A meta-analysis of root herbivore-induced communication cascades affecting above-ground herbivores, parasitoids, and pollinators via host plants
DOI:
https://doi.org/10.14719/pst.5658Keywords:
above-ground herbivores, defensive compounds, parasitoids, pollinators, root herbivoresAbstract
Several research papers over the past three decades have reported the profound influence of root herbivores on above-ground plant-insect interactions. Root-feeding insects significantly alter plant nutrient levels—carbon, nitrogen(N), phosphorus(P), and amino acids(AA)—triggering the production of defensive compounds like terpenoids, phenolics, gossypol, and DIMBOA in shoots. Jasmonate translocation from roots to shoots impairs shoot herbivore performance, while root herbivory suppresses salicylic acid (SA)-mediated defenses, benefiting phloem feeders. Reduced leaf water content and increased abscisic acid (ABA) levels enhance phloem feeder success. Nematode infestations lower AA and N, but increase foliar nicotine, aiding leaf chewers. Mycorrhizal fungi reduce plant N but raise carbon and P, while earthworms increase phytosterols, hindering aphid fecundity. These systemic changes cascade through trophic levels, even affecting hyperparasitoids. This review highlights root herbivory's intricate, cascading effects, reshaping our understanding of plant defense mechanisms and ecological interactions.
Downloads
References
Ryan CA. Proteinase inhibitors in plants: Genes for improving defenses against insects and pathogens. Annu Rev Phytopathol. 1990;28(1):425-49. https://doi.org/10.1146/annurev.py.28.090190.002233
Sutherland OR, Russell GB, Biggs DR, Lane GA. Insect feeding deterrent activity of phytoalexin isoflavonoids. Biochem Syst Ecol. 1980;8(1):73-75. https://doi.org/10.1016/0305-1978(80)90029-0
van Dam NM. Belowground herbivory and plant defenses. Annu Rev Ecol Evol Syst. 2009; 40:373-91. https://doi.org/10.1146/annurev.ecolsys.110308.120314
Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, Ray A, et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int J Mol Sci. 2022;23(5):2690. https:// doi.org/10.3390/ijms23052690
Liu L, Punja ZK, Rahe JE. Effect of Pythium spp. and glyphosate on phytoalexin production and exudation by bean (Phaseolus vulgaris L.) roots grown in different media. Physiol Mol Plant Pathol. 1995;47(6):391-405. https://doi.org/10.1006/pmpp.1995.1067
Bezemer TM, Wagenaar R, Van Dam NM, Van Der Putten WH, Wackers FL. Above- and below-ground terpenoid aldehyde induction in cotton, Gossypium herbaceum, following root and leaf injury. J Chem Ecol. 2004;30:53-67. https://doi.org/10.1023/B:JOEC.0000013182.50662.2a
Kaplan I, Halitschke R, Kessler A, Rehill BJ, Sardanelli S, Denno RF. Physiological integration of roots and shoots in plant defense strategies links above? and belowground herbivory. Ecol Lett. 2008b;11(8):841-51. https://doi.org/10.1111/j.1461-0248.2008.01200.x
Rasmann S, Agrawal AA, Cook SC, Erwin AC. Cardenolides, induced responses and interactions between above and belowground herbivores of milkweed (Asclepias spp.). Ecol Lett. 2009;90(9):2393-404. https://doi.org/10.1890/08-1895.1.
Van Dam NM, Tytgat TO, Kirkegaard JA. Root and shoot glucosinolates: a comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochem Rev. 2009;8:171-86. https://doi.org/10.1007/s11101-008-9101-9.
Lynch JP. Rhizoeconomics: the roots of shoot growth limitations. HortScience. 2007;42(5):1107-09. https://doi.org/10.21273/HORTSCI.42.5.1107.
Ping L, Boland W. Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci. 2004;9(6):263-66. https://doi.org/10.1016/j.tplants.2004.04.008.
Farrar JF, Jones DL. The control of carbon acquisition by and growth of roots. In: de Kroon H, Visser EJW, editors. Root ecology. Ecological studies, vol 168. Berlin: Springer; 2003. p. 91-124.https://doi.org/10.1007/978-3-662-09784-7_4.
