Forthcoming

Viral diseases in Vigna species - Impacts, management opportunities and future perspectives: A review

Authors

DOI:

https://doi.org/10.14719/pst.4756

Keywords:

management, molecular breeding approaches, transgenic breeding approaches, Vigna species, viral diseases

Abstract

Pulses are the second-largest class of food crops worldwide, with around 1.58
million hectares under cultivation. represent. They are also excellent sources
of protein. The major cultivated Vigna species in India include Blackgram
[Vigna mungo (L.) Hepper], Greengram [Vigna radiata (L.) Wilczek], Cowpea
[Vigna unguiculata (L.) Walp.], Moth bean [Vigna aconitifolia (Jacq.) Maréchal]
and Adzuki bean [Vigna angularis (Willd.) Ohwi & H. Ohashi]. However, the
yield of these crops is significantly reduced by viral diseases caused by a
diverse range of viral strains. Notable viral diseases affecting Vigna species
include yellow mosaic, cowpea severe mosaic, cowpea yellow mosaic,
cowpea aphid-borne mosaic, cowpea golden yellow mosaic, bean common
mosaic, leaf crinkle and leaf curl. The primary challenge in managing these
viral diseases lies in effectively integrating the substantial knowledge
accumulated, which is essential for developing genotypes with durable
resistance to viral infections. Molecular markers and QTL (Quantitative Trait
Locus) mapping are valuable tools for identifying genomic regions associated
with viral disease resistance, aiding future breeding programs. This abstract
provides an overview of each Vigna species, the viral diseases affecting them,
and recent advancements in developing resistant genotypes. It also highlights
systematic screening efforts within Vigna germplasm to identify various
sources of viral resistance in Vigna species.

Downloads

Download data is not yet available.

References

Crops and livestock products. Food and Agriculture Organization. FAO Statistical Database [Internet]. 2021. License: CC BY-NC-SA 3.0 IGO. [updated on 2024 Jul 25; cited on 2024 Jul 28]. https://www.fao.org/faostat/en/#data/QCL

Datta S, Gupta S. Use of genomic resources in improvement of Vigna species. Journal of Food Legumes. 2009;22(1):1-10.

Agricultural statistics at a glance. Department of Agricultural Statistics. Ministry of Agriculture and Farmers' Welfare, Government of India [Internet]. [updated 2024 Jul 30; cited 2024 Jul 31]. Available from: https://agriwelfare.gov.in/en/Agricultural_Statistics_at_a_Glance

Karthikeyan A, Shobhana VG, Sudha M, Raveendran M, Senthil N, Pandiyan M, Nagarajan P. Mungbean Yellow Mosaic Virus (MYMV): a threat to green gram (Vigna radiata) production in Asia. Int J Pest Manag. 2014;60(4):314-24. https://doi.org/10.1080/09670874.2014.982230

USDA. National nutrient database for standard reference. "Mungo beans, mature seeds, raw". US Department of Agriculture [Internet]. [updated 2024 Mar 1; cited 2024 Jul 12]. 2019. Available from: https://fdc.nal.usda.gov/fdc-app.html#/food-details/174256/nutrients

Arora R. Diversity and collection of wild Vigna species in India. FAO/IBPGR Plant Genet Resour Newslett. 1985;63:26-33.

Wang Y, Yao X, Shen H, Zhao R, Li Z, Shen X, et al. Nutritional composition, efficacy and processing of Vigna angularis (Adzuki bean) for the human diet: An overview. Molecules. 2022;27(18):6079. https://doi.org/10.3390/molecules27186079

Pandiyan M, Sivakumar P, Krishnaveni A, Sivakumar C, Radhakrishnan V, Vaithiyalingam M, Tomooka N. Adzuki bean. In: Pratap A, Gupta S, editors. The Beans and the Peas. Cambridge: Woodhead Publishing; 2021. p. 89–103. https://doi.org/10.1016/B978-0-12-821450-3.00006-8

Agricultural and Processed Food Products Export Development Authority (APEDA) [Internet]. 2022-23 [cited on 2024 Jul 29]. Available from: https://apeda.gov.in/apedawebsite/SubHead_Products/Pulses.htm"https://apeda.gov.in/apedawebsite/SubHead_Products/Pulses.htm#

Ilyas M, Qazi J, Mansoor S, Briddon RW. Molecular characterisation and infectivity of a “Legumovirus” (Genus Begomovirus: family Geminiviridae) infecting the leguminous weed Rhynchosia minima in Pakistan. Virus Res. 2009;145(2):279-84. https://doi.org/10.1016/j.virusres.2009.07.018

Nene YL. A survey of viral diseases of pulse crops in Uttar Pradesh: Final Technical Report (Book); 1972. p. 191.

