric: a review the golden spice of life. J Pharmacogn Phytochem. 2017;6(1):41–6.
  4. 4. Agrawal DK, Mishra PK. Curcumin and its analogues: potential anticancer agents. Med Res Rev. 2010;30(5):818–60. https://doi.org/10.1002/chin.201050265
  5. 5. Gupta SC, Sung B, Kim JH, Prasad S, Aggarwal BB . Multitargeting by turmeric, the golden spice: from kitchen to clinic. Mol Nutr Food Res. 2013;57:1510–28 . https://doi.org/10.1002/mnfr.201100741
  6. 6. Chan SN, Abu Bakar N, Mahmood M, Ho CL, Shaharuddin NA. Molecular cloning and characterization of novel phytocystatin gene from turmeric (Curcuma longa). Biomed Res Int. 2014;2014:1. https://doi.org/10.1155/2014/973790
  7. 7. Rathaur P, Raja W, Ramteke PW, John SA. Turmeric: The golden spice of life. Int J Pharm Sci Res. 2012;3(7):1987. https://doi.org/10.1201/9781420006322-7
  8. 8. Azmana M, Mahmood S, Hilles AR, Rahman A, Ahmed S . A review on chitosan and chitosan-based bionanocomposites: promising material for combatting global issues and its applications. Int J Biol Macromol. 2021;185:832–48. https://doi.org/10.1016/j.ijbiomac.2021.07.023
  9. 9. JimenezJimenez-Gomez CP, Cecilia JA. Chitosan: A natural biopolymer with a wide and varied range of applications. Molecules. 2020;25 (17):3981. https://doi.org/10.3390/molecules25173981
  10. 10. Choi C, Nam JP, Nah JW. Application of chitosan and chitosan derivatives as biomaterials. J Ind Eng Chem. 2016;33:1–10. https://doi.org/10.1016/j.jiec.2015.10.028
  11. 11. da Silva EA, Silva VN, de Alvarenga AA, Bertolucci SK. Biostimulating effect of chitosan and acetic acid on the growth and profile of the essential oil of Mentha arvensis L. Ind Crops Prod. 2021;171:113987. https://doi.org/10.1016/j.indcrop.2021.113987
  12. 12. Sun W, Shahrajabian MH, Petropoulos SA, Shahrajabian N. Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants. Plants. 2023;12(13):2469. https://doi.org/10.3390/plants12132469
  13. 13. Nivya JT. Chitosan mediated metabolite elicitation and growth responses in kasthuri turmeric (Curcuma aromatica) [thesis]. Thrissur: Kerala Agricultural University; 2019.
  14. 14. Anusuya S, Sathiyabama M. Effect of chitosan on growth, yield and curcumin content in turmeric under field condition. Biocatal Agric Biotechnol. 2016;6:102–6. https://doi.org/10.1016/j.bcab.2016.03.002
  15. 15. Ashwini S. Harvesting stages and chitosan sprays on curcumin yield in turmeric (Curcuma longa L.) [thesis]. Thrissur: Kerala Agricultural University; 2020.
  16. 16. Kerala Agricultural University. Package of Practices Recommendations (Organic): Crops. 2nd ed. Thrissur: Kerala Agricultural University; 2017. p. 328.
  17. 17. Randhawa GS, Mahey RK, Gill SR. Leaf area measurements in turmeric. J Res Punjab Agric Univ. 1985;22(1):163–6.
  18. 18. Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24(1):1. https://doi.org/10.1104/pp.24.1.1
  19. 19. Srivastava SK. Peroxidase and poly-phenol oxidase in Brassica juncea plants infected with Macrophomina phaseolina (Tassai) Goid. and their implication in disease resistance. J Phytopathol. 1987;120(3):249–54. https://doi.org/10.1111/j.1439-0434.1987.tb04439.x
  20. 20. Ahmed ME, Farm E. Response of garlic plants (Allium sativum L.) to foliar application of some bio-stimulants. Egypt J Hortic. 2015;42(1):613–25. https://doi.org/10.21608/ejoh.2015.1318
  21. 21. Sofy AR, Dawoud RA, Sofy MR, Mohamed HI, El-Dougdoug NK. Improving regulation of enzymatic and non-enzymatic antioxidants and stress-related gene stimulation in Cucumber mosaic cucumovirus-infected cucumber plants treated with glycine betaine, chitosan and combination. Molecules. 2020;25(10). https://doi.org/10.3390/molecules25102341
  22. 22. Janmohammadi M, Mostafavi H, Kazemi H, Mahdavinia GR, Sabaghnia N. Effect of chitosan application on the performance of lentil genotypes under rainfed conditions. Acta Technol Agric. 2014;17(4):86–90. https://doi.org/10.2478/ata-2014-0020
  23. 23. Latif HH, Mohamed HI. Exogenous applications of moringa leaf extract effect on retrotransposon, ultrastructural and biochemical contents of common bean plants under environmental stresses. S Afr J Bot. 2016;106:221–31. https://doi.org/10.1016/j.sajb.2016.07.010
  24. 24. Mondal MM, Malek MA, Puteh AB, Ismail MR, Ashrafuzzaman M, Naher L. Effect of foliar application of chitosan on growth and yield in okra. Aust J Crop Sci. 2012;6(5):918–21.
