Adaptive mechanism of submergence tolerance by Sub1 A
DOI:
https://doi.org/10.14719/pst.4632Keywords:
adaptations, anaerobic germination, biochemical mechanisms, introgression, physiological mechanisms, submergence, Sub1 QTLAbstract
Among the various abiotic stresses affecting the growth, development, and yield of rice, submergence caused by continuous flooding without adequate drainage poses a significant threat. This stress is particularly detrimental in lowland areas with poor drainage, often near coastal regions, where excessive rainfall leads to prolonged waterlogging. Continuous waterlogging during germination severely impacts the germination of directly seeded rice crops, while seedling establishment suffers post-transplantation due to seedling decay and mortality. Submergence tolerance is an adaptive physiological and biochemical mechanism that has evolved in indica rice, enabling the plant to cope with the effects of anaerobic conditions caused by prolonged submergence. The putative progenitor Oryza rufipogon is well adapted to marshy environments. This study discusses the mechanisms of introgression of anaerobic germination and submergence tolerance from O. rufipogon through molecular analysis of genomic regions. It also explains the physiological and biochemical mechanisms that influence anaerobic germination and submergence tolerance. Lowland areas characterized by flooding due to excessive rainfall and inadequate drainage, particularly near coastal regions, require anaerobic germination and submergence tolerance for rice cultivation. Identifying new sources of submergence tolerance beyond the Sub1 gene, followed by genomic structural characterization for the development of pre-breeding genetic sources, is essential. Additionally, well-characterized quantitative trait loci (QTLs) and genes that confer submergence tolerance need to be transferred precisely.
Downloads
References
Pathak H, Tewari A, Sankhyan S, Dubey D, Mina U, Singh VK, et al. Direct-seeded rice: potential, performance and problems-A review. Curr Adv Agric Sci Int J. 2011;3(2):77-88.
Sarkar R, Reddy J, Sharma S, Ismail AM. Physiological basis of submergence tolerance in rice and implications for crop improvement. Curr Sci. 2006;899-906.
Singh A, Septiningsih EM, Balyan HS, Singh NK, Rai V. Genetics, physiological mechanisms and breeding of flood-tolerant rice (Oryza sativa L.). Plant Cell Physiol. 2017;58(2):185-97. https://doi.org/10.1093/pcp/pcw206
Yang SY, Wu YS, Chen CT, Lai MH, Yen HM, Yang CY. Physiological and molecular responses of seedlings of an upland rice (‘Tung Lu 3’) to total submergence compared to those of a submergence-tolerant lowland rice (‘FR13A’). Rice. 2017;10:1-10. https://doi.org/10.1186/s12284-017-0180-3
Ismail AM, Johnson DE, Ella ES, Vergara GV, Baltazar AM. Adaptation to flooding during emergence and seedling growth in rice and weeds and implications for crop establishment. AoB Plants. 2012;2012:pls019. https://doi.org/10.1093/aobpla/pls019
Ismail AM, Ella ES, Vergara GV, Mackill DJ. Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa). Ann Bot. 2009;103(2):197-209. https://doi.org/10.1093/aob/mcn211
