Nutritional enhancement and genetic innovations in sweet corn: unlocking super sweetness and health benefits through modern breeding technique– A review

Authors

DOI:

https://doi.org/10.14719/pst.5441

Keywords:

Biofortification, omics technology, genetic diversity, marker assisted selection

Abstract

Sweet corn originated from Mesoamerica around 10,000 years ago; sweet corn’s distinctiveness lies in its genetic mutations sugary1 (su1), shrunken2 (sh2), and sugary enhancer1 (se1) that enhance kernel sweetness by inhibiting the average sugar-to-starch conversion. This transformation from an ancient staple to a globally beloved vegetable highlights sweet corn’s adaptability, high yield potential, and nutritional benefits, including its role as a source of carbohydrates, proteins, vitamins, and minerals. Advances in biofortification and genetic research have further enriched its nutritional profile, positioning sweet corn as a nutraceutical crop capable of addressing global nutritional deficiencies. Modern breeding techniques, including marker-assisted selection and omics technologies, have significantly accelerated the development of varieties with improved traits such as disease resistance, stress tolerance, and enhanced nutritional quality. Additionally, it is important to conserve sweet corn's genetic diversity for future crop improvement and adaptation. High-throughput phenotyping and genome-editing tools such as CRISPR/Cas9 have further accelerated sweet corn breeding, offering a sustainable solution to enhance yield and quality. This exploration shows sweet corn's agricultural importance, its potential to fight nutritional challenges, and the role of scientific advancements in securing its future as a valuable and versatile crop. This detailed review explores the history, genetic diversity, nutritional value, and modern advancements in the cultivation and breeding of sweet corn.

Downloads

Download data is not yet available.

References

Aragão CA. Avaliação de híbridos simples braquíticos de milho super doce (Zea mays L.) portadores do gene shrunken-2 (sh2sh2) utilizando o esquema dialélico parcial. 2002; http://hdl.handle.net/11449/100059

Kwiatkowski A, Clemente E. Características do milho doce (Zea mays L.) para industrialização. Revista Brasileira de Tecnologia Agroindustrial. 2007;1(2). 10.3895/S1981-36862007000200010

Oliveira Jr LFG, Deliza R, Bressan-Smith R, Pereira MG, Chiquiere TB. Seleção de genótipos de milho mais promissores para o consumo in natura. Food Science and Technology. 2006;26:159-65. https://doi.org/10.1590/S0101-20612006000100026

Goldman IL, Tracy WF. Kernel protein concentration in sugary-1 and shrunken-2 sweet corn. 1994; https://www.cabidigitallibrary.org/doi/full/10.5555/19941611284

Shannon JC, Creech RG. Genetics of storage polyglucosides in Zea mays L. Ann N Y Acad Sci. 1973;210(1):279-89. https://doi.org/10.1111/j.1749-6632.1973.tb47579.x

Black RC, Loerch JD, McArdle FJ, Creech RG. Genetic interactions affecting maize phytoglycogen and the phytoglycogen-forming branching enzyme. Genetics. 1966;53(4):661. 10.1093/genetics/53.4.661

Hannah LC, Giroux M, Boyer C. Biotechnological modification of carbohydrates for sweet corn and maize improvement. Sci Hortic. 1993;55(1–2):177-97. https://doi.org/10.1016/0304-4238(93)90031-K

Khatefov EB. Creating tetraploid lines of sweet corn (Zea mays saccharata) and studying biochemical content of their grain. KnE Life Sciences. 2019;1003-12. 10.18502/kls.v4i14.5699

Szymanek M. Processing of sweet corn. Trends in Vital Food and Control Engineering. 2012;85-98. https://doi.org/10.5772/35867

Revilla P, Tracy WF. Heterotic patterns among open-pollinated sweet corn cultivars. 1997; doi/full/10.5555/19971608256

Rouf Shah T, Prasad K, Kumar P. Maize—A potential source of human nutrition and health: A review. Cogent Food Agric. 2016;2(1):1166995. https://doi.org/10.1080/23311932.2016.1166995

Shah TR, Prasad K, Kumar P. Studies on physicochemical and functional characteristics of asparagus bean flour and maize flour. Conceptual Frame Work and Innovations in Agroecology and Food Sciences. 2015;103-05. https://www.researchgate.net/publication/323737095

Siyuan S, Tong L, Liu R. Corn phytochemicals and their health benefits. Food Science and Human Wellness. 2018;7(3):185-95. https://doi.org/10.1016/j.fshw.2018.09.003

