Rising orthotospovirus incidence in India: Challenges and advances in management

Authors

DOI:

https://doi.org/10.14719/pst.4972

Keywords:

Groundnut Bud Necrosis Orthotospovirus, Watermelon Bud Necrosis Orthotospovirus, Capsicum Chlorosis Orthotospovirus, Peanut Yellow Spot Orthotospovirus, Iris yellow spot Orthotospovirus, Tomato Spotted Wilt Orthotospovirus

Abstract

Orthotospoviruses (OV) have emerged as a significant agricultural threat in India, posing a severe risk to critical crops, including tomato, chilli, watermelon and groundnut. This review explores the rising incidence of OV, including Groundnut Bud Necrosis Orthotospovirus (GBNV), Watermelon Bud Necrosis Orthotospovirus (WBNV), Capsicum Chlorosis Orthotospovirus (CaCV), Peanut Yellow Spot Orthotospovirus (PYSV), Iris yellow spot Orthotospovirus (IYSV) and Tomato Spotted Wilt Orthotospovirus (TSWV), along with the challenges in their management. These viruses have led to severe yield losses, sometimes causing complete crop failure due to their wide host range and the polyphagous nature of thrips. This further complicates control efforts by facilitating rapid spread across diverse crops and regions. The review highlights the multifaceted challenges in managing OV and thrips, including the lack of durable host resistance, limited diagnostic capabilities, and difficulties in controlling thrips populations. Current management strategies, including cultural practices, chemical control, biological control and resistant genotype development, have shown limited efficacy in providing long-term solutions. Recent advancements in biotechnological approaches, such as RNA interference, are discussed as promising pathways for improved virus management. The review underscores the need for genome editing techniques, such as CRISPR/Cas9, which offer the capacity to develop virus-resistant plants by targeting essential viral or vector genes to disrupt transmission cycles. Additionally, using nanoparticles for targeted delivery of antiviral compounds and novel detection tools presents another innovative solution to effectively mitigate the impact of OV on Indian agriculture.

Downloads

Download data is not yet available.

References

Walker PJ, Siddell SG, Lefkowitz EJ, Mushegian AR, et al. Changes to virus taxonomy and to the International code of virus classification and nomenclature ratified by the International Committee on Taxonomy of Viruses. Archives of Virology. 2021;166(9):2633-48. https://doi.org/10.1007/s00705-021-05156-1

Pappu HR, Jones RA, Jain RK. Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Research. 2009;141(2):219-36. https://doi.org/10.1016/j.virusres.2009.01.009

Mandal B, Jain RK, Krishnareddy M, Krishna Kumar NK, et al. Emerging problems of tospoviruses (Bunyaviridae) and their management in the Indian subcontinent. Plant disease. 2012;96(4):468-79. https://doi.org/10.1094/PDIS-06-11-0520

Holkar SK, Mandal B, Reddy MK, Jain RK. Watermelon bud necrosis orthotospovirus-An emerging constraint in the Indian subcontinent: An overview. Crop Protection. 2019;117:52-62. https://doi.org/10.1016/j.cropro.2018.11.005

Manjunatha L, Patil MS, Kavitha TR, Vanitha LS, Mahantesha SV. Screening and management of Groundnut bud necrosis virus in tomato. Environment and Ecology. 2010;28(4A):2459-63.

Ananthakrishnan TN, Annadurai RS. Thrips-tospovirus interactions: Biological and molecular implications. Current Science. 2007:1083-6.

Pradeep RM, Rakesh V, Boopathi N, Siva M, et al. Emerging challenges in the management of Orthotospoviruses in Indian agriculture. Virology. 2024.