Vergara GV, Nugraha Y, Esguerra MQ, Mackill DJ, Ismail AM. Variation in tolerance of rice to long-term stagnant flooding that submerges most of the shoot will aid in breeding tolerant cultivars. AoB Plants. 2014;6:plu055. https://doi.org/10.1093/aobpla/plu055
Catling D. Rice in deep water. Springer; 1993. https://doi.org/10.1007/978-1-349-12309-4
Khush GS. Origin, dispersal, cultivation and variation of rice. Plant Mol Biol. 1997;35:25-34. https://doi.org/10.1023/A:1005810616885
Wang X, Zhao Y, Jiang C, Wang L, Chen L, Li F, et al. Evolution of different rice ecotypes and genetic basis of flooding adaptability in deep water rice by GWAS. BMC Plant Biol. 2022;22(1):526. https://doi.org/10.1186/s12870-022-03924-y
Pucciariello C, Voesenek LA, Perata P, Sasidharan R. Plant responses to flooding. Front Plant Sci. 2014;5:226. https://doi.org/10.3389/fpls.2014.00226
Colmer TD, Armstrong W, Greenway H, Ismail A, Kirk G, Atwell B. Physiological mechanisms of flooding tolerance in rice: transient complete submergence and prolonged standing water. Prog Bot. 2014;75:255-307. https://doi.org/10.1007/978-3-642-38797-5_9
Kurokawa Y, Nagai K, Huan PD, Shimazaki K, Qu H, Mori Y, et al. Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF 1) and contribute to flood tolerance. New Phytol. 2018;218(4):1558-69. https://doi.org/10.1111/nph.15070
Winkel A, Colmer TD, Ismail AM, Pedersen O. Internal aeration of paddy field rice (Oryza sativa) during complete submergence–importance of light and floodwater O2. New Phytol. 2013;197(4):1193-203. https://doi.org/10.1111/nph.12048
Greenway H, Gibbs J. Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Funct Plant Biol. 2003;30(10):999-1036. https://doi.org/10.1071/PP98096
Edwards JM, Roberts TH, Atwell BJ. Quantifying ATP turnover in anoxic coleoptiles of rice (Oryza sativa) demonstrates preferential allocation of energy to protein synthesis. J Exp Bot. 2012;63(12):4389-402. https://doi.org/10.1093/jxb/ers114
Lee KW, Chen PW, Lu CA, Chen S, Ho THD, Yu SM. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Sci Signal. 2009;2(91):ra61–ra61. https://doi.org/10.1126/scisignal.2000333
Vijayan J, Senapati S, Ray S, Chakraborty K, Molla KA, Basak N, et al. Transcriptomic and physiological studies identify cues for germination stage oxygen deficiency tolerance in rice. Environ Exp Bot. 2018;147:234-48. https://doi.org/10.1016/j.envexpbot.2017.12.013
Ma M, Cen W, Li R, Wang S, Luo J. The molecular regulatory pathways and metabolic adaptation in the seed germination and early seedling growth of rice in response to low O2 stress. Plants. 2020;9(10):1363. https://doi.org/10.3390/plants9101363
Kretzschmar T, Pelayo MAF, Trijatmiko KR, Gabunada LFM, Alam R, Jimenez R, et al. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nat Plants. 2015;1(9):1-5. https://doi.org/10.1038/nplants.2015.124
Senapati S, Kuanar SR, Sarkar RK. Anaerobic germination potential in rice (Oryza sativa L.): role of amylases, alcohol deydrogenase and ethylene. J Stress Physiol Biochem. 2019;15(4):39-52.
