Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Assessment of metals accumulation in Celtis tournefortii Lam and Prosopis farcta from Mazne sub-district, Kurdistan region of Iraq

DOI
https://doi.org/10.14719/pst.4807
Submitted
25 August 2024
Published
13-02-2026

Abstract

A significant portion of the global population relies on medicinal plants as their primary source of healthcare. Therefore, it is crucial to ascertain the amount of heavy metal accumulated in these plants. In this study, 25 elements (Calcium (Ca), Phosphorus (P), Magnesium (Mg), Sodium (Na), Potassium (K), Sulfur (S), Iron (Fe), Copper (Cu), Zinc (Zn), Selenium (Se), Cadmium (Cd), Vanadium (V), Chromium (Cr), Nickel (Ni), Silver (Ag), Beryllium (Be), Strontium (Sr), Barium (Ba), Aluminum (Al), Lead (Pb), Bismuth (Bi), Rubidium (Rb), Boron (B), Arsenic (As), and Antimony (Sb)) were found in the leaves and fruit of C. tournefortii Lam, and in the pods and seeds of P. farcta , collected from the Mazne sub-district of Kurdistan in Iraq. The analysis was performed using inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES). An exploratory study of samples was conducted using principal component analysis (PCA) and hierarchical cluster analysis (HCA). The concentration of elements, quantified in parts per million (ppm) was as follows: Ca (3403-81948), Mg (1573-7578), Na (108-291), K (6481-23212), Fe (184-623), Cu (8-16), Zn (3-48), Se (0.5-33), Cd (0.11-0.40 ppm), V (1-3), Cr (2-25), Ni (2-4), Ag (0.5-1.7), Be (0.20-0.40), Sr (79.3-454), B (3-86), Al (100-738), Bi (0.7-2.30), Rb (1-7), B (0.7-2.3), As (0.1-3.9), Sb (6.60-12). All samples under investigation contained similar levels of K and Pb (218 and 1, respectively). The samples were divided into three major categories, as demonstrated by PCA and HCA. According to the findings, the fruit of C. tournefortii Lam is a source of Mg, K, Cu, Cd, Cr, Be, Sr, Ba, and Rb. The seeds of P. farcta had accumulated a significant level of S, Zn, Se, and Ni. Overall, the data suggest that use of these plants may pose potential health risks to humans due to the presence of certain heavy metals.