Baranowska A. The nutritional value and health benefits of sweet corn kernels (Zea mays ssp. saccharata). Health Problems of Civilization. 2023;17(4):408-16. https://doi.org/10.5114/hpc.2023.133364

Murdia LK, Wadhwani R, Wadhawan N, Bajpai P, Shekhawat S. Maize utilization in India: an overview. American Journal of Food and Nutrition. 2016;4(6):169-76. 10.12691/ajfn-4-6-5

Mehta BK, Muthusamy V, Zunjare RU, Baveja A, Chauhan HS, Chhabra R, et al. Biofortification of sweet corn hybrids for provitamin-A, lysine and tryptophan using molecular breeding. J Cereal Sci. 2020;96:103093. https://doi.org/10.1016/j.jcs.2020.103093

Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, et al. Biofortified crops generated by breeding, agronomy and transgenic approaches are improving lives of millions of people around the world. Front Nutr. 2018;5:12. https://doi.org/10.3389/fnut.2018.00012

Mehta B, Hossain F, Muthusamy V, Baveja A, Zunjare R, Jha SK, et al. Microsatellite-based genetic diversity analyses of sugary1-, shrunken2-and double mutant-sweet corn inbreds for their utilization in breeding programme. Physiology and Molecular Biology of Plants. 2017;23:411-20. https://doi.org/10.1007/s12298-017-0431-1

Farooqi MQU, Nawaz G, Wani SH, Choudhary JR, Rana M, Sah RP, et al. Recent developments in multi-omics and breeding strategies for abiotic stress tolerance in maize (Zea mays L.). Front Plant Sci. 2022;13:965878. https://doi.org/10.3389/fpls.2022.965878

Laughnan JR. The effect of the sh2 factor on carbohydrate reserves in the mature endosperm of maize. Genetics. 1953;38(5):485. 10.1093/genetics/38.5.485

Laughnan JR. What’s ahead for sweet corn? 1954; https://www.cabidigitallibrary.org/doi/full/10.5555/19541603502

Laughnan JR. Super sweet, a product of mutation breeding in corn. 1961; https://www.cabidigitallibrary.org/doi/full/10.5555/19611604039

Wolf EA. Possibilities of improving eating quality of shipped fresh corn with the high sugar retention property of the shrunken 2 character. In: Proceedings of the Florida State Horticultural Society. 1962; p. 236-39.

Wolf EA, Showalter RK. Florida-sweet-a high quality sh2 sweet corn hybrid for fresh market. 1974; https://www.cabidigitallibrary.org/doi/full/10.5555/19760751770

Hu Y, Colantonio V, Müller BSF, Leach KA, Nanni A, Finegan C, et al. Genome assembly and population genomic analysis provide insights into the evolution of modern sweet corn. Nat Commun. 2021;12(1):1227. https://doi.org/10.1038/s41467-021-21380-4

Kramer V, Shaw JR, Senior ML, Hannah LC. The sh2-R allele of the maize shrunken-2 locus was caused by a complex chromosomal rearrangement. Theoretical and Applied Genetics. 2015;128:445-52. https://doi.org/10.1007/s00122-014-2443-3

Manicacci D, Falque M, Le Guillou S, Piegu B, Henry A, Le Guilloux M, et al. Maize Sh2 gene is constrained by natural selection but escaped domestication. J Evol Biol. 2007;20(2):503-16. https://doi.org/10.1111/j.1420-9101.2006.01264.x

Gerdes JT, Tracy WF. Diversity of historically important sweet corn inbreds as estimated by RFLPs, morphology, isozymes and pedigree. Crop Sci. 1994;34(1):26-33. https://doi.org/10.2135/cropsci1994.0011183X003400010004x

Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Sánchez GJ, Doebley J. Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. Am J Bot. 2008;95(10):1240-53. https://doi.org/10.3732/ajb.0800097

Doebley JF, Goodman or M, Stuber CW. Exceptional genetic divergence of northern flint corn. Am J Bot. 1986;73(1):64-69. https://doi.org/10.1002/j.1537-2197.1986.tb09681.x

Gauthier P, Gouesnard B, Dallard J, Redaelli R, Rebourg C, Charcosset A, et al. RFLP diversity and relationships among traditional European maize populations. Theoretical and Applied Genetics. 2002;105:91-99. https://doi.org/10.1007/s00122-002-0903-7