  25. 25. Guan YJ, Hu J, Wang XJ, Shao CX. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B. 2009;10:427–33. https://doi.org/10.1631/jzus.b0820373
  26. 26. Malekpoor F, Pirbalouti AG, Salimi A. Effect of foliar application of chitosan on morphological and physiological characteristics of basil under reduced irrigation. Res Crops. 2016;17(2):354–9. https://doi.org/10.5958/2348-7542.2016.00060.7
  27. 27. Lei C, Ma D, Pu G, Qiu X, Du Z, Wang H, et al. Foliar application of chitosan activates artemisinin biosynthesis in Artemisia annua L. Ind Crops Prod. 2011;33(1):176–82. https://doi.org/10.1016/j.indcrop.2010.10.001
  28. 28. Manjusha D, Suryakumari S, Giridhar K, Dorajeerao AVD, Suneetha DS, Subbaramamma P, et al. Impact of metabolite elicitors on growth and yield characteristics in turmeric Curcuma longa L.) at high altitude zone of Andhra Pradesh. Biol Forum. 2023;15(3):212 212–20.
  29. 29. Sheikha SA, Al Al-Malki FM. Growth and chlorophyll responses of bean plants to the chitosan applications. Eur J Sci Res. 2011;50 (1):124 124–34.
  30. 30. Song SQ, Sang QM, Guo SR. Physiological synergism of chitosan on salt resistance of cucumber seedlings. Acta Bot Boreali-Occident Sin. 2006;26:435–41.
  31. 31. Sharma A, Shahzad B, Rehman A, Bhardwaj R, Zheng B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules. 2019;24(13):2452. https://doi.org/10.3390/molecules24132452
  32. 32. Croft H, Chen JM, Wang R, Mo G, Luo S, Luo X, et al. The global distribution of leaf chlorophyll content. Remote Sens Environ. 2020;236:111479. https://doi.org/10.1016/j.rse.2019.111479
  33. 33. Esyanti RR, Dwivany FM, Mahani S, Nugrahapraja H, Meitha K. Foliar application of chitosan enhances growth and modulates expression of defense genes in chilli pepper (Capsicum annuum L.). Aust J Crop Sci. 2019;13(1):55–60. https://doi.org/10.21475/ajcs.19.13.01.p1169
  34. 34. Limpanavech P, Chaiyasuta S, Vongpromek R, Pichyangkura R, Khunwasi C, Chadchawan S, et al. Chitosan effects on floral production, gene expression and anatomical changes in the Dendrobium orchid. Sci Hortic. 2008;116(1):65–72. https://doi.org/10.1016/j.scienta.2007.10.034
  35. 35. Ahmad B, Jaleel H, Shabbir A, Khan MM, Sadiq Y. Concomitant application of depolymerized chitosan and GA3 modulates photosynthesis, essential oil and menthol production in peppermint (Mentha piperita L.). Sci Hortic. 2019;246:1–9. https://doi.org/10.1016/j.scienta.2018.10.031
  36. 36. Phothi R, Theerakarunwong CD. Effect of chitosan on physiology, photosynthesis and biomass of rice (Oryza sativa L.) under elevated ozone. Aust J Crop Sci. 2017;11(5):624–30. https://doi.org/10.21475/ajcs.17.11.05.p578
  37. 37. Riseh RS, Vazvani MG, Kennedy JF. The application of chitosan as a carrier for fertilizer: A review. Int J Biol Macromol. 2023;1(252):126483 https://doi.org/10.1016/j.ijbiomac.2023.126483
  38. 38. El-Khair A. Effect of application methods and concentation of chitosan on growth, yield, tuber roots quality and storability of sweet potato plants grown under sandy soil conditions. J product De. 2015;20(3):237–61. https://doi.org/10.21608/jpd.2015.42670
  39. 39. Zong H, Liu S, Xing R, Chen X, Li P. Protective effect of chitosan on photosynthesis and antioxidative defense system in edible rape (Brassica rapa L.) in the presence of cadmium. Ecotoxicol Environ Saf. 2017;138:271–8. https://doi.org/10.1016/j.ecoenv.2017.01.009
  40. 40. Jiao Z, Li Y, Li J, Xu X, Li H, Lu D, et al. Effects of exogenous chitosan on physiological characteristics of potato seedlings under drought stress and rehydration. Potato Res. 2012;55:293 293–301. https://doi.org/10.1007/s11540 s11540-012012-92239223-8
  41. 41. Mahdavi B, Rahimi A. Seed priming with chitosan improves the germination and growth performance of ajowan (Carum copticum) under salt stress. Eurasia J Biosci. 2013;7:69–76. https://doi.org/10.5053/ejobios.2013.7.0.9
  42. 42. FalconFalcon-Rodriguez AB, Costales D, Gonzalez Gonzalez-Pena D, Morales D, Mederos Y, Jerez E, et al. Chitosans of different molecular weight enhance potato ( Solanum tuberosum L.) yield in a field trial. Span J Agric res. 2017;15(1):0902. https://doi.org/10.5424/ sjar/2017151 2017151-9288