Balol G, Patil MS. Biological characterization and detection of groundnut bud necrosis virus (GBNV) in different parts of tomato. Journal of Pure and Applied Microbiology. 2014;8(1):749-52. https://microbiologyjournal.org/biological-characterization-and-detection-of-groundnut-bud-necrosis-virus-gbnv-in-different-parts-of-tomato

Geering AD. The discovery of tomato spotted wilt virus. Historical Records of Australian Science. 2023. https://doi.org/10.1071/HR23015

Basavaraj, Mandal B, Gawande SJ, Renukadevi P, et al. The occurrence, biology, serology and molecular biology of tospoviruses in Indian agriculture. A century of plant virology in India. 2017:445-74. https://doi.org/10.1007/978-981-10-5672-7_20

Ghosh A, Dey D, Timmanna B, Mandal B., Jain RK. (2017). Thrips as the Vectors of Tospoviruses in Indian Agriculture. In: Mandal B, Rao G, Baranwal V, Jain R editors. A Century of Plant Virology in India. Springer, Singapore; 2017. p537-61.https://doi.org/10.1007/978-981-10-5672-7_24.

Ghosh A, Priti HD, Jangra S. Exploring the relationship between thrips and tospoviruses. In Shailender Kumar editor. Genome assisted diagnosis of plant viruses, viroids and phytoplasmas, 2019 p. 63-70.

Reddy DV, Ratna AS, Sudarshana MR, Poul F, Kumar IK. Serological relationships and purification of bud necrosis virus, a tospovirus occurring in peanut (Arachis hypogaea L.) in India. Annals of Applied Biology. 1992;120(2):279-86. https://doi.org/10.1111/j.1744-7348.1992.tb03425.x

Satyanarayana T, Reddy KL, Ratna AS, Deom CM, Gowda S, Reddy DV. Peanut yellow spot virus: A distinct tospovirus species based on serology and nucleic acid hybridisation. Annals of Applied Biology. 1996;129(2):237-45. https://doi.org/10.1111/j.1744-7348.1996.tb05748.x

Satyanarayana T, Gowda S, Lakshminarayana Reddy K, Mitchell SE, et al. Peanut yellow spot virus is a member of a new serogroup of Tospovirus genus based on small (S) RNA sequence and organization. Archives of Virology. 1998;143:353-64. https://doi.org/10.1007/s007050050291

Singh SJ, Krishnareddy M. Watermelon bud necrosis: a new tospovirus disease. Tospoviruses and Thrips of Floral and Vegetable Crops. Acta Hort. 1996; 431:68-77. https://doi.org/10.17660/ActaHortic.1996.431.6

Jain RK, Pappu HR, Pappu SS, Krishna Reddy M, Vani A. Watermelon bud necrosis tospovirus is a distinct virus species belonging to serogroup IV. Archives of Virology. 1998;143:1637-44. https://doi.org/10.1007/s007050050405

Ravi KS, Kitkaru AS, Winter S. Iris yellow spot virus in onions: a new tospovirus record from India. Plant Pathology. 2006;55(2). https://doi.org/10.1111/j.1365-3059.2005.01261.x

Gawande SJ, Khar A, Lawande KE. First report of Iris yellow spot virus on garlic in India. Plant Disease. 2010;94(8):1066. https://doi.org/10.1094/PDIS-94-8-1066C

Kunkalikar S, Poojari S, Rajagopalan P, Zehr UB, et al. First report of Capsicum chlorosis virus in tomato in India. Plant Health Progress. 2007;8(1):37. https://doi.org/10.1094/PHP-2007-1204-01-BR

Krishnareddy M, Rani RU, Kumar KA, Reddy KM, Pappu HR. Capsicum chlorosis virus (Genus Tospovirus) infecting chilli pepper (Capsicum annuum) in India. Plant disease. 2008;92(10):1469-. https://doi.org/10.1094/PDIS-92-10-1469B

Renukadevi P, Nagendran K, Nakkeeran S, Karthikeyan G, et al. First report of tomato spotted wilt virus infection of Chrysanthemum in India. Plant Disease. 2015;99(8):1190. https://doi.org/10.1094/PDIS-01-15-0126-PDN

Senthilraja C, Renukadevi P, Malathi VG, Nakkeeran S, Pappu HR. Occurrence of Tomato spotted wilt virus infecting snapdragon (Antirrhinum majus) in India. Plant Disease. 2018;102(8):1676-. https://doi.org/10.1094/PDIS-02-18-0250-PDN