Fauquet CM, Bisaro DM, Briddon RW, Brown JK, Harrison BD, Rybicki EP, et al. Revision of taxonomic criteria for species demarcation in the family Geminiviridae and an updated list of begomovirus species. Arch Virol. 2003;148(2):405-20. http://doi.org/10.1007/s00705-002-0957-5

Bashir M, Zubair M. Identification of resistance in Urdbean (Vigna mungo) against two different viral diseases. Pak J Bot. 2002;34(1):49-51.

Qazi J, Mansoor S, Amin I, Awan MY, Briddon RW, Zafar Y. First report of Mungbean Yellow Mosaic India Virus on mothbean in Pakistan. Plant Pathol. 2006;55(6):818. http://doi.org/10.1111/j.1365-3059.2006.01475.x

Priya L, Arumugam PM, Shoba D, Kumari SMP, Aananthi N. Genetic variability and correlation studies in black-gram [Vigna mungo (L.) Hepper]. Electron J Plant Breed. 2018;9(4):1583-87. http://doi.org/10.5958/0975-928X.2018.00197.7

Gupta S, Kumar S, Singh R, Chandra S. Identification of a single dominant gene for resistance to Mungbean Yellow Mosaic Virus in blackgram [Vigna mungo (L.) Hepper]. SABRAO J Breed Genet. 2005;37(2):85-89.

Shukla GP, Pandya BP. Resistance to yellow mosaic in green gram. SABRAO J Breed Genet. 1985;17(2):165-171.

Sandhiya V, Saravanan S. Genotypic analysis for retrieval of mymv resistant progenies from certain crosses of mungbean [Vigna radiata (L.) Wilczek]. Indian J Agric Res. 2020;54(4):511-15. http://doi.org/10.18805/IJARe.A-5262

Verma RP, Singh DP. The allelic relationship of genes giving resistance to Mungbean Yellow Mosaic Virus in blackgram. Theor Appl Genet. 1986;72:737-38. https://doi.org/10.1007/BF00266537

Chippy AK, Pillai MA, Shoba D. Genetic diversity analysis in blackgram [Vigna mungo (L.) Hepper]. Electron. J Plant Breed. 2021;12(1):37-45. https://doi.org/10.37992/2021.1201.006

Priyadharshni S, Saravanan S, Elanchezyan K, Pushpam AK, Pillai MA. Efficiency and effectiveness of physical and chemical mutagens in cowpea [Vigna ungiculata (L.) Walp]. Electron J Plant Breed. 2020;11(03): 803-08.

Vairam N, Lavanya SA, Muthamilan M, Vanniarajan C. Screening of M3 mutants for yellow vein Mosaic Virus resistance in greengram [Vigna radiata (L.) Wilczek]. Internet J Plant Sci. 2016;11(2):265-69. http://doi.org/10.15740/HAS/IJPS/11.2/265-269

Sudha M, Anusuya P, Mahadev NG, Karthikeyan A, Nagarajan P, Raveendran M, et al. Molecular studies on mungbean [Vigna radiata (L.) Wilczek] and ricebean [Vigna umbellata (Thunb.)] interspecific hybridisation for Mungbean Yellow Mosaic Virus resistance and development of species-specific SCAR marker for ricebean. Arch Phytopathol Pflanzenschutz. 2013;46(5):503-17. https://doi.org/10.1080/03235408.2012.745055

Shoba D, Manivannan N, Vindhiyavarman P. Genetic diversity analysis of groundnut genotypes using SSR markers. Electron J Plant Breed. 2010;1(6): 1420-25.