  43. 43. Kra KD, Gogbeu SJ, Soro KK, Kouakou KJ, Kouassi KN, Dogbo DO et al. Effects of chitosan on vegetative organs growth and peroxidases activities in cassava (Manihot esculenta Crantz) cultivars YACE, 9620A, TMS4 (2) 1425 and TMS30572. Trop Plant Res. 2019;6:08–14. https://doi.org/10.22271/tpr.2019.v6.i1.002
  44. 44. El-Tantawy EM. Behavior of tomato plants as affected by spraying with chitosan and aminofort as natural stimulator substances under application of soil organic amendments. Pakistan J Biol Sci. 2009;12(17):1164–173. https://doi.org/10.3923/pjbs.2009.1164.1173
  45. 45. Xu C, Mou B. Chitosan as soil amendment affects lettuce growth, photochemical efficiency, and gas exchange. Horttechnology. 2018;28(4):476–80. https://doi.org/10.21273/horttech04032-18
  46. 46. Chakraborty M, Hasanuzzaman M, Rahman M, Khan MA, Bhowmik P, Mahmud NU , et al. Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agri. 2020;10(12):624. https://doi.org/10.3390/agriculture10120624
  47. 47. Yin H, Frette XC, Christensen LP, Grevsen K. Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanum vulgare ssp. hirtum). J Agric Food Chem. 2012;60(1):136–43. https://doi.org/10.1021/jf204376j
  48. 48. LopezLopez-Moya F, Suarez Suarez-Fernandez M, Lopez Lopez-Llorca LV. Molecular mechanisms of chitosan interactions with fungi and plants. Int J Mol Sci. 2019;20(2):332. https://doi.org/10.3390/ ijms20020332
  49. 49. Sathiyabama M, Bernstein N, Anusuya S. Chitosan elicitation for increased curcumin production and stimulation of defence response in turmeric (Curcuma longa L.). Ind Crop Prod. .2016;89:87–94. https://doi.org/10.1016/j.indcrop.2016.05.007
  50. 50. Gorelick J, Rosenberg R, Smotrich A, Hanus L, Bernstein N. Hypoglycemic activity of withanolides and elicitated Withania somnifera. Phytochem. 2015;116:283–89. https://doi.org/10.1016/j.phytochem.2015.02.029
  51. 51. Kim HJ, Chen F, Wang X, Rajapakse NC. Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). J Agric Food Chem.2005;53(9):3696–701. https://doi.org/10.1021/jf0480804
  52. 52. Katsuyama Y, Kita T, Horinouchi S. Identification and characterization of multiple curcumin synthases from the herb Curcuma longa. FEBS Lett. 2009;583(17):2799–803. https://doi.org/10.1016/j.febslet.2009.07.029
  53. 53. Sheeja TE, Deepa K, Santhi R, Sasikumar B. Comparative transcriptome analysis of two species of Curcuma contrasting in a high-value compound curcumin: insights into genetic basis and regulation of biosynthesis. Plant Mol Biol Report. 2015;33:1825–836. https://doi.org/10.1007/s11105-015-0878-6
  54. 54. Ayer DK, Modha KG, Parekh VB, Patel RK, et al. Comparative gene expression study between two turmeric (Curcuma longa L.) cultivars. J Spices Aromat Crops. 2018;27(2):131–37. https://doi.org/10.25081/josac.2018.v27.i2.1101
  55. 55. Abhijith, K. Effect of chitosan application on physiological, biochemical and molecular characteristics of Piper longum L. (Thesis). Thrissur, Kerala Agricultural University. 2022;105.
  56. 56. Sandeep IS, Das S, Nasim N, Mishra A, Acharya L, Joshi RK, et al. Differential expression of CURS gene during various growth stages, climatic condition and soil nutrients in turmeric (Curcuma longa): Towards site specific cultivation for high curcumin yield. Plant Physiol Biochem. 2017;118:348–55. https://doi.org/10.1016/j.plaphy.2017.07.001
  57. 57. Fooladi-Vanda G, Shabani L, Razavizadeh R. Chitosan enhances rosmarinic acid production in shoot cultures of Melissa officinalis L. through the induction of methyl jasmonate. Bot Stud. 2019;60:1–10. https://doi.org/10.1186/s40529-019-0274-x
  58. 58. Al-Ghamdi AA. Marjoram physiological and molecular performance under water stress and chitosan treatment. Acta Physiol Plan. 2019;41(4):44. https://doi.org/10.1007/s11738-019-2830-0
  59. 59. Abdellatef, Magdi AE, Elagamey E, Kamel SM. Chitosan is the ideal resource for plant disease management under sustainable agriculture. In: Kumar, B, editor. In: Chitin and Chitosan-Isolation, Properties and Applications [e-book]. IntechOpen; 2023.

Downloads

Download data is not yet available.