Chinnaiah S, Perumal R, Ganesan MV, Sevugapperumal N. New record of tomato spotted wilt virus in tomato and marigold in India. Journal of Plant Pathology. 2023 Nov;105(4):1719-. https://doi.org/10.1007/s42161-023-01470-6

Abudurexiti A, Adkins S, Alioto D, Alkhovsky SV, Avši?-Županc T, et al. Taxonomy of the order Bunyavirales: update 2019. Archives of Virology. 2019;164:1949-65. https://doi.org/ 10.1007/s00705-019-04253-6

Zhang Z, Zheng K, Zhao L, Su X, Zheng X, Wang T. Occurrence, distribution, evolutionary relationships, epidemiology, and management of orthotospoviruses in China. Frontiers in Microbiology. 2021;12. https://doi.org/10.3389/fmicb.2021.686025

Komoda K, Narita M, Yamashita K, Tanaka I, Yao M. Asymmetric trimeric ring structure of the nucleocapsid protein of Tospovirus. Journal of Virology. 2017;91(20):10-128. https://doi.org/10.1128/JVI.01002-17

Oliver JE, Whitfield AE. The genus Tospovirus: emerging bunyaviruses that threaten food security. Annual review of Virology. 2016;3(1):101-24. https://doi.org/10.1146/annurev-virology-100114-055036

Nagendran K, Pandey KK, Rai AB, Singh B. Viruses of Vegetable crops: symptomatology, diagnostics and management. IIVR Technical Bulletin. 2017;75.

EPPO (2024) Orthotospovirus tomatomaculae. EPPO datasheets on pests recommended for regulation.

Rivarez MP, Vu?urovi? A, Mehle N, Ravnikar M, Kutnjak D. Global advances in tomato virome research: current status and the impact of high-throughput sequencing. Frontiers in Microbiology. 2021;12. https://doi.org/10.3389/fmicb.2021.671925

Jones RA, Naidu RA. Global dimensions of plant virus diseases: current status and future perspectives. Annual review of virology. 2019;6(1):387-409. https://doi.org/10.1146/annurev-virology-092818-015606

Janssen D. Tomato Spotted Wilt Orthotospovirus (Tomato Spotted Wilt). CABI Compendium. 2022. https://doi.org/10.1079/cabicompendium.54086

Maurastoni M, Han J, Whitfield AE, Rotenberg D. A call to arms: novel strategies for thrips and tospovirus control. Current Opinion in Insect Science. 2023;57. https://doi.org/10.1016/j.cois.2023.101033

Souiri A, Khataby K, Kasmi Y, Zemzami M, Amzazi S, Ennaji MM. Emerging and reemerging viral diseases of solanaceous crops and management strategies for detection and eradication. In Moulay ME editor.Emerging and Reemerging Viral Pathogens, Academic Press; 2020;. p. 847-77. https://doi.org/10.1016/B978-0-12-819400-3.00038-7

Riley DG, Chitturi A, Sparks Jr AN. Does natural deposition of pine pollen affect the ovipositional behavior of Frankliniella occidentalis and Frankliniella fusca?. Entomologia experimentalis et Applicata. 2007;124(2):133-41. https://doi.org/10.1111/j.1570-7458.2007.00561.x

Turina M, Kormelink R, Resende RO. Resistance to tospoviruses in vegetable crops: epidemiological and molecular aspects. Annual Review of Phytopathology. 2016;54(1):347-71. https://doi.org/10.1146/annurev-phyto-080615-095843

Feng M, Chen M, Yuan Y, Liu Q, Cheng R, Yang T, et al. Interspecies/intergroup complementation of orthotospovirus replication and movement through reverse genetics systems. Journal of Virology. 2023;97(4). https://doi.org/10.1128/jvi.01809-22