Shultz S. Corn. Journal of Agricultural and Food Information. 2008;9(2):101-14. https://doi.org/10.1080/10496500802173905

Straub RW, Emmett B. Pests of monocotyledon crops. In: Vegetable Crop Pests. Palgrave Macmillan UK London; 1992. p. 213-62. https://doi.org/10.1007/978-1-349-09924-5_7

Haddadi MH. Investigation of characteristics and cultivation of sweet corn: A review. International Journal of Farming and Allied Sciences. 2016;5(3):243-47. https://europub.co.uk/articles/-A-32846

Wiley RC. Sweet corn aroma: Studies of its chemical components and influence on flavor. Evaluation of Quality of Fruits and Vegetables. 1985;349-66. https://doi.org/10.1007/978-1-4613-2549-9_13

Saiin SS, Ismail MF, Ismail R, Razak SA. Effect of different soil types and plant densities on growth dynamic and yield of sweet corn (Zea mays L.) in Peninsular Malaysia. Asian J Soil Sci Plant Nutri. 2023;9(1):1-20. 10.9734/AJSSPN/2023/v9i1164

Hussen A. Effect of critical period of weed competition and its management option in sweet corn [Zea mays (L.) var. saccharata strut] production: A review. Agricultural Reviews. 2021;42(3):308-14. 10.18805/ag.R-189

Sullivan DM, Peachey RE, Heinrich A, Brewer LJ. Nutrient and soil health management for sweet corn (Western Oregon). Oregon State University Extension Service; 2020.

Jiansheng C, Peizhi X, Shuanhu T, Fabao Z, Kaizhi X, Xu H. Effects of fertilization on cumulating characteristics of dried matter mass of sweet corn. Journal of Plant Nutrition and Fertilizers. 2010;16(1):58-64. https://www.cabidigitallibrary.org/doi/full/10.5555/20113020180

Olsen JK, McMahon CR, Hammer GL. Prediction of sweet corn phenology in subtropical environments. Agron J. 1993;85(2):410-15. https://doi.org/10.2134/agronj1993.00021962008500020044x

Pande A, Kaushik S, Pandey P, Negi A. Isolation, characterization and identification of phosphate-solubilizing Burkholderia cepacia from the sweet corn cv. Golden Bantam rhizosphere soil and effect on growth-promoting activities. International Journal of Vegetable Science. 2020;26(6):591-607. https://doi.org/10.1080/19315260.2019.1692121

Yang R, Li Y, Zhang Y, Huang J, Liu J, Lin Z, et al. Widely targeted metabolomics analysis reveals key quality?related metabolites in kernels of sweet corn. Int J Genomics. 2021;2021(1):2654546. https://doi.org/10.1155/2021/2654546

India. Ministry of Agriculture and Farmers' Welfare. Ministry of Agriculture and Farmers' Welfare [Internet]. New Delhi: The Ministry; 2023 [cited 2023 Oct 20]. Available from: https://agriwelfare.gov.in/

Food and Agriculture Organization of the United Nations (FAO). FAOSTAT [Internet]. Rome: FAO; 2023 [cited 2024 Oct 20]. Available from: https://www.fao.org/faostat/en

James MG, Robertson DS, Myers AM. Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell. 1995;7(4):417-29. https://doi.org/10.1105/tpc.7.4.417

Boyer CD, Daniels RR, Shannon JC. Starch granule (amyloplast) development in endosperm of several Zea mays L. genotypes affecting kernel polysaccharides. Am J Bot. 1977;64(1):50-56. https://doi.org/10.1002/j.1537-2197.1977.tb07604.x

Hooda S, Kawatra A. Nutritional evaluation of baby corn (Zea mays). Nutr Food Sci. 2013;43(1):68-73. https://doi.org/10.1108/00346651311295932

Meng JQ, Jia XY, Yang WQ, Li XH. Effect of multiple gas media package on preservation of fresh sweet corn at room temperature. Applied Mechanics and Materials. 2014;477:1354-58. https://doi.org/10.4028/www.scientific.net/AMM.477-478.1354

Xiang N, Guo X, Liu F, Li Q, Hu J, Brennan CS. Effect of light-and dark-germination on the phenolic biosynthesis, phytochemical profiles and antioxidant activities in sweet corn (Zea mays L.) sprouts. Int J Mol Sci. 2017;18(6):1246. https://doi.org/10.3390/ijms18061246