Gupta S, Gupta DS, Anjum TK, Pratap A, Kumar J. Inheritance and molecular tagging of MYMIV resistance gene in blackgram [Vigna mungo (L.) Hepper]. Euphytica. 2013;193:27-37. https://doi.org/10.1007/s10681-013-0884-4

Sathees N, Shoba D, Mani N, Saravanan S, Kumari MP, Pillai MA. Tagging of SSR markers associated to yellow mosaic virus resistance in black gram [Vigna mungo (L.) Hepper]. Euphytica. 2022;218(3):23. https://doi.org/10.1007/s10681-022-02976-3

Singh N, Mallick J, Sagolsem D, Mandal N, Bhattacharyya S. Mapping of molecular markers linked with MYMIV and yield attributing traits in mungbean. Indian J Genet Pl Br. 2018;78(1):118-26.

Rambabu E, Anuradha C, Sridhar V, Reddy SS. Genetics of Mungbean Yellow Mosaic Virus (MYMV) resistance in black gram [Vigna mungo (L.) Hepper]. Int J Curr Microbiol App Sci. 2018;7(4):3869-72.

Sai C, Natarajan P, Raveendran M, Rabindran R, Kannan Bapu JR, Senthil N. Understanding the inheritance of mungbean yellow mosaic virus (MYMV) resistance in mungbean [Vigna radiata (L.) Wilczek]. Mol Breed. 2017;37:1-5. https://doi.org/10.1007/s11032-017-0650-8

Tamilzharasi M, Vanniarajan C, Karthikeyan A, Souframanien J, Pillai MA, Meenakshisundram P. Evaluation of urdbean (Vigna mungo) genotypes for mungbean yellow mosaic virus resistance through phenotypic reaction and genotypic analysis.Legume Res. 2020;43(5): 728-34. http://doi.org/10.18805/LR-4035

Dhole VJ, Reddy KS. Development of a SCAR marker linked with a MYMV resistance gene in mungbean [Vigna radiata L. Wilczek]. Plant Breed. 2013;132(1):127-32. https://doi.org/10.1111/pbr.12006

Shoba D, Manivannan N, Vindhiyavarman P, Nigam SN. SSR markers associated for late leaf spot disease resistance by bulked segregant analysis in groundnut (Arachis hypogaea L.). Euphytica. 2012;188:265-72. https://doi.org/10.1007/s10681-012-0718-9

Naik BJ, Anuradha C, Kumar PA, Sreedhar V, Chary SR. Identification of simple sequence repeats (SSR) markers linked to Yellow Mosaic Virus (YMV) resistance in blackgram [Vigna mungo (L). Hepper]. Agric Update. 2017;12(TECHSEAR-3):812-19. http://doi.org/10.15740/HAS/AU/12.TECHSEAR(3)2017/812-819

Ramalingam J, Raveendra C, Savitha P, Vidya V, Chaithra TL, Velprabakaran S, et al. Gene pyramiding for achieving enhanced resistance to bacterial blight, blast and sheath blight diseases in rice. Front Plant Sci. 2020;11:591457. https://doi.org/10.3389/fpls.2020.591457

Chandran S, Pukalenthy B, Adhimoolam K, Manickam D, Sampathrajan V, Chocklingam V, et al. Marker-assisted selection to pyramid the opaque-2 (o2) and ?-carotene (crtRB1) genes in maize. Front Genet. 2019;10:859. https://doi.org/10.3389/fgene.2019.00859

Subramaniyan R, Kulanthaivel V, Narayana M, Angamuthu M, Kothandaraman SV. Marker-assisted backcross breeding for enhancing Mungbean Yellow Mosaic Virus (MYMV) disease resistance in blackgram [Vigna mungo (L.) Hepper] cv MDU 1. Physiol Mol Plant Pathol. 2021;116:101732. https://doi.org/10.1016/j.pmpp.2021.101732

Biswas KK, Biswas KO, Malathi VG, Chattopadhyay CH. Evaluation of urdbean cultivars for identification of resistance to leaf crinkle disease by mechanical sap inoculation. Indian Phytopath. 2012;65(4):416-17.

Williams FJ, Grewal JS, Amin KS. Serious and new diseases of pulse crops in India in 1966. Plant Dis Rep. 1968;52(4):300-04.