Pujadas G, Palau J. Evolution of ?-amylases: architectural features and key residues in the stabilization of the (?/?) 8 scaffold. Mol Biol Evol. 2001;18(1):38-54. https://doi.org/10.1093/oxfordjournals.molbev.a003718
Guglielminetti L, Yamaguchi J, Perata P, Alpi A. Amylolytic activities in cereal seeds under aerobic and anaerobic conditions. Plant Physiol. 1995;109(3):1069-76. https://doi.org/10.1104/pp.109.3.1069
Hwang YS, Thomas B, Rodriguez R. Differential expression of rice ?-amylase genes during seedling development under anoxia. Plant Mol Biol. 1999;40:911-20. https://doi.org/10.1023/A:1006241811136
Singh S, Mackill DJ, Ismail AM. Physiological basis of tolerance to complete submergence in rice involves genetic factors in addition to the SUB1 gene. AoB Plants. 2014;6:plu060. https://doi.org/10.1093/aobpla/plu060
Jackson MB, Ram PC. Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann Bot. 2003;91(2):227-41. https://doi.org/10.1093/aob/mcf242
Kuroha T, Ashikari M. Molecular mechanisms and future improvement of submergence tolerance in rice. Mol Breed. 2020;40(4):41. https://doi.org/10.1007/s11032-020-01122-y
Evans DE. Aerenchyma formation. New Phytol. 2004;161(1):35-49. https://doi.org/10.1046/j.1469-8137.2003.00907.x
Shiono K, Takahashi H, Colmer TD, Nakazono M. Role of ethylene in acclimations to promote oxygen transport in roots of plants in waterlogged soils. Plant Sci. 2008;175(1–2):52-58. https://doi.org/10.1016/j.plantsci.2008.03.002
Yamauchi T, Yoshioka M, Fukazawa A, Mori H, Nishizawa NK, Tsutsumi N, et al. An NADPH oxidase RBOH functions in rice roots during lysigenous aerenchyma formation under oxygen-deficient conditions. Plant Cell. 2017;29(4):775-90. https://doi.org/10.1105/tpc.16.00976
Lorbiecke R, Sauter M. Adventitious root growth and cell-cycle induction in deep water rice. Plant Physiol. 1999;119(1):21-30. https://doi.org/10.1104/pp.119.1.21
Steffens B, Rasmussen A. The physiology of adventitious roots. Plant Physiol. 2016;170(2):603-17. https://doi.org/10.1104/pp.15.01360
Lin CC, Chao YT, Chen WC, Ho HY, Chou MY, Li YR, et al. Regulatory cascade involving transcriptional and N-end rule pathways in rice under submergence. Proc Natl Acad Sci. 2019;116(8):3300-09. https://doi.org/10.1073/pnas.1818507116
Rachmawati D. Growth and aerenchyma formation of rice (Oryza sativa L.) Cv. Ir64 and in para 5 at different inundation conditions. KnE Life Sci. 2015;348-53. https://doi.org/10.18502/kls.v2i1.172
Kotula L, Ranathunge K, Schreiber L, Steudle E. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. J Exp Bot. 2009;60(7):2155-67. https://doi.org/10.1093/jxb/erp089
Herzog M, Konnerup D, Pedersen O, Winkel A, Colmer TD. Leaf gas films contribute to rice (Oryza sativa) submergence tolerance during saline floods. Plant Cell Environ. 2018;41(5):885-97. https://doi.org/10.1111/pce.12873
Pedersen O, Rich SM, Colmer TD. Surviving floods: leaf gas films improve O2 and CO2 exchange, root aeration and growth of completely submerged rice. Plant J. 2009;58(1):147-56. https://doi.org/10.1111/j.1365-313X.2008.03769.x
Bin Rahman AR, Zhang J. Flood and drought tolerance in rice: opposite but may coexist. Food Energy Secur. 2016;5(2):76-88. https://doi.org/10.1002/fes3.79
Kulichikhin K, Yamauchi T, Watanabe K, Nakazono M. Biochemical and molecular characterization of rice (Oryza sativa L.) roots forming a barrier to radial oxygen loss. Plant Cell Environ. 2014;37(10):2406-20. https://doi.org/10.1111/pce.12294
Shiono K, Ogawa S, Yamazaki S, Isoda H, Fujimura T, Nakazono M, et al. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths. Ann Bot. 2011;107(1):89-99. https://doi.org/10.1093/aob/mcq221
Bailey-Serres J, Voesenek L. Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol. 2008;59:313-39. https://doi.org/10.1146/annurev.arplant.59.032607.092752
Azarin KV, Usatov AV, Kostylev PI. Molecular breeding of submergence-tolerant rice. Annu Res Rev Biol. 2017;1-10. https://doi.org/10.9734/ARRB/2017/35616
Ayano M, Kani T, Kojima M, Sakakibara H, Kitaoka T, Kuroha T, et al. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deep water rice. Plant Cell Environ. 2014;37(10):2313-24. https://doi.org/10.1111/pce.12377