References

  1. 1. Abdulwahid-Kurdi SJ. Polyphenol and fatty acid content of Celtis tournefortii Lam and Prosopis farcta in Maznie Sub-district, Kurdistan region of Iraq. Curr Res in Nutr Food Sci. 2023;11(1):360‒75. https://dx.doi.org/10.12944/CRNFSJ.11.1.27
  2. 2. Hlihor RM, Rosca M, Hagiu-Zaleschi L, Simion IM, Daraban GM, Stoleru V. Medicinal plant growth in heavy metals contaminated soils: Responses to metal stress and induced risks to human health. Toxics. 2022;10(9):499. https://doi.org/10.3390/toxics10090499
  3. 3. Narendhirakannan RT, Subramanian S, Kandaswamy M. Mineral content of some medicinal plants used in the treatment of diabetes mellitus. Biol Trace Elem Res. 2005;103:109‒15. https://doi.org/10.1385/BTER:103:2:109
  4. 4. Sadgrove NJ. Honest nutraceuticals, cosmetics, therapies and foods (NCTFs): standardization and safety of natural products. Crit Rev Food Sci Nutr. 2002;62(16):4326‒41. https://doi.org/10.1080/10408398.2021.1874286
  5. 5. Stanojkovic-Sebic A, Pivic R, Josic D, Dinic Z, Stanojkovic A. Heavy metals content in selected medicinal plants commonly used as components for herbal formulations. J Agric Sci. 2015;21(3):317‒25. https://doi.org/10.1501/Tarimbil_0000001334
  6. 6. Da Cruz Ferreira R, de Souza Dias F, de Aragao Tannus C, Santana FB, Dos Santos DC, de Souza Dias F, Chinalia FA. Essential and potentially toxic elements from Brazilian geopropolis produced by the stingless bee Melipona quadrifasciata anthidioides using ICP OES. Biol Trace Elem Res. 2021;199:3527‒39. https://doi.org/10.1007/s12011-020-02455-7
  7. 7. Famuyide OO, Adebayo O, Bolaji-Olutunji KA, Awe F, Owoeye AY, Awodele DO, Adeyemo A. Assessment and sustainable management of non-timber forest products used as food and medicine among urban dwellers in Oyo State, Nigeria. J Hortic For. 2013;5(11):186‒93. https://doi.org/10.3923/pjbs.2009.934.938
  8. 8. Qadir B. Mines from the Iran-Iraq war continue to claim lives and limbs in Kurdistan Region. Rudaw, NEWS; 2021 https://www.rudaw.net/english/kurdistan/051220212 5/12/2021/
  9. 9. Zwijnenburg W, Postma F. Living under a black sky: Conflict pollution and environmental health concerns in Iraq. Pax, The Netherlands; November. 2017;1‒36. wijnenburg@paxforpeace.nl.
  10. 10. Fei X, Lou Z, Christakos G, Ren Z, Liu Q, Lv X. The association between heavy metal soil pollution and stomach cancer: a case study in Hangzhou City, China. Environ Geochem Health. 2018;40:2481‒90. https://doi.org/10.1007/s10653-018-0113-0
  11. 11. Nnorom IC, Igwe JC, OjiNnorom CG. Trace metal contents of facial (make-up) cosmetics commonly used in Nigeria. Afr J Biotechnol. 2005;4(10)
  12. 12. Gondal MA, Seddigi ZS, Nasr MM, Gondal B. Spectroscopic detection of health hazardous contaminants in lipstick using laser induced breakdown spectroscopy. J Hazard Mater. 2010;15:175(1-3):726‒32. https://doi.org/10.1016/j.jhazmat.2009.10.069
  13. 13. Lim DS, Roh TH, Kim MK, Kwon YC, Choi SM, Kwack SJ, Lee BM. Non-cancer, cancer and dermal sensitization risk assessment of heavy metals in cosmetics. J Toxicol Environ Health, Part A. 2018;81(11):432‒52. https://doi.org/10.1080/15287394.2018.1451191
  14. 14. Wayal SR, Gurav SS. Pharmacognostic and phytochemical investigation of potentially important plants of Western Ghats, India. Int J Pharm Sci Res. 2019;10(6):3101‒08. https://doi.org/10.13040/IJPSR.0975-8232.10(6).3101-08
  15. 15. Okem A, Southway C, Ndhlala AR, Van Staden J. Determination of total and bioavailable heavy and trace metals in South African commercial herbal concoctions using ICP-OES. South Afr J Bot. 2012;82:75‒82. https://doi.org/10.1016/j.sajb.2012.07.005
  16. 16. Tormen L, Torres DP, Dittert IM, Araújo RG, Frescura VL, Curtius AJ. Rapid assessment of metal contamination in commercial fruit juices by inductively coupled mass spectrometry after a simple dilution. J Food Compos Anal. 2011;24(1):95‒102. https://doi.org/10.1016/j.jfca.2010.06.004
  17. 17. Xozak A, Soytyk K, Ostapczuk P, Fijayek Z. Determination of selected trace elements in herbs and their infusions. Sci Total Environ. 2002;289:33–40. https://doi.org/10.1016/S0048-9697(01)01015-4