Prasad M, Sarma B, Sangit Kumar SK, Prasad M. Transmission tests and varietal screening for urd leaf crinkle virus in blackgram [Vigna mungo (L.) Hepper]. Annals of Plant Protection Sciences. 1998;6(2):205-07.

Singh G, Gurha SN, Ghosh A. Diseases of mungbean and urdbean and their management. In: Thind TS, editor. Diseases of Field Crops and Their Management. Ludhiana, India: National Agricultural Technology Information Centre; 1998. p. 179–204.

Rao R, Babu B, Sreekant M, Kumar V. ELISA and infectivity assay based survey for the detection of peanut bud necrosis virus in mungbean and urdbean in Andhra Pradesh. Indian J Plant Prot. 2003;31(1):26-28.

ICAR-IIPR (Indian Institute of Pulses Research), Kanpur [Internet]. 2013. [updated on 2024 Jul 29; cited on 2024 Jul 30]. Available from: https://iipr.icar.gov.in/variety/

Varieties Released. NPRC (National Pulse Research Centre) – Vamban. [Internet]. 2023. TNAU (Tamilnadu Agricultural University) [updated on 2024 Mar 23, cited on 2024 Jun 12]. Available from: https://tnau.ac.in/site/prs-vamban/varieties- released/

Sandhu JS, Gill RK, Singh I, Singh S, Gupta SK. Urdbean variety Mash 391. Indian J Genet Pl Br. 2012;72(1):109-10.

Sravika A, Kennedy JS, Rajabaskar D, Rajeswari E. Field screening of greengram (Vigna radiata L.) genotypes for resistance against Urdbean Leaf Crinkle Virus. Indian J Agric Res. 2019;53(4):458-62. http://doi.org/10.18805/IJARe.A-5184

Abdulrahimzai MR, Venkateswarlu N, Prasad KVH, Naidu GM. Evaluation of black gram genotypes for resistance against thrips and whitefly in relation to Leaf Curl and Yellow Mosaic Virus. Andhra Pradesh J Agric Sci. 2019;5:173-80.

Madhavi KJ. Seed transmission studies of Peanut Bud Necrosis Virus (PBNV) and Tobacco Streak Virus (TSV) isolates of blackgram and greengram of Telangana. J Pharmacogn Phytochem. 2021;10(5):330-32.

Agrawal HO. Identification of cowpea mosaic virus isolates. Mededelingen Van De Landbouwhoogeschool te, Wageningen. 1964;64:1-53.

De Jager CP. Cowpea severe Mosaic Virus, Kew, UK, CMI (Commonwealth Mycological Institute). CMI/AAB Descriptions of Plant Viruses. 1979;209.

Walters HJ, Barnett Jr O. Bean leaf beetle transmission of Arkansas Cowpea Mosaic Virus. Phytopathol. 1964;54:911.

Booker HM, Umaharan P, McDavid CR. Effect of Cowpea severe Mosaic Virus on crop growth characteristics and yield of cowpea. Plant Dis. 2005;89(5):515-20. https://doi.org/10.1094/PD-89-0515

Singh SR, Allen DJ. Cowpea pests and diseases [e-book]. Ibadan, Nigeria: International Institute of Tropical Agriculture. Manual Series, No. 2. 1979 [cited on Jul 16 2024]. 113. Available from: https://pdf.usaid.gov/pdf_docs/PNAAV133.pdf

Chant SR. Viruses of cowpea, [Vigna unguiculata (L.) Walp.], in Nigeria. Ann Appl Biol. 1959;47(3):565-72. https://doi.org/10.1111/j.1744-7348.1959.tb07288.x

Gilmer R, Whitney W, Williams R. Epidemiology and control of cowpea mosaic in western Nigeria. Proceedings First IITA Grain Legume Workshop, IITA. 1974. Ibadan, Nigeria.

Bashir M. Serological and biological characterization of seed-borne isolates of blackeye cowpea mosaic and cowpea aphid-borne mosaic potyviruses in Vigna unguiculata (L.) Walp. Doctor of Philosophy [thesis]. Oregon State University; 1992.