Minami A, Yano K, Gamuyao R, Nagai K, Kuroha T, Ayano M, et al. Time-course transcriptomics analysis reveals key responses of submerged deep water rice to flooding. Plant Physiol. 2018;176(4):3081-102. https://doi.org/10.1104/pp.17.00858
Kuroha T, Nagai K, Gamuyao R, Wang DR, Furuta T, Nakamori M, et al. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science. 2018;361(6398):181-86. https://doi.org/10.1126/science.aat1577
Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, et al. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature. 2006;442(7103):705-08. https://doi.org/10.1038/nature04920
Fukao T, Xu K, Ronald PC, Bailey-Serres J. A variable cluster of ethylene response factor–like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell. 2006;18(8):2021-34. https://doi.org/10.1105/tpc.106.043000
Schmitz AJ, Folsom JJ, Jikamaru Y, Ronald P, Walia H. SUB 1 A-mediated submergence tolerance response in rice involves differential regulation of the brassinosteroid pathway. New Phytol. 2013;198(4):1060-70. https://doi.org/10.1111/nph.12202
Bailey-Serres J, Fukao T, Ronald P, Ismail A, Heuer S, Mackill D. Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice. 2010;3(2):138-47. https://doi.org/10.1007/s12284-010-9048-5
Ahmed F, Rafii M, Ismail MR, Juraimi AS, Rahim H, Asfaliza R, et al. Waterlogging tolerance of crops: breeding, mechanism of tolerance, molecular approaches and future prospects. BioMed Res Int. 2013;2013. https://doi.org/10.1155/2013/963525
Vergara B, Mazaredo A. Screening for resistance to submergence under greenhouse conditions. 1980;
Angaji SA, Septiningsih EM, Mackill D, Ismail AM. QTLs associated with tolerance of flooding during germination in rice (Oryza sativa L.). Euphytica. 2010;172:159-68. https://doi.org/10.1007/s10681-009-0014-5
Puckridge D, Kupkanchanul T, Palaklang W, Kupkanchanakul K. Production of rice and associated crops in deeply flooded areas of the Chao Phraya delta. Chao Phraya Delta. 2001;51.
Nakamura M, Noguchi K. Tolerant mechanisms to O2 deficiency under submergence conditions in plants. J Plant Res. 2020;133:343-71. https://doi.org/10.1007/s10265-020-01176-1
Dos Santos RS, Farias D da R, Pegoraro C, Rombaldi CV, Fukao T, Wing RA, et al. Evolutionary analysis of the SUB1 locus across the Oryza genomes. Rice. 2017;10:1-5. https://doi.org/10.1186/s12284-016-0140-3
Perata P, Voesenek LA. Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene. Trends Plant Sci. 2007;12(2):43-46. https://doi.org/10.1016/j.tplants.2006.12.005
Fukao T, Yeung E, Bailey-Serres J. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell. 2011;23(1):412-27. https://doi.org/10.1105/tpc.110.080325
Fukao T, Bailey-Serres J. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci. 2008;105(43):16814-19. https://doi.org/10.1073/pnas.0807821105
De Vleesschauwer D, Van Buyten E, Satoh K, Balidion J, Mauleon R, Choi IR, et al. Brassinosteroids antagonize gibberellin-and salicylate-mediated root immunity in rice. Plant Physiol. 2012;158(4):1833-46. https://doi.org/10.1104/pp.112.193672
Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, et al. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1 and gibberellin. Plant Cell. 2007;19(7):2140-55. https://doi.org/10.1105/tpc.106.043729
Singh S, Mackill DJ, Ismail AM. Responses of SUB1 rice introgression lines to submergence in the field: yield and grain quality. Field Crops Res. 2009;113(1):12-23. https://doi.org/10.1016/j.fcr.2009.04.003
Nagai K, Hattori Y, Ashikari M. Stunt or elongate? Two opposite strategies by which rice adapts to floods. J Plant Res. 2010;123:303-09. https://doi.org/10.1007/s10265-010-0332-7
Niroula RK, Pucciariello C, Ho VT, Novi G, Fukao T, Perata P. SUB1A-dependent and independent mechanisms are involved in the flooding tolerance of wild rice species. Plant J. 2012;72(2):282-93. https://doi.org/10.1111/j.1365-313X.2012.05078.x
HilleRisLambers D, Vergara B. Summary results of an international collaboration on screening methods for flood tolerance. 1983;
Mohanty H, Chaudhary R. Breeding for submergence tolerance in rice in India. Prog Rainfed Low land Rice. 1986;191-200.