Rodríguez-Negrete EA, Guevara-Rivera EA, Arce-Leal ÁP, Leyva-López NE, Méndez-Lozano J. A novel tomato spotted wilt virus isolate encoding a noncanonical NSm C118F substitution associated with Sw-5 tomato gene resistance breaking. Molecular Plant Pathology. 2023;24(10):1300-11. https://doi.org/10.1111/mpp.13371

Montero Astúa M, Dejuk Protti N, Bermúdez Gómez D, Vásquez Céspedes E, et al. Genus Orthotospovirus in Costa Rica: A Central American case. 2023 https://doi.org/10.18781/R.MEX.FIT.2023-6

Macharia I, Backhouse D, Wu SB, Ateka EM. Weed species in tomato production and their role as alternate hosts of tomato spotted wilt virus and its vector Frankliniella occidentalis. Annals of Applied Biology. 2016;169(2):224-35. https://doi.org/10.1111/aab.12297

Daimei G, Raina HS, Devi PP, Saurav GK, Renukadevi P, Malathi VG, et al. Influence of groundnut bud necrosis virus on the life history traits and feeding preference of its vector, Thrips palmi. Phytopathology. 2017;107(11):1440-5. https://doi.org/10.1094/PHYTO-08-16-0296-R

Kamran A, Li Y, Zhang W, Jiao Y, Farooq T, Wang Y, et al. Insights into the genetic variability and evolutionary dynamics of tomato spotted wilt orthotospovirus in China. BMC Genomics. 2024;25(1):40. https://doi.org/10.1186/s12864-023-09951-9

Webster CG, Frantz G, Reitz SR, Funderburk JE, Mellinger HC, McAvoy E, et al. Emergence of Groundnut ringspot virus and Tomato chlorotic spot virus in vegetables in Florida and the southeastern United States. Phytopathology. 2015;105(3):388-98. https://doi.org/10.1094/PHYTO-06-14-0172-R

Butkovi? A, González R, Elena SF. Revisiting Orthotospovirus phylogeny using full-genome data and testing the contribution of selection, recombination and segment reassortment in the origin of members of new species. Archives of Virology. 2021;166(2):491-9. https://doi.org/10.1007/s00705-020-04902-1

Haokip BD, Nagendran K, Alice D, Rajendran L, Manoranjitham SK, Karthikeyan G. Characterization of Capsicum chlorosis virus infecting chilli (Capsicum annuum. L) in southern India. European Journal of Plant Pathology. 2021;160:637-47. https://doi.org/10.1007/s10658-021-02271-2

Sharman M, Thomas JE, Tree D, Persley DM. Natural host range and thrips transmission of capsicum chlorosis virus in Australia. Australasian Plant Pathology. 2020;49:45-51. https://doi.org/10.1007/s13313-019-00675-7

EFSA Panel on Plant Health (PLH), Bragard C, Baptista P, Chatzivassiliou E, Gonthier P, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas-Cortes JA. Pest categorisation of Capsicum chlorosis virus. EFSA Journal. 2022;20(6):e07337. https://doi.org/10.2903/j.efsa.2022.7398

Sharma A, Kulshrestha S. First report of Amaranthus sp. as a natural host of capsicum chlorosis virus in India. Virus Disease. 2014;25:412-3. https://doi.org/10.1007/s13337-014-0212-1

Basavaraj YB, Siwach J, Kumar A, Bhattarai A, Qayoom N, et al. First report of natural infection by capsicum chlorosis virus on amaryllis (Hippeastrum hybridum) plants from India. Plant Disease. 2020;104(11):3086. https://doi.org/10.1094/PDIS-03-20-0537-PDN

Chen K, Xu Z, Yan L, Wang G. Characterization of a new strain of Capsicum chlorosis virus from peanut (Arachis hypogaea L.) in China. Journal of Phytopathology. 2007;155(3):178-81. https://doi.org/10.1111/j.1439-0434.2007.01217.x

Sharma A, Kaushal A, Kulshrestha S. A Nano-Au/C-MWCNT based label free amperometric immunosensor for the detection of capsicum chlorosis virus in bell pepper. Archives of Virology. 2017;162:2047-52. https://doi.org/10.1007/s00705-017-3293-5