Thottappilly G, Rossel HW. Virus diseases of cowpea in tropical Africa. Int J Pest Manag. 1992;38(4):337-48. https://doi.org/10.1080/09670879209371724

Varma A, Malathi VG. Emerging geminivirus problems: a serious threat to crop production. Ann Appl Biol. 2003;142(2):145-64. https://doi.org/10.1111/j.1744-7348.2003.tb00240.x

Bliss FA, Robertson DG. Genetics of host reaction in Cowpea-to-Cowpea Yellow Mosaic Virus and Cowpea Mottle Virus 1. Crop Sci. 1971;11(2):258-62. https://doi.org/10.2135/cropsci1971.0011183X001100020027x

Orawu M, Melis R, Laing M, Derera J. Genetic inheritance of resistance to Cowpea Aphid-borne Mosaic Virus in cowpea. Euphytica. 2013;189:191-201. https://doi.org/10.1007/s10681-012-0756-3

Dhanasekar P, Reddy K. Serological screening of cowpea genotypes for resistance against Cowpea Aphid Borne Mosaic Virus using DAS-ELISA. Asian J Plant Pathol. 2015;9(2):83-90. https://doi.org/10.3923/ajppaj.2015.83.90

Ouédraogo JT, Gowda BS, Jean M, Close TJ, Ehlers JD, Hall AE, et al. An improved genetic linkage map for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD, biochemical markers and biological resistance traits. Genome. 2002;45(1):175-88. https://doi.org/10.1139/g01-102

Menéndez CM, Hall AE, Gepts P. A genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred, domesticated lines. Theor Appl Genet. 1997;95:1210-17. https://doi.org/10.1007/s001220050683

Gioi TD, Boora KS, Chaudhary K. Identification and characterization of SSR markers linked to Yellow Mosaic Virus resistance genes in cowpea (Vigna unguiculata). Int J Plant Res. 2012;2(1):1-8. http://doi.org/10.5923/j.plant.20120201.01

Bhattarai G, Shi A, Qin J, Weng Y, Bradley Morris BJ, Pinnow DL, et al. Association analysis of Cowpea Mosaic Virus (CPMV) resistance in the USDA cowpea germplasm collection. Euphytica. 2017;213:230. https://doi.org/10.1007/s10681-017-2015-0

Tizioto PC, Meirelles SL, Tullio R, Rosa AD, de Alencar MM, de Medeiros SR, et al. Candidate genes for production traits in Nelore beef cattle. Genet Mol Res. 2012;11(4): 4138-44. https://doi.org/10.4238/2012.September.19.1

Jordan R, Hammond J. Bean common mosaic virus and bean common mosaic necrosis virus (genus Potyvirus; Potyviridae). In: Bamford DH, Zuckerman M, editors. Encyclopedia of Virology. Academic Press; 2021. p. 184–91. https://doi.org/10.1016/B978-0-12-809633-8.21293-4

Wang WY, Mink GI, Silbernagel MJ, Davis WC. Production of hybridoma lines secreting specific antibodies to Bean common Mosaic-Virus (bcmv) strains. In Phytopathology. 1984;74(9):1142-42.

Jung HW, Jung HJ, Yun WS, Kim HJ, Hahm YI, Kim HJ, et al. Characterization and partial nucleotide sequence analysis of Alfalfa mosaic Alfamoviruses isolated from potato and azuki bean in Korea. The Plant Pathol J. 2000;16(5):269-79.

Li YQ, Liu ZP, Yang K, Li YS, Zhao B, Fan ZF, Wan P. First report of bean common Mosaic Virus infecting Azuki bean (Vigna angularis) in China. Plant Disease. 2014;98(7):1017-17. https://doi.org/10.1094/PDIS-01-14-0064-PDN

Morales FJ. Common beans. In: Loebenstein G, Carr JP, editors. Natural resistance mechanisms of plants to Viruses. Dordrecht: Springer; 2006. p. 367–82.