Mackill D, Amante M, Vergara B, Sarkarung S. Improved semidwarf rice lines with tolerance to submergence of seedlings. Crop Sci. 1993;33(4):749-53. https://doi.org/10.2135/cropsci1993.0011183X003300040023x
Loreti E, Valeri MC, Novi G, Perata P. Gene regulation and survival under hypoxia requires starch availability and metabolism. Plant Physiol. 2018;176(2):1286-98. https://doi.org/10.1104/pp.17.01002
Toledo AMU, Ignacio JCI, Casal C, Gonzaga ZJ, Mendioro MS, Septiningsih EM. Development of improved Ciherang-Sub1 having tolerance to anaerobic germination conditions. 2015; https://doi.org/10.9787/PBB.2015.3.2.077
Baltazar MD, Ignacio JCI, Thomson MJ, Ismail AM, Mendioro MS, Septiningsih EM. QTL mapping for tolerance of anaerobic germination from IR64 and the aus landrace Nanhi using SNP genotyping. Euphytica. 2014;197:251-60. https://doi.org/10.1007/s10681-014-1064-x
Jiang L, Liu S, Hou M, Tang J, Chen L, Zhai H, et al. Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). Field Crops Res. 2006;98(1):68-75. https://doi.org/10.1016/j.fcr.2005.12.015
Zhang M, Lu Q, Wu W, Niu X, Wang C, Feng Y, et al. Association mapping reveals novel genetic loci contributing to flooding tolerance during germination in Indica rice. 2017; https://doi.org/10.3389/fpls.2017.00678
Nishimura T, Sasaki K, Yamaguchi T, Takahashi H, Yamagishi J, Kato Y. Detection and characterization of quantitative trait loci for coleoptile elongation under anaerobic conditions in rice. Plant Prod Sci. 2020;23(3):374-83. https://doi.org/10.1080/1343943X.2020.1740600
Jeong J, Cho Y, Jeong J, Mo Y, Kim C, Kim W, et al. QTL mapping and effect confirmation for anaerobic germination tolerance derived from the japonica weedy rice landrace PBR. Plant Breed. 2020;139(1):83-92. https://doi.org/10.1111/pbr.12753
Kuya N, Sun J, Iijima K, Venuprasad R, Yamamoto T. Novel method for evaluation of anaerobic germination in rice and its application to diverse genetic collections. Breed Sci. 2019;69(4):633-39. https://doi.org/10.1270/jsbbs.19003
Xu K, Mackill DJ. A major locus for submergence tolerance mapped on rice chromosome 9. Mol Breed. 1996;2:219-24. https://doi.org/10.1007/BF00564199
Toojinda T, Siangliw M, Tragoonrung S, Vanavichit A. Molecular genetics of submergence tolerance in rice: QTL analysis of key traits. Ann Bot. 2003;91(2):243-53. https://doi.org/10.1093/aob/mcf072
Tiwari DN. A critical review of submergence tolerance breeding beyond Sub 1 gene to mega varieties in the context of climate change. Int J Adv Sci Res Eng. 2018;4:140-48.