Tan Y, Tong Z, Yang Q, Sun Y, Jin X, Peng C, et al. Proteomic analysis of phytase transgenic and non-transgenic maize seeds. Sci Rep. 2017;7(1):9246. https://doi.org/10.1038/s41598-017-09557-8

Wulansari R, Maryono M, Darmawan DA, Athallah FNF, Hakim FK. Bio-organo mineral effect on soil fertility, nutrient uptake and sweet corn (Zea mays L. saccharata) growth planted in inceptisols soils. Indonesian Mining Journal. 2022;25(1):49-58. https://doi.org/10.30556/imj.Vol25.No1.2022.1282

Baveja A, Chhabra R, Panda KK, Muthusamy V, Zunjare RU, Hossain F. Development and validation of multiplex-PCR assay to simultaneously detect favourable alleles of shrunken2, opaque2, crtRB1 and lcyE genes in marker-assisted selection for maize biofortification. J Plant Biochem Biotechnol. 2021;30:265-74. https://doi.org/10.1007/s13562-020-00585-6

Drini? SM, Vukadinovi? J, Srdi? J, Šeremeši? MM, Andjelkovic V. Effect of cooking on the content of carotenoids and tocopherols in sweet corn. Food and Feed Research. 2021;48(2):119-29. https://doi.org/10.5937/ffr0-31960

Li Z, Hong T, Zhao Z, Gu Y, Guo Y, Han J. Fatty acid profiles and nutritional evaluation of fresh sweet-waxy corn from three regions of China. Foods. 2022;11(17):2636. https://doi.org/10.3390/foods11172636

Shio BJ, Guo S, Zhang R, Tanveer SK, Hai J. Diverse planting density-driven nutrient and yield enhancement of sweet corn by zinc and selenium foliar application. Sustainability. 2022;14(9):5261. https://doi.org/10.3390/su14095261

de Souza R, Ogliari JB, Seledes RM, Maghelly OR, Júnior FWR. Agronomic potential and indications for the genetic breeding of sweet corn local varieties carrying the sugary1 gene. Pesqui Agropecu Trop. 2021;51:e69486–e69486. https://doi.org/10.1590/1983-40632021v5169486

Revilla P, Tracy WF. Morphological characterization and classification of open-pollinated sweet corn cultivars. Journal of the American Society for Horticultural Science. 1995;120(1):112-18. https://doi.org/10.21273/JASHS.120.1.112

Rice EB, Smith ME, Mitchell SE, Kresovich S. Conservation and change: a comparison of in situ and ex situ conservation of Jala maize germplasm. Crop Sci. 2006;46(1):428-36. https://doi.org/10.2135/cropsci2005.06-0116

Cohen JI, Williams JT, Plucknett DL, Shands H. Ex situ conservation of plant genetic resources: global development and environmental concerns. Science (1979). 1991;253(5022):866-72. 10.1126/science.253.5022.866

Börner A. Preservation of plant genetic resources in the biotechnology era. Biotechnology Journal: Healthcare Nutrition Technology. 2006;1(12):1393-404. https://doi.org/10.1002/biot.200600131

Genesys PGR. Corn germplasm lines accessions [dataset]. 2023 Nov 18 [cited 2024 Oct 20]. Sortengarten Erschmatt. Available from: https://api.genesys-pgr.org.

National Bureau of Plant Genetic Resources (NBPGR). PGR Portal [Internet]. New Delhi: NBPGR; 2023 [cited 2024 Oct 20].Available from:http://www.nbpgr.ernet.in:8080/PGRPortal/

Ai Y, Jane J lin. Understanding starch structure and functionality. In: Starch in food. Woodhead Publishing; 2024. p. 55-77. https://doi.org/10.1016/B978-0-323-96102-8.00018-8

Han J, Guo Z, Wang M, Liu S, Hao Z, Zhang D, et al. Using the dominant mutation gene Ae1-5180 (amylose extender) to develop high-amylose maize. Molecular Breeding. 2022;42(10):57. https://doi.org/10.1007/s11032-022-01323-7

Kasemsuwan T. Characterization and food applications of high amylose and other varieties of starch. Iowa State University; 1995. 10.31274/RTD-180813-10467

Brewbaker JL, Zan GH. Seed quality of isogenic endosperm mutants in sweet corn (Zea mays L.). Maydica (Italy). 1999;44(4).