  18. 18. Karik U, Eryigitz T, Tunçturk R, Tunçturk M. The mineral and nutrient contents of some edible wild plants grown in rural environment of Eastern Anatolia, Turkey. Fresenius Environ Bull. 2018;27:9076‒82.
  19. 19. Moe SM. Disorders involving calcium, phosphorus and magnesium, Prim. Care, Clinics in Office Practice. 2008;35:215–37. https://doi.org/10.1016/j.pop.2008.01.007
  20. 20. Martinez-Ballesta MC, Dominguez-Perles R, Moreno DA, Muries B, Alcaraz-Lopez C, Bastías E, et al. Minerals in plant food: effect of agricultural practices and role in human health. A review. Agron Sustain Dev. 2010;30(2):295‒309. https://doi.org/10.1051/agro/2009022
  21. 21. Guerrero-Romero F, Rodriguez-Moran M. Complementary therapies for diabetes: the case for chromium, magnesium and antioxidants. Arch Med Res. 2005;36(3):250‒57. https://doi.org/10.1016/j.arcmed.2005.01.004
  22. 22. Szefer P, Grembecka. Mineral components in food crops, beverages, luxury food, species and dietary food. In: Szefer P, Nriagu JO, Editors. Chemical and functional properties of food components series, CRC Press, Taylor and Francis Group, New York, USA; 2006. pp. 231–322 https://doi.org/10.1201/9781420003987.ch7
  23. 23. Bossola M, Di Stasio E, Viola A, Cenerelli S, Leo A, Santarelli S, Monteburini T. Dietary daily sodium intake lower than 1500 mg is associated with inadequately low intake of calorie, protein, iron, zinc and vitamin B1 in patients on chronic hemodialysis. Nutrients. 2020;12(1):260. https://doi.org/10.3390/nu12010260
  24. 24. Ivey M, Elmen G. Nutritional supplements, mineral and vitamin production. In: Handbook of nonprescription drugs, 8th ed., American Pharmaceutical Association, The National Professional Society of Pharmacists, 2215 Constitution Avenue N.W. Washington, DC 20037, USA; 1986. 215
  25. 25. Sobotka L, Allison S, Stanga Z. Basics in clinical nutrition: water and electrolytes in health and disease. e-SPEN, the European e-J Clinical Nutri and Metabolism. 2008;6(3):e259‒66.
  26. https://doi.org/10.1016/j.eclnm.2008.06.004
  27. 26. Van De Poll MC, Dejong CH, Soeters PB. Adequate range for sulfur-containing amino acids and biomarkers for their excess: lessons from enteral and parenteral nutrition. The J Nutri. 2006;136(6):1694S‒1700S. https://doi.org/10.1093/jn/136.6.1694S
  28. 27. Tabe LM, Droux M. Limits to sulfur accumulation in transgenic lupin seeds expressing a foreign sulfur-rich protein. Plant Physiol. 2002;128(3):1137‒48. https://doi.org/10.1104/pp.010935
  29. 28. Ebrahimzadeh MA, Nabavi SM, Nabavi SF. Correlation between the in vitro iron chelating activity and poly phenol and flavonoid contents of some medicinal plants. Pak J Biol Sci. 2009;12(12):934‒38. https://doi.org/10.3923/pjbs.2009.934.938
  30. 29. Shirin K, Imad S, Shafiq S, Fatima K. Determination of major and trace elements in the indigenous medicinal plant Withania somnifera and their possible correlation with therapeutic activity. J Saudi Chem Soc. 2010;14(1):97‒100. https://doi.org/10.1016/j. jscs.2009.12.015
  31. 30. Shenkin A. Basics in clinical nutrition: Physiological function and deficiency states of trace elements. e-SPEN 3. 2008;255–58. https://doi.org/10.1016/j.eclnm.2008.06.003
  32. 31. Food and Nutrition Board NRC. 9th Ed. Washington, DC: National Academy of Sciences; NRC Recommended dietary allowance; 1980
  33. 32. Tamaoki M, Freeman JL, Pilon-Smits EA. Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in Arabidopsis. Plant Physiol. 20081;146(3):1219‒30. https://doi.org/10.1104/pp.107.110742
  34. 33. Terry N, Zayed AM, De Souza MP, Tarun AS. Selenium in higher plants. Annu Rev Plant Biol. 2000 Jun;51(1):401‒32. https://doi.org/10.1146/annurev.arplant.51.1.401
  35. 34. Antal DS, Dehelean CA, Peev CI, Anke M. Rubidium in medicinal plants contribution to the research of a potentially essential element. Revista de Chimie. 2009;60(2):156‒59. https://doi.org/10.1016/j.chemosphere.2020.128904
  36. 35. Karahan F. Evaluation of trace element and heavy metal levels of some ethnobotanically important medicinal plants used as remedies in Southern Turkey in terms of human health risk. Biol Trace Element Res. 2023;201(1):493‒513. https://doi.org/10.1007/s12011-022-03299-z