Winkel A, Pedersen O, Ella E, Ismail AM, Colmer TD. Gas film retention and underwater photosynthesis during field submergence of four contrasting rice genotypes. J Exp Bot. 2014;65(12):3225-33. https://doi.org/10.1093/jxb/eru166
Hamamura K, Kupkanchanakul T. Inheritance of floating ability in rice. Jpn J Breed. 1979;29(3):211-16. https://doi.org/10.1270/jsbbs1951.29.211
Sripongpangkul K, Posa G, Senadhira D, Brar D, Huang N, Khush G, et al. Genes/QTLs affecting flood tolerance in rice. Theor Appl Genet. 2000;101:1074-81. https://doi.org/10.1007/s001220051582
Nemoto K, Ukai Y, Tang DQ, Kasai Y, Morita M. Inheritance of early elongation ability in floating rice revealed by diallel and QTL analyses. Theor Appl Genet. 2004;109:42-47. https://doi.org/10.1007/s00122-004-1600-5
Kawano R, Doi K, Yasui H, Mochizuki T, Yoshimura A. Mapping of QTLs for floating ability in rice. Breed Sci. 2008;58(1):47-53. https://doi.org/10.1270/jsbbs.58.47
Chakraborty K, Guru A, Jena P, Ray S, Guhey A, Chattopadhyay K, et al. Rice with SUB1 QTL possesses greater initial leaf gas film thickness leading to delayed perception of submergence stress. Ann Bot. 2021;127(2):251-65. https://doi.org/10.1093/aob/mcaa171
Liang Y, Biswas S, Kim B, Bailey-Serres J, Septiningsih EM. Improved transformation and regeneration of indica rice: disruption of SUB1A as a test case via CRISPR-Cas9. Int J Mol Sci. 2021;22(13):6989. https://doi.org/10.3390/ijms22136989
Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, et al. Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot. 2009;103(2):151-60. https://doi.org/10.1093/aob/mcn206
Sarkar RK, Panda D. Distinction and characterisation of submergence tolerant and sensitive rice cultivars, probed by the fluorescence OJIP rise kinetics. Funct Plant Biol. 2009;36(3):222-33. https://doi.org/10.1071/FP08218
Xu K, Deb R, Mackill DJ. A microsatellite marker and a codominant PCR-based marker for marker-assisted selection of submergence tolerance in rice. Crop Sci. 2004;44(1):248-53. https://doi.org/10.2135/cropsci2004.2480
Collard B, Mackill D. Marker-assisted selection: an approach for precision plant breeding in the 21st century. Philos Trans R Soc B Rev Doi. 2006;10.
Sarkar R, Panda D, Reddy J, Patnaik S, Mackill DJ, Ismail AM. Performance of submergence tolerant rice (Oryza sativa) genotypes carrying the Sub1 quantitative trait locus under stressed and non-stressed natural field conditions. 2009;
Manzanilla D, Paris T, Vergara G, Ismail A, Pandey S, Labios R, et al. Submergence risks and farmers’ preferences: implications for breeding Sub1 rice in Southeast Asia. Agric Syst. 2011;104(4):335-47. https://doi.org/10.1016/j.agsy.2010.12.005
Kim S, Kim C, Jeong J, Reinke RF, Jeong J. Marker-assisted breeding for improvement of anaerobic germination in japonica rice (Oryza sativa). Plant Breed. 2019;138(6):810-19. https://doi.org/10.1111/pbr.12719
Septiningsih EM, Hidayatun N, Sanchez DL, Nugraha Y, Carandang J, Pamplona AM, et al. Accelerating the development of new submergence tolerant rice varieties: the case of Ciherang-Sub1 and PSB Rc18-Sub1. Euphytica. 2015;202:259-68. https://doi.org/10.1007/s10681-014-1287 x
Fukao T, Barrera-Figueroa BE, Juntawong P, Peña-Castro JM. Submergence and waterlogging stress in plants: a review highlighting research opportunities and understudied aspects. Front Plant Sci. 2019;10:340. https://doi.org/10.3389/fpls.2019.00340
Kuanar SR, Ray A, Sethi SK, Chattopadhyay K, Sarkar RK. Physiological basis of stagnant flooding tolerance in rice. Rice Sci. 2017;24(2):73-84. https://doi.org/10.1016/j.rsci.2016.08.008
Shanmugam A, Manivelan K, Deepika K, Nithishkumar G, Blessy V, Monihasri RB, et al. Unraveling the genetic potential of native rice (Oryza sativa L.) landraces for tolerance to early-stage submergence.Front Plant Sci. 2023;14:1083177. https://doi.org/10.3389/fpls.2023.1083177
Sarkar R, Reddy J, Patnaik S, Gautam P, Lal B. Submergence tolerance. In: ICAR-NRRI; 2017.