Okuno K, Glover DV. Effect of sugary-1, brittle-1 and double recessive mutant on carbohydrate in developing kernels of maize. Japanese Journal of Breeding. 1981;31(3):286-92. https://doi.org/10.1270/jsbbs1951.31.286

Pairochteerakul P, Jothityangkoon D, Ketthaisong D, Simla S, Lertrat K, Suriharn B. Seed germination in relation to total sugar and starch in endosperm mutant of sweet corn genotypes. Agronomy. 2018;8(12):299. https://doi.org/10.3390/agronomy8120299

Gao M, Wanat J, Stinard PS, James MG, Myers AM. Characterization of dull1, a maize gene coding for a novel starch synthase. Plant Cell. 1998;10(3):399-412. https://doi.org/10.1105/tpc.10.3.399

Hossain F, Nepolean T, Vishwakarma AK, Pandey N, Prasanna BM, Gupta HS. Mapping and validation of microsatellite markers linked to sugary1 and shrunken2 genes in maize (Zea mays L.). J Plant Biochem Biotechnol. 2015;24:135-42. https://doi.org/10.1007/s13562-013-0245-3

Chhabra R, Muthusamy V, Gain N, Katral A, Prakash NR, Zunjare RU, et al. Allelic variation in sugary1 gene affecting kernel sweetness among diverse-mutant and-wild-type maize inbreds. Molecular Genetics and Genomics. 2021;296:1085-102. https://doi.org/10.1007/s00438-021-01807-9

Zhang X, Mogel KJH von, Lor VS, Hirsch CN, De Vries B, Kaeppler HF, et al. Maize sugary enhancer1 (se1) is a gene affecting endosperm starch metabolism. Proceedings of the National Academy of Sciences. 2019;116(41):20776-85. https://doi.org/10.1073/pnas.1902747116

Park KJ, Sa KJ, Koh HJ, Lee JK. QTL analysis for eating quality-related traits in an F2: 3 population derived from waxy corn× sweet corn cross. Breed Sci. 2013;63(3):325-32. https://doi.org/10.1270/jsbbs.63.325

Sarika K, Hossain F, Muthusamy V, Zunjare RU, Baveja A, Goswami R, et al. Marker-assisted pyramiding of opaque2 and novel opaque16 genes for further enrichment of lysine and tryptophan in sub-tropical maize. Plant Science. 2018;272:142-52. https://doi.org/10.1016/j.plantsci.2018.04.014Get rights and content

Zhang WL, Wen-Peng Y, Zhi-Wei C, Ming-Chun W, Liu-Qi Y, Yi-Lin CAI. Molecular marker-assisted selection for o2 introgression lines with o16 gene in corn. Acta Agronomica Sinica. 2010;36(8):1302-09. https://doi.org/10.1016/S1875-2780(09)60067-5

Feng F, Wang Q, Liang C, Yang R, Li X. Enhancement of tocopherols in sweet corn by marker-assisted backcrossing of ZmVTE4. Euphytica. 2015;206:513-21. https://doi.org/10.1007/s10681-015-1519-8

Lertrat K, Pulam T. Breeding for increased sweetness in sweet corn. International Journal of Plant Breeding. 2007;1(1):27-30.

Colley M, Mccluskey, C, Van Bueren EL, Tracy W, Alliance OS, WA US. The ripple effect of participatory plant breeding: a case study in us of organic sweet corn. Breeding and Seed Sector Innovations for Organic Food Systems. 2021;119.

Shelton AC, Tracy WF. Recurrent selection and participatory plant breeding for improvement of two organic open-pollinated sweet corn (Zea mays L.) populations. Sustainability. 2015;7(5):5139-52. https://doi.org/10.3390/su7055139

Jha SK, Singh NK, Agrawal PK. Modified backcross breeding method for rapid conversion of field corn line to shrunken2 (sh2) gene-based sweet corn line. Indian Journal of Genetics and Plant Breeding. 2019;79(01):34-39. 10.31742/IJGPB.79.1.5

Khatefov EB, Khoreva VI, Kerv YA, Shelenga TV, Sidorova VV, Demurin YN, et al. Comparative analysis of the chemical composition and size of starch granules in grain between diploid and tetraploid sweetcorn cultivars. Proceedings on Applied Botany, Genetics and Breeding. 2021;182(2):53-62. https://doi.org/10.30901/2227-8834-2021-2-53-62

Mikel MA, Dudley JW. Evolution of North American dent corn from public to proprietary germplasm. Crop Sci. 2006;46(3):1193-205. https://doi.org/10.2135/cropsci2005.10-0371