Chen X. Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol. 2009;25(1):21-44. https://doi.org/10.1146/annurev.cellbio.042308.113417

Moazed D. Small RNAs in transcriptional gene silencing and genome defence. Nature. 2009;457(7228):413-20. https://doi.org/10.1038/nature07756

Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell. 2001;107(4):465-76. https://doi.org/10.1016/S0092-8674(01)00576-1

Li Y, Ma E, Yang K, Zhao B, Li Y, Wan P. Genome-wide analysis of key gene families in RNA silencing and their responses to biotic and drought stresses in adzuki bean. BMC Genomics. 2023;24(1): 195. https://doi.org/10.1186/s12864-023-09274-9

Anuragi H, Yadav R, Sheoran R. Gamma-rays and EMS induced resistance to mungbean yellow mosaic India virus in mungbean [Vigna radiata (L.) R. Wilczek] and its validation using linked molecular markers. Int J Radiat Biol. 2022;98(1):69-81. https://doi.org/10.1080/09553002.2022.1998710

Sudha M, Karthikeyan A, Madhumitha B, Veera Ranjani R, Kanimoli Mathivathana M, Dhasarathan M, et al. Dynamic transcriptome profiling of mungbean genotypes unveil the genes respond to the infection of Mungbean Yellow Mosaic Virus. Pathogens. 2022;11(2):190. https://doi.org/10.3390/pathogens11020190

Haq QM, Jyothsna P, Ali A, Malathi VG. Coat protein deletion mutation of Mungbean Yellow Mosaic India Virus (MYMIV). J Plant Biochem Biotechnol. 2011;20:182-89. https://doi.org/10.1007/s13562-011-0044-7

Haq QM, Rouhibakhsh A, Ali A, Malathi VG. Infectivity analysis of a blackgram isolate of Mungbean Yellow Mosaic Virus and genetic assortment with MYMIV in selective hosts. Virus Genes. 2011;42:429-39. https://doi.org/10.1007/s11262-011-0591-y

Kumari A, Malathi VG. RNAi-Mediated strategy to develop transgenic resistance in grain legumes targeting the Mungbean Yellow Mosaic India Virus coat protein gene. In: Proceedings of the International Conference on Plant Biotechnology for Food Security: New Frontiers. 2012;21-24.

Cruz AR, Aragão FJ. RNA i?based enhanced resistance to Cowpea severe Mosaic Virus and Cowpea Aphid?borne Mosaic Virus in transgenic cowpea. Plant Pathol. 2014;63(4):831-37. https://doi.org/10.1111/ppa.12178

Kumar S, Tanti B, Patil BL, Mukherjee SK, Sahoo L. RNAi-derived transgenic resistance to Mungbean Yellow Mosaic India Virus in cowpea. PLoS One. 2017;12(10):e0186786. https://doi.org/10.1371/journal.pone.0186786

International committee on taxonomy of viruses (ICTV). Taxonomy release history. Germany: ICTV; [Internet] 2023. Available from: https://ictv.global/taxonomy/history

Gupta DS, Kumar J, Parihar AK, Gupta S. Breeding for high-yielding and disease-resistant urdbean cultivars. In: Gosal SS, Wani SH, editors. Accelerated Plant Breeding. Cham: Springer; 2020. p. 173–91. https://doi.org/10.1007/978-3-030-47306-8_6

Singh DP, Singh BB, Pratap A. Genetic improvement of mungbean and urdbean and their role in enhancing pulse production in India. Indian J Genet Plant Breed. 2016;76(04):550-67. https://doi.org/10.5958/0975-6906.2016.00072.9

Sala M, Yuvarani R, Saranya M, Nirubana V, Sridevi R, Gokulakannan K, et al. Morphological screening of black gram genotypes with reference to Mung Bean Yellow Mosaic Virus. Int J Environ Clim Change. 2022;12(12):1858-62. https://doi.org/10.9734/IJECC/2022/v12i121634

Pillai MA, Shunmugavalli N, Selvi B, Muthuswamy A, Anand G, Shoba RP, et al. Blackgram KKM 1 (KKB 05011), a rice fallow variety suited for Thamirabarani tracks of Tamil Nadu. Electron J Plant Breed. 2017;8(3):900-06. https://doi.org/10.5958/0975-928X.2017.00149.1

Gurha S, Misra D, Kamthan K. Studies on some aspects of yellow mosaic disease of blackgram [Vigna mungo (L.) Hepper]. Madras Agric J. 1982;69(7):435-38. https://doi.org/10.29321/MAJ.10.A02739