Saini P, Dhaka P. Integrated Disease Management of Bud Necrosis Virus Watermelon. Viral Diseases of Vegetable & Fruit Crops. 2024;33:89. Available form: https://www.iihr.res.in/integrated-watermelon-bud-necrosis-disease-management-water-melon

Radhakrishnan T, Thirumalaisamy PP, Vemana K, Kumar A, Rathnakumar AL. Major virus diseases of groundnut in India and their management. Plant viruses: Evolution and Management. 2016:253-71. https://doi.org/10.1007/978-981-10-1406-2_15

Rai AB, Halder J. Advances in Integrated Insect-Pest Management of Vegetable Crops. Current Horticulture: Improvement, Production, Plant Health Management and Value-Addition. 2021.

Gayathri M, Sharanya R, Renukadevi P, Nakkeeran S, et al. Deciphering the antiviral nature of endophytic Bacillus spp. against groundnut bud necrosis virus in cowpea and tomato. Frontiers in Microbiology. 2024;15. https://doi.org/10.3389/fmicb.2024.1410677

Kumari K, Parray R, Basavaraj YB, Godara S, Mani I, et al. Spectral sensor-based device for real-time detection and severity estimation of groundnut bud necrosis virus in tomato. Journal of Field Robotics. 2024. https://doi.org/10.1002/rob.22391

Yu C, Yang C, Song S, Yu Z, Zhou X, Wu J. Development of a sensitive Luminex xMAP-based microsphere immunoassay for specific detection of Iris yellow spot virus. Virology Journal. 2018;15:1-7. https://doi.org/10.1186/s12985-018-0952-4

Chinnaiah S, Ganesan MV, Sevugapperumal N, Mariappan S, Uthandi S, Perumal R. A sequel study on the occurrence of tomato spotted wilt virus (TSWV) in cut-chrysanthemum by DAS-ELISA using recombinant nucleocapsid protein to produce polyclonal antiserum. Journal of Virological Methods. 2022;300. https://doi.org/10.1016/j.jviromet.2021.114410

Apoorva KA, Fakrudin B, Mulla SR, Jagadeesha RC, et al. Characterization of tomato MAGIC-RIL's for resistance to tomato spotted wilt virus (TSWV) disease. 2023: 80- 87.

Lee HJ, Cho IS, Ju HJ, Jeong RD. Rapid and visual detection of tomato spotted wilt virus using recombinase polymerase amplification combined with lateral flow strips. Molecular and Cellular Probes. 2021;57. https://doi.org/10.1016/j.mcp.2021.101727

Gao S, Wu J. Detection of tomato spotted wilt virus (TSWV) infection in plants using DAS-ELISA and dot-ELISA. Plant Virology: Methods and Protocols. 2022:253-61. https://doi.org/10.1007/978-1-0716-1835-6_24

Thiara SK, Cheema SS, Kang SS. Pattern of bud necrosis disease development in groundnut crop in relation to different dates of sowing. 2004: 125-29.

Naidu RA. Management of Peanut bud necrosis virus disease in tomato in South Asia. InPhytopathology2011 Jun 1 (Vol. 101, No. 6, S210-S210). 3340 Pilot knob road, St Paul, MN 55121 USA: Amer Phytopathological Soc.

Otieno JA, Stukenberg N, Weller J, Poehling HM. Efficacy of LED-enhanced blue sticky traps combined with the synthetic lure Lurem-TR for trapping of western flower thrips (Frankliniella occidentalis). Journal of Pest Science. 2018;91:1301-14. https://doi.org/10.1007/s10340-018-1005-x

Arthurs SP, Krauter PC, Gilder K, Heinz KM. Evaluation of deltamethrin-impregnated nets as a protective barrier against Western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae) under laboratory and greenhouse conditions. Crop Protection. 2018;112:227-31. https://doi.org/10.1016/j.cropro.2018.06.006