Gonzaga ZJC, Carandang J, Sanchez DL, Mackill DJ, Septiningsih EM. Mapping additional QTLs from FR13A to increase submergence tolerance in rice beyond SUB1. Euphytica. 2016;209:627-36. https://doi.org/10.1007/s10681-016-1636-z
Dixit S, Singh A, Sandhu N, Bhandari A, Vikram P, Kumar A. Combining drought and submergence tolerance in rice: marker-assisted breeding and QTL combination effects. Mol Breed. 2017;37:1-12. https://doi.org/10.1007/s11032-017-0737-2
Singh A, Carandang J, Gonzaga ZJC, Collard BC, Ismail AM, Septiningsih EM. Identification of QTLs for yield and agronomic traits in rice under stagnant flooding conditions. Rice. 2017;10:1-18. https://doi.org/10.1186/s12284-017-0154-5
Arya K, Shylaraj K. Physiological and antioxidant responses associated with Sub1 gene introgressed rice (Oryza sativa L.) lines under complete submergence. Physiol Mol Biol Plants. 2023;29(11):1763-76. https://doi.org/10.1007/s12298-023-01400-x
John D, Shylaraj K. Introgression of Sub1 QTL into an elite rice (Oryza sativa L.) variety Jyothi through marker assisted backcross breeding. J Trop Agric. 2017;55(1):1-11.
Septiningsih EM, Ignacio JCI, Sendon PM, Sanchez DL, Ismail AM, Mackill DJ. QTL mapping and confirmation for tolerance of anaerobic conditions during germination derived from the rice landrace Ma-Zhan Red. Theor Appl Genet. 2013;126:1357-66. https://doi.org/10.1007/s00122-013-2057-1
Ghosal S, Casal C, Quilloy FA, Septiningsih EM, Mendioro MS, Dixit S. Deciphering genetics underlying stable anaerobic germination in rice: phenotyping, QTL identification and interaction analysis. Rice. 2019;12:1-15. https://doi.org/10.1186/s12284-019-0305-y
Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature. 2009;460(7258):1026-30. https://doi.org/10.1038/nature08258
ICAR, KRISHI publication and data inventory repository. Rice ecosystems in India [Internet]. India: ICAR, Rice Knowledge Management Portal; 2013[2024 Aug 12]. Available from?: http://krishi.icar.gov.in/jspui/handle/123456789/33998
Bhattacharyya P, Chakraborty K, Molla K, Poonam A, Bhaduri D, Sah R, et al. Climate resilient technologies for rice based production systems in Eastern India. ICAR-Natl Rice Res Inst Cuttack Odisha. 2022;408.
Mackill DJ, Ismail A, Singh US, Labios RV, Paris T. Development and rapid adoption of submergence-tolerant (Sub1) rice varieties. Adv Agron. 2012;115:299-352. https://doi.org/10.1016/B978-0-12-394276-0.00006-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 S Suwetha, RP Gnanamalar, S Elamathi, PCN Mary, R Arulmozhi, M Dhandapani, K Subrahmaniyan, A Shanmugam, R Pushpa
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).