  37. 36. Sungur S, Kılboz Y, Atan MM. Determination of chromium species in various medicinal plants consumed in Hatay region in Turkey. Int J Food Prop. 2013;16(8):1711‒16. https://doi.org/10.1080/10942912.2011.604894
  38. 37. Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A. Nickel: Human health and environmental toxicology. Int J Environ Res Public Health. 2020;17(3):679. https://doi.org/10.3390/ijerph17030679
  39. 38. Basgel S, Erdemoglu SB. Determination of mineral and trace elements in some medicinal herbs and their infusions consumed in Turkey. Sci Total Environ. 2006;359(1-3):82‒89. https://doi.org/10.1016/j.scitotenv.2005.04.016
  40. 39. Roychowdhury T, Tokunaga H, Ando M. Survey of arsenic and other heavy metals in food composites and drinking water and estimation of dietary intake by the villagers from an arsenic-affected area of West Bengal, India. Sci Total Environ. 2003;308(1-3):15‒35. https://doi.org/10.1016/S0048-9697(02)00612-5
  41. 40. World Health Organization (WHO). Environmental Health Criteria 107: barium. Sponsored by United Nations Environment Program, International Labor Organization and World Health Organization. Geneva, Switzerland. 1990;13‒19.
  42. 41. Luttrell WE. Beryllium and its compounds. J Chem Health Saf. 2008;15(4): 46‒48. https://doi.org/10.1016/j.jchas.2008.05.009
  43. 42. ICRP. Report of the task group on reference man. A report prepared by a task group of Committee 2 of the International Commission on Radiological Protection, Oxford, New York, Pergamon Press (ICRP Report No. 23); 1974
  44. 43. Sano Y, Satoh H, Chiba M, Okamoto M, Serizawa K, Nakashima H, Omae K. Oral toxicity of bismuth in rat: single and 28-day repeated administration studies. J Occup Health. 2005;47(4):293‒98. https://doi.org/10.1539/joh.47.293
  45. 44. Agirman E, Celik I, Dogan A. Consumption of the Syrian mesquite plant (Prosopis farcta) fruit and seed lyophilized extracts may have both protective and toxic effects in STZ-induced diabetic rats. Arch Physiol Biochem. 2022;128(4):887‒96. https://doi.org/10.1080/13813455.2020.1734844
  46. 45. Ahmed KM, Mahmud SA. Curative effects of ethanol extract of Prosopis farcta (Syrian Mesquite) against ethylene glycol induced urolithiasis in male albino rats. Sci J Univ Zakho. 2021;9(2):89‒96. https://doi.org/10.25271/sjuoz.2021.9.2.802
  47. 46. Fowler BA, Sullivan DW, Sexton MJ. Chapter 31 - Bismuth. In: Nordberg GF, Fowler BA, Nordberg M, Editors. Handbook on the toxicology of metals (Fourth Edition). San Diego: Academic Press; 2015. pp. 655‒66 https://doi.org/10.1016/B978-0-444-59453-2.00031-7
  48. 47. Ali MA, Badruzzaman AB, Jalil MA, Hossain MD, Ahmed MF, Masud AA, et al. Arsenic in plant-soil environment in Bangladesh. Fate of arsenic in the environment. Dhaka: BUET; 2003. 85‒112
  49. 48. Watson C, Gustave W. Prevalence of arsenic contamination in rice and the potential health risks to the Bahamian population-A preliminary study. Frontiers in Environ Sci. 2022;10:1–7. https://doi.org/10.3389/fenvs.2022.1011785
  50. 49. Arpadjan S, Celik G, Taşkesen S, Guçer S. Arsenic, cadmium and lead in medicinal herbs and their fractionation. Food Chem Toxicol. 2008;46(8):2871‒75. https://doi.org/10.1016/j.fct.2008.05.027
  51. 50. Lin CC, Hsu C, Hsu CH, Hsu WL, Cheng AL, Yang CH. Arsenic trioxide in patients with hepatocellular carcinoma: a phase II trial. Investig New Drugs. 2007;25:77‒84. https://doi.org/10.1007/s10637-006-9004-9
  52. 51. NAO A. Acute toxicity, phytochemistry and anti-diarrheal effects of Celtis integrifolia Lam. aqueous leaf extract in wistar albino rats. Br J Pharm Res. 2016;14(5):1‒7. https://doi.org/10.9734/BJPR/2016/31222
  53. 52. Sharifi-Rad J, Kobarfard F, Ata A, Ayatollahi SA, Khosravi-Dehaghi N, Jugran AK, Popovic-Djordjevic J. Prosopis plant chemical composition and pharmacological attributes: Targeting clinical studies from preclinical evidence. Biomolecules. 2019;9(12):777. https://doi.org/10.3390/biom9120777

Downloads

Download data is not yet available.