Barzgari A, Malekzade Shafaroudi S, Khavari Khorasani S. Study on combining ability and gene effects estimation in some sweet corn inbred lines (Zea mays L. var saccarata) by line× tester method. Plant Genetic Researches. 2022;8(2):131-42. 10.52547/pgr.8.2.10

Ito GM, Brewbaker JL. Genetic advance through mass selection for tenderness in sweet corn. 1981; https://www.cabidigitallibrary.org/doi/full/10.5555/19821607431

Mandefro N, Ghizan S, Zakaria W, Rani SU. Yield improvement by two cycles of mass selection in two sweet corn populations. Korean Journal of Crop Science. 2005;50(2):97-104. https://www.cabidigitallibrary.org/doi/full/10.5555/20053167275

Johnson IJ, Hayes HK. The inheritance of pericarp tenderness in sweet corn. 1938; https://www.cabidigitallibrary.org/doi/full/10.5555/19381601375

Wasuwatthanakool W, Harakotr B, Jirakiattikul Y, Lomthaisong K, Suriharn K. Combining ability and testcross performance for carotenoid content of S2 super sweet corn lines derived from temperate germplasm. Agriculture. 2022;12(10):1561. https://doi.org/10.3390/agriculture12101561

Kim JT, Lee JS, Son BY, Bae HH, Baek SB, Jung TW, et al. ‘Godangok 1’, a good quality sweet single-cross corn hybrid with high sugar content. 2020; 10.9787/KJBS.2020.52.2.145

Revilla P, Djemel A, Ordas B, Ordas A. Expression of the Ga1-s gametophyte factor in shrunken2 sweet corn. Euphytica. 2018;214(8):131. https://doi.org/10.1007/s10681-018-2214-3

Jiang GL. Molecular markers and marker-assisted breeding in plants. Plant Breeding from Laboratories to Fields. 2013;3:45-83. http://dx.doi.org/10.5772/52583

He J, Zhao X, Laroche A, Lu ZX, Liu H, Li Z. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci. 2014;5:484. https://doi.org/10.3389/fpls.2014.00484

Hasan N, Choudhary S, Naaz N, Sharma N, Laskar RA. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology. 2021;19(1):128. https://doi.org/10.1186/s43141-021-00231-1

Lv G, Chen X, Ying D, Li J, Fan Y, Wang B, et al. Marker-assisted pyramiding of ?-tocopherol methyltransferase and glutamate formiminotransferase genes for development of biofortified sweet corn hybrids. PeerJ. 2022;10:e13629. https://doi.org/10.7717/peerj.13629

Puttarach J, Puddhanon P, Siripin S, Sangtong V, Songchantuek S. Marker assisted selection for resistance to northern corn leaf blight in sweet corn. 2016;

Kiran KK, Shanthakumar G. Validation of SSR markers for northern corn leaf blight resistance in maize (Zea mays L.). Crop Research. 2017;52(4and5):188-93. 10.5958/2454-1761.2017.00016.x

Ranganatha HM, Lohithaswa HC, Pandravada A. Mapping and validation of major quantitative trait loci for resistance to northern corn leaf blight along with the determination of the relationship between resistances to multiple foliar pathogens of maize (Zea mays L.). Front Genet. 2021;11:548407. https://doi.org/10.3389/fgene.2020.548407

Zhu M, Ma J, Liu X, Guo Y, Qi X, Gong X, et al. High-resolution mapping reveals a Ht3-like locus against northern corn leaf blight. Front Plant Sci. 2022;13:968924. https://doi.org/10.3389/fpls.2022.968924

Wang J, Xu Z, Yang J, Lu X, Zhou Z, Zhang C, et al. qNCLB7. 02, a novel QTL for resistance to northern corn leaf blight in maize. Molecular Breeding. 2018;38:1-12. https://doi.org/10.1007/s11032-017-0770-1

Qi X, Zhao Y, Jiang L, Cui Y, Wang Y, Liu B. QTL analysis of kernel soluble sugar content in supersweet corn. Afr J Biotechnol. 2009;8(24). 10.4314/ajb.v8i24.68775

Mahato A, Shahi JP, Singh PK, Kumar M, Singamsetti A. Heterotic grouping of sweet corn (Zea mays var. sachharata) genotypes based on their combining ability and molecular diversity. Indian Journal of Genetics and Plant Breeding. 2021;81(3):410-21. 10.31742/IJGPB.81.3.8