Batuman O, Turini TA, LeStrange M, Stoddard S, Miyao G, Aegerter BJ, et al. Development of an IPM Strategy for Thrips and Tomato spotted wilt virus in Processing Tomatoes in the Central Valley of California. Pathogens. 2020;9(8):636. https://doi.org/10.3390/pathogens9080636

Mouden S, Sarmiento KF, Klinkhamer PG, Leiss KA. Integrated pest management in western flower thrips: past, present and future. Pest Management Science. 2017;73(5):813-22. https://doi.org/10.1002/ps.4531

Zhang X, Lei Z, Reitz SR, Wu S, Gao Y. Laboratory and greenhouse evaluation of a granular formulation of Beauveria bassiana for control of western flower thrips, Frankliniella occidentalis. Insects. 2019;10(2):58. https://doi.org/10.3390/insects10020058

Vasanthi VJ, Samiyappan R, Vetrivel T. Management of tomato spotted wilt virus (TSWV) and its thrips vector in tomato using a new commercial formulation of Pseudomonas fluorescens strain and neem oil. Journal of Entomol Zoology Studies. 2017;5:1441-5.

Devi PR, Doraiswamy S, Nakkeeran S, Rabindran R, Ganapathy T, Ramiah M, et al. Antiviral action of Harpulia Cupanioides and Mirabilis Jalapa against tomato spotted wilt virus (TSWV) infecting tomato. Archives of Phytopathology and Plant Protection. 2004;37(4):245-9. https://doi.org/10.1080/03235400412331273313

Sangeetha B, Krishnamoorthy AS, Renukadevi P, D Malathi VG, Sharmila AD. Antiviral potential of Mirabilis jalapa root extracts against groundnut bud necrosis virus. Journal of Entomology and Zoology Studies. 2020;8(1):955-61.

Sangeetha B, Krishnamoorthy AS, Renukadevi P, Malathi VG, Sharmila DJ, Amirtham D. Antiviral activity of basidiomycetous fungi against Groundnut bud necrosis virus in tomato. Pesticide Biochemistry and Physiology. 2020;166. https://doi.org/10.1016/j.pestbp.2020.104570

Sreekanth M, Sriramulu M, Rao RD, Babu BS, Babu TR. Evaluation of certain new insecticides against Thrips palmi (Karny), the vector of peanut bud necrosis virus (PBNV) on mungbean (Vigna radiata L. Wilczek). International Pest Control. Control. 2004;46(6):315-317.

Li DG, Shang XY, Reitz S, Nauen R,et al. Field resistance to spinosad in western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae). Journal of Integrative Agriculture. 2016;15(12):2803-8. https://doi.org/10.1016/S2095-3119(16)61478-8

Ramana CV, Rao RD, Reddy IP, Rao PV, Reddy YN. Screening of tomato germplasm and wild relatives against Peanut bud necrosis virus (PBNV) disease. 2006: 59-61. https://doi.org/10.1080/03235408.2012.720468

Fletcher SJ, Peters JR, Olaya C, Persley DM, Dietzgen RG, et al. Tospoviruses induce small interfering RNAs targeting viral sequences and endogenous transcripts in solanaceous plants. Pathogens. 2022;11(7):745. https://doi.org/10.3390/pathogens11070745

Yuan JW, Song HX, Chang YW, Yang F, Xie HF, et al. Identification, expression analysis and functional verification of two genes encoding small heat shock proteins in the western flower thrips, Frankliniella occidentalis (Pergande). International Journal of Biological Macromolecules. 2022;211:74-84. https://doi.org/10.1016/j.ijbiomac.2022.05.056

Jangra S, Mittal A, Dhall H, Jain RK, Ghosh A. A multiplex PCR assay for rapid identification of major tospovirus vectors reported in India. BMC Genomics. 2020;21:1-8. https://doi.org/10.1186/s12864-020-6560-x