Nair RM, Götz M, Winter S, Giri RR, Boddepalli VN, Sirari A, et al. Identification of mungbean lines with tolerance or resistance to Yellow Mosaic in fields in India where different Begomovirus species and different Bemisia tabaci cryptic species predominate. Eur J Plant Pathol. 2017;149:349-65. https://doi.org/10.1007/s10658-017-1187-8

Meghwal R, Joshi U, Kumar S, Sharma R. Screening of moth bean (Vigna aconitifolia) core collection against Yellow Mosaic Virus. Indian J Agric Sci. 2015;85:571-75. https://doi.org/10.56093/ijas.v85i4.47948

International atomic energy agency (IAEA). Mutant variety database. IAEA; 2022. Available from: https://nucleus.iaea.org/sites/mvd/SitePages/Search.aspx

Subramaniyan R, Narayana M, Krishnamoorthy I, Natarajan G, Gandhi K. Novel and stable QTL regions conferring resistance to MYMV disease and its inheritance in blackgram [Vigna mungo (L.) Hepper]. J Genet. 2022;101:18. https://doi.org/10.1007/s12041-022-01359-w

Mathivathana MK, Murukarthick J, Karthikeyan A, Jang W, Dhasarathan M, Jagadeeshselvam N, et al. Detection of QTLs associated with Mungbean Yellow Mosaic Virus (MYMV) resistance using the interspecific cross of Vigna radiata x Vigna umbellata. J Appl Genet. 2019;60:255-68. https://doi.org/10.1007/s13353-019-00506-x

Vadivel K, Manivannan N, Mahalingam A, Satya VK, Vanniarajan C, Ragul S. Identification and validation of quantitative trait loci of Mungbean Yellow Mosaic Virus disease resistance in blackgram [Vigna mungo (L). Hepper]. Legume Res. 2023;46(6):778-84. http://doi.org/10.18805/LR-4459

Alam AM, Somta P, Srinives P. Identification and confirmation of quantitative trait loci controlling resistance to mungbean yellow mosaic disease in mungbean [Vigna radiata (L.) Wilczek]. Mol Breed. 2014;34:1497-506. https://doi.org/10.1007/s11032-014-0133-0

Chen HM, Ku HM, Schafleitner R, Bains TS, George Kuo C, Liu CA, et al. The major quantitative trait locus for Mungbean Yellow Mosaic Indian Virus resistance is tightly linked in repulsion phase to the major bruchid resistance locus in a cross between mungbean [Vigna radiata (L.) Wilczek] and its wild relative Vigna radiata ssp. sublobata. Euphytica. 2013;192:205-16. https://doi.org/10.1007/s10681-012-0831-9

Kitsanachandee R, Somta P, Chatchawankanphanich O, Akhtar KP, Shah TM, Nair RM, et al. Detection of quantitative trait loci for Mungbean Yellow Mosaic India Virus (MYMIV) resistance in mungbean [Vigna radiata (L.) Wilczek] in India and Pakistan. Breed Sci. 2013;63(4):367-73. https://doi.org/10.1270/jsbbs.63.367

Narayanan M. Genetics of Yellow Mosaic Virus resistance in blackgram [Vigna mungo (L.) Hepper] [thesis]. Department of Genetics and Plant Breeding, V.O.C AC and RI, Killikulam, Tamilnadu Agricultural University; 2021.

Kumar D, Golakia BA, Parakhia AM. Characterization and genetic diversity of cowpea (Vigna unguiculata L.) genotypes linked to Cowpea Yellow Mosaic Virus. Legume Res. 2018;41(1):27-33. https://doi.org/10.18805/lr.v0iOF.9101

ICAR- IIPR, Kanpur. Project Report, Arid Legumes, AINRP on Arid Legumes, Directorate of Pulse Development. [Internet] 2017. [cited on 2024 Jun 26]. Available from: https://dpd.gov.in/7%20to%2012%20Arid%20Legumes%20Varieties.pdf

Published

12-12-2024

How to Cite

1.
Godwin P, Shoba D, Arumugam P, Saravanan S, Sheela J, Kavitha P, Arumugachamy S, Hepziba J. Viral diseases in Vigna species - Impacts, management opportunities and future perspectives: A review. Plant Sci. Today [Internet]. 2024 Dec. 12 [cited 2024 Dec. 22];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/4756

Issue

Section

Review Articles