Edema R, Amoding GL. Validating simple sequence repeat (SSR) markers for introgression of stay-green quantitative trait loci (QTLs) into elite sorghum lines. Afr J Biotechnol. 2015;14(46):3101-11. 10.5897/AJB2015.14821

Mikic S, Kondic-Spika A, Brbaklic L, Stanisavljevic D, Trkulja D, Tomicic M, et al. Multiple marker-traits associations for maize agronomic traits. Chil J Agric Res. 2016;76(3):300-06. http://dx.doi.org/10.4067/S0718-58392016000300006

Langade DM, Shahi JP, Srivastava K, Sharma A. Validation of parents and estimation of molecular diversity through SSR markers in maize (Zea mays L.). Electronic Journal of Plant Breeding. 2017;8(4):1035-45. https://www.ejplantbreeding.org/index.php/EJPB/article/view/1516

Zhang Y, Tang Y, Jin W, Liu Y, Li G, Zhong W, et al. QTL mapping of zeaxanthin content in sweet corn using recombinant inbred line population across different environments. Plants. 2023;12(19):3506. https://doi.org/10.3390/plants12193506

Yu Y, Li G, Qi X, Li X, Mao JH, Hu J. Mapping and epistatic interactions of QTLs for pericarp thickness in sweet corn. Acta Agrono Sinica. 2015;41:359-66. https://www.cabidigitallibrary.org/doi/full/10.5555/20153131009

Wu X, Wang B, Xie F, Zhang L, Gong J, Zhu W, et al. QTL mapping and transcriptome analysis identify candidate genes regulating pericarp thickness in sweet corn. BMC Plant Biol. 2020;20:1-13. https://doi.org/10.1186/s12870-020-2295-8

Dong L, Qi X, Zhu J, Liu C, Zhang X, Cheng B, et al. Supersweet and waxy: meeting the diverse demands for specialty maize by genome editing. Plant Biotechnol J. 2019;17(10):1853. 10.1111/pbi.13144

Kelliher T, Starr D, Su X, Tang G, Chen Z, Carter J, et al. One-step genome editing of elite crop germplasm during haploid induction. Nat Biotechnol. 2019;37(3):287-92. https://doi.org/10.1038/s41587-019-0038-x

Silva MF e, Maciel GM, Gallis RBA, Barbosa RL, Carneiro VQ, Rezende WS, et al. High-throughput phenotyping by RGB and multispectral imaging analysis of genotypes in sweet corn. Hortic Bras. 2022;40(1):92-98. https://doi.org/10.1590/s0102-0536-2022012

Mahmood U, Li X, Fan Y, Chang W, Niu Y, Li J, et al. Multi-omics revolution to promote plant breeding efficiency. Front Plant Sci. 2022;13:1062952. https://doi.org/10.3389/fpls.2022.1062952

Aksoy E, Y?lmaz H, Kay?han C. The revolution of omics technology in plant science. In: Principles and Practices of OMICS and Genome Editing for Crop Improvement. Springer; 2022. p. 23-56. https://doi.org/10.1007/978-3-030-96925-7_2

Chao H, Zhang S, Hu Y, Ni Q, Xin S, Zhao L, et al. Integrating omics databases for enhanced crop breeding. J Integr Bioinform. 2024;20(4):20230012. https://doi.org/10.1515/jib-2023-0012

Yang Y, Saand MA, Huang L, Abdelaal WB, Zhang J, Wu Y, et al. Applications of multi-omics technologies for crop improvement. Front Plant Sci. 2021;12:563953. https://doi.org/10.3389/fpls.2021.563953

Mochida K, Shinozaki K. Advances in omics and bioinformatics tools for systems analyses of plant functions. Plant Cell Physiol. 2011;52(12):2017-38. https://doi.org/10.1093/pcp/pcr153

Dang D, Guan Y, Zheng H, Zhang X, Zhang A, Wang H, et al. Genome-wide association study and genomic prediction on plant architecture traits in sweet corn and waxy corn. Plants. 2023;12(2):303. https://doi.org/10.3390/plants12020303

Ruanjaichon V, Khammona K, Thunnom B, Suriharn K, Kerdsri C, Aesomnuk W, et al. Identification of gene associated with sweetness in corn (Zea mays L.) by genome-wide association study (GWAS) and development of a functional SNP marker for predicting sweet corn. Plants. 2021;10(6):1239. https://doi.org/10.3390/plants10061239