Dhall H, Jangra S, Basavaraj YB, Ghosh A. Host plant influences life cycle, reproduction, feeding, and vector competence of Thrips palmi (Thysanoptera: Thripidae), a vector of tospoviruses. Phytoparasitica. 2021;49:501-12. https://doi.org/10.1007/s12600-021-00893-0

Nagendran K, Kumari S, Vignesh S, Pradeep RM, Reddy YS, Bahadur A, et al. Molecular characterization of emerging distinct watermelon bud necrosis virus (Orthotospovirus citrullonecrosis) variant causing necrosis disease on tomato in India. Physiological and Molecular Plant Pathology. 2024;131. https://doi.org/10.1016/j.pmpp.2024.102276

Sharma M, Sridhar J, Akanand D, Sivalingam PN, Bhowmick AK. Morphological and molecular characterization of cryptic and invasive thrips species in Central India. International Journal of Tropical Insect Science. 2024:1-0. https://doi.org/10.1007/s42690-024-01324-3

Aravintharaj R, Asokan R. Thrips vectors of tospoviruses on tomato in South India. Indian Journal of Entomology. 2023:430-4. https://doi.org/10.55446/IJE.2021.366

Bhat AS, Laxmidevi V, Ramegowda GK, Seetharamu GK, Krishnareddy M. Molecular identification and characterization of groundnut bud necrosis virus and its associated thrips vector from Gerbera jamesonii in India. Journal of Plant Diseases and Protection. 2021;128:673-83. https://doi.org/10.1007/s41348-021-00425-2

Pandi A, Perumal R, Samuel KJ, Subramanian J, Malaichamy K. Orthotospovirus iridimaculaflavi (iris yellow spot virus): An emerging threat to onion cultivation and its transmission by Thrips tabaci in India. Microbial Pathogenesis. 2024:106716. https://doi.org/10.1016/j.micpath.2024.106716

Rabeena I, Karthikeyan G, Usharani TR, Kennedy JS, Rajabaskar D. Temperature and rainfall influence the seasonal dynamics of thrips, Frankliniella schultzei and Groundnut bud necrosis virus incidences in tomato field. Pest Management in Horticultural Ecosystems. 2020;26(1):41-7. https://doi.org/10.5958/0974-4541.2020.00007.7

Singha D, V VK, Chakraborty R, Kundu S, Hosamani A, et al. Molecular footprint of Frankliniella occidentalis from India: a vector of Tospoviruses. Mitochondrial DNA Part B. 2019;4(1):39-42. https://doi.org/10.1080/23802359.2018.1536446

Suganthy M, Rageshwari S, Senthilraja C, Nakkeeran S, et al. New record of western flower thrips, Frankliniella occidentalis (Pergande)(Thysanoptera: Thripidae) in South India. International Journal of Environment, Agriculture and Biotechnology. 2016;1(4):238608. https://doi.org/10.22161/ijeab/1.4.33

Tabassum AF. Identification of resistant sources to Groundnut Bud Necrosis Disease (GBNB) in Groundnut (Arachis hypogaea L.) genotypes. PhD [dissertation]. Acharya NG Ranga Agricultural University; 2014.

Gopal K, Muniyappa V, Jagadeswar R, Vemana K. Management of Peanut Bud Necrosis disease in groundnut through tolerant varieties. Annals of Agricultural Research. 2014;30(1&2).

Tamilnayagan T, Suganthy M, Renukadevi P, Malathi VG. Screening of different Germplasm against Groundnut bud necrosis virus (GBNV) and Thrips in tomato. Int J Curr Microbiol App Sci. 2017;6(11):2497-502. https://doi.org/10.20546/ijcmas.2017.611.293

Rai AK, Basavaraj YB, Sadashiva AT, Reddy MK, Ravishankar KV, et al. Evaluation of tomato genotypes for resistance to bud necrosis disease caused by groundnut bud necrosis virus (GBNV). Crop Protection. 2020;131. https://doi.org/10.1016/j.cropro.2019.105074

Pavithra BS, Reddy KM, Kedarnath G, Reddy MK. Identification of resistant sources in chilli (Capsicum sp.) genotypes to Groundnut bud necrosis virus (GBNV). Australasian Plant Pathology. 2020;49:15-23. https://doi.org/10.1007/s13313-019-00672-w

Nagesh GC, Rao ES, Pitchaimuthu M, Varalakshmi B, Lakshmana Reddy DC, et al. Genetic analysis of resistance to watermelon bud necrosis orthotospovirus in watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai]. Plant Breeding. 2018;137(5):814-22. https://doi.org/10.1111/pbr.12639

Jamatia J, Choudhary H, Saha K, Basavaraj B. Identification of new sources of resistance to watermelon bud necrosis virus (WBNV). Indian Phytopathology. 2022;75(3):845-52. https://doi.org/10.1007/s42360-022-00486-9

Prasad Babu K, Maligeppagol M, Asokan R, Krishna Reddy M. Screening of a multi-virus resistant RNAi construct in cowpea through transient vacuum infiltration method. Virus Disease. 2019;30:269-78. https://doi.org/10.1007/s13337-018-00509-y

Gupta D, Singh OW, Basavaraj YB, Roy A, Mukherjee SK, Mandal B. Direct foliar application of dsRNA derived from the full-length gene of NSs of groundnut bud necrosis virus limits virus accumulation and symptom expression. Frontiers in Plant Science. 2021;12. https://doi.org/10.3389/fpls.2021.734618

Gandhi K, Murugesan S, Suppaiah R. Replicase gene mediated RNA silencing mechanism confers resistance against groundnut bud necrosis virus in tomato (Lycopersicon esculentum Mill.). European Journal of Plant Pathology. 2024:1-2. https://doi.org/10.1007/s10658-024-02908-y

Lopez-Dolz L, Spada M, Daròs JA, Carbonell A. Fine-tune control of targeted RNAi efficacy by plant artificial small RNAs. Nucleic Acids Research. 2020;48(11):6234-50. https://doi.org/10.1093/nar/gkaa343

Carbonell A, López C, Daròs JA. Fast-forward identification of highly effective artificial small RNAs against different tomato spotted wilt virus isolates. Molecular Plant-Microbe Interactions. 2019;32(2):142-56. https://doi.org/10.1094/MPMI-05-18-0117-TA

Badillo-Vargas IE, Rotenberg D, Schneweis BA, Whitfield AE. RNA interference tools for the western flower thrips, Frankliniella occidentalis. Journal of Insect Physiology. 2015;76:36-46. https://doi.org/10.1016/j.jinsphys.2015.03.009

Whitten MM, Facey PD, Del Sol R, Fernández-Martínez LT, Evans MC, et al. Symbiont-mediated RNA interference in insects. Proceedings of the Royal Society B: Biological Sciences. 2016;283(1825). https://doi.org/10.1098/rspb.2016.0042

Singh S, Gupta M, Pandher S, Kaur G, Goel N, Rathore P, et al. RNA sequencing, selection of reference genes and demonstration of feeding RNAi in Thrips tabaci (Lind.)(Thysanoptera: Thripidae). BMC Molecular Biology. 2019;20:1-21. https://doi.org/10.1186/s12867-019-0123-1

Rakesh V, Singh A, Ghosh A. Suppression of Thrips palmi population by spray-on application of dsRNA targeting V-ATPase-B. International Journal of Biological Macromolecules. 2024. https://doi.org/10.1016/j.ijbiomac.2024.135576

Wu M, Dong Y, Zhang Q, Li S, Chang L, Loiacono FV, et al. Efficient control of western flower thrips by plastid-mediated RNA interference. Proceedings of the National Academy of Sciences. 2022;119(15). https://doi.org/10.1073/pnas.2120081119

Published

08-11-2024

How to Cite

1.
Swetha R, Rajinimala N, Yesuraja I, Jeberlin P, Elanchezhyan K. Rising orthotospovirus incidence in India: Challenges and advances in management. Plant Sci. Today [Internet]. 2024 Nov. 8 [cited 2024 Dec. 22];11(sp4). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/4972