Hislop L, Stephanie E, Flannery P, Baseggio M, Gore MA, Tracy WF. Sugarcane mosaic virus resistance in the wisconsin sweet corn diversity panel. Journal of the American Society for Horticultural Science. 2021;146(6):435-44. https://doi.org/10.21273/JASHS05097-21

Xiao Y, Yu Y, Li G, Xie L, Guo X, Li J, et al. Genome-wide association study of vitamin E in sweet corn kernels. Crop J. 2020;8(2):341-50. https://doi.org/10.1016/j.cj.2019.08.002

Saha I, Rathinavel K, Manoharan B, Adhimoolam K, Sampathrajan V, Rajasekaran R, et al. The resurrection of sweet corn inbred SC11-2 using marker aided breeding for ?-carotene. Front Sustain Food Syst. 2022;6:1004450. https://doi.org/10.3389/fsufs.2022.1004450

Owens BF, Lipka AE, Magallanes-Lundback M, Tiede T, Diepenbrock CH, Kandianis CB, et al. A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics. 2014;198(4):1699-716. https://doi.org/10.1534/genetics.114.169979

Baseggio M, Murray M, Magallanes?Lundback M, Kaczmar N, Chamness J, Buckler ES, et al. Natural variation for carotenoids in fresh kernels is controlled by uncommon variants in sweet corn. Plant Genome. 2020;13(1):e20008. https://doi.org/10.1002/tpg2.20008

Baseggio M, Murray M, Magallanes?Lundback M, Kaczmar N, Chamness J, Buckler ES, et al. Genome?wide association and genomic prediction models of tocochromanols in fresh sweet corn kernels. Plant Genome. 2019;12(1):180038. https://doi.org/10.3835/plantgenome2018.06.0038

Hershberger J, Tanaka R, Wood JC, Kaczmar N, Wu D, Hamilton JP, et al. Transcriptome?wide association and prediction for carotenoids and tocochromanols in fresh sweet corn kernels. Plant Genome. 2022;15(2):e20197. https://doi.org/10.1002/tpg2.20197

Chen B, Feng S, Hou J, Zhu Y, Bao F, Han H, et al. Genome-wide transcriptome analysis revealing the genes related to sugar metabolism in kernels of sweet corn. Metabolites. 2022;12(12):1254. https://doi.org/10.3390/metabo12121254

Matros A, Kaspar S, Witzel K, Mock HP. Recent progress in liquid chromatography-based separation and label-free quantitative plant proteomics. Phytochemistry. 2011;72(10):963-74. https://doi.org/10.1016/j.phytochem.2010.11.009

Varshney RK, Dubey A. Novel genomic tools and modern genetic and breeding approaches for crop improvement. J Plant Biochem Biotechnol. 2009;18:127-38. https://doi.org/10.1007/BF03263311

Hochholdinger F, Marcon C, Baldauf JA, Yu P, Frey FP. Proteomics of maize root development. Front Plant Sci. 2018;9:143. https://doi.org/10.3389/fpls.2018.00143

Wang X, Han Y, Xiao E, Zhang K, Ma Y. Sulfated modification of polysaccharides from sweet corncob and its antiglycation activity in streptozotocin induced diabetic rats. J Biobased Mater Bioenergy. 2021;15(3):353-59. https://doi.org/10.1166/jbmb.2021.2068

Kumar R, Bohra A, Pandey AK, Pandey MK, Kumar A. Metabolomics for plant improvement: status and prospects. Front Plant Sci. 2017;8:1302. https://doi.org/10.3389/fpls.2017.01302

Xiang N, Hu J guang, Yan S, Guo X. Plant hormones and volatiles response to temperature stress in sweet corn (Zea mays L.) seedlings. J Agric Food Chem. 2021;69(24):6779-90. https://pubs.acs.org/doi/10.1021/acs.jafc.1c02275.

Shao M, Chen Y, Gong Q, Miao S, Li C, Sun Y, et al. Biocontrol endophytes Bacillus subtilis R31 influence the quality, transcriptome and metabolome of sweet corn. PeerJ. 2023;11:e14967. 10.7717/peerj.14967.

Published

31-12-2024

How to Cite

1.
Karanam BT, Kumari VN, Sivakumar S, Vanitha K, Meenakshi P, Himakara DM, Rawat P. Nutritional enhancement and genetic innovations in sweet corn: unlocking super sweetness and health benefits through modern breeding technique– A review. Plant Sci. Today [Internet]. 2024 Dec. 31 [cited 2025 Jan. 9];11(sp4). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/5441