Bezemer TM, van Dam NM. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol. 2005;20(11):617-24. https://doi.org/10.1016/j.tree.2005.08.006.
Kaplan I, Halitschke R, Kessler A, Sardanelli S, Denno RF. Constitutive and induced defenses to herbivory in above and belowground plant tissues. Ecology. 2008a;89(2):392-406. https://doi.org/10.1890/07-0471.1.
Pereira RV, Filgueiras CC, Willett DS, Peñaflor MF. Sight unseen: Belowground feeding influences the distribution of an aboveground herbivore. Ecosphere. 2020;11(9):e03163. https://doi.org/10.1002/ecs2.3163
Liu J, Li H, Zhang J, Li J, Yan X. Response of interaction between aboveground and belowground herbivorous to corn development. Pak J Zool. 2024;56(1). https://doi.org/10.17582/journal.pjz/20210112090108
Karssemeijer PN, Winzen L, van Loon JJ, Dicke M. Leaf-chewing herbivores affect preference and performance of a specialist root herbivore. Oecologia. 2022;199(2):243-55. https://doi.org/10.1007/s00442-022-05132-9
Thompson MN, Grunseich JM, Marmolejo LO, Aguirre NM, Bradicich PA, Behmer ST, et al. Undercover operation: belowground insect herbivory modifies systemic plant defense and repels aboveground foraging insect herbivores. Front Ecol Evol. 2022;10:1033730. | https://doi.org/10.3389/fevo.2022.1033730
Masters GJ, Brown VK, Gange AC. Plant mediated interactions between above- and below-ground insect herbivores. Oikos. 1993;66(1):148-51. https://doi.org/10.2307/3545209.
Blossey B, Hunt-Joshi TR. Belowground herbivory by insects: influence on plants and aboveground herbivores. Annu Rev Entomol. 2003;48(1):521-47. https://doi.org/10.1146/annurev.ento.48.091801.112700.
Erb M, Ton J, Degenhardt J, Turlings TC. Interactions between arthropod-induced aboveground and belowground defenses in plants. Plant Physiol. 2008;146(3):867-74. https://doi.org/10.1104/pp.107.112169.
Soler R, Van der Putten WH, Harvey JA, Vet LE, Dicke M, Bezemer TM. Root herbivore effects on aboveground multitrophic interactions: patterns, processes and mechanisms. J Chem Ecol. 2012;38:755-67. https://doi.org/10.1007/s10886-012-0104-z.
Papadopoulou GV, van Dam NM. Mechanisms and ecological implications of plant-mediated interactions between belowground and aboveground insect herbivores. Ecol Res. 2017;32:13-26. https://doi.org/10.1007/s11284-016-1410-7.
van Dam NM, Harvey JA, Wäckers FL, Bezemer TM, van der Putten WH, Vet LE. Interactions between aboveground and belowground induced responses against phytophages. Basic Appl Ecol. 2003;4(1):63-77. https://doi.org/10.1078/1439-1791-00133.
Masters GJ, Jones TH, Rogers M. Host-plant mediated effects of root herbivory on insect seed predators and their parasitoids. Oecologia. 2001;127:246-50. https://doi.org/10.1007/s004420000569.
Gange AC, Brown VK, Aplin DM. Multitrophic links between arbuscular mycorrhizal fungi and insect parasitoids. Ecol Lett. 2003;6(12):1051-55. https://doi.org/10.1046/j.1461-0248.2003.00540.x.
Bezemer TM, De Deyn GB, Bossinga TM, Van Dam NM, Harvey JA, Van der Putten WH. Soil community composition drives aboveground plant-herbivore-parasitoid interactions. Ecol Lett. 2005;8(6):652-61. https://doi.org/10.1111/j.1461-0248.2005.00762.x.
Poveda K, Steffan-Dewenter I, Scheu S, Tscharntke T. Effects of decomposers and herbivores on plant performance and aboveground plant-insect interactions. Oikos. 2005;108(3):503-10. https://doi.org/10.1111/j.0030-1299.2005.13664.x.
Rasmann S, Turlings TC. Simultaneous feeding by aboveground and belowground herbivores attenuates plant-mediated attraction of their respective natural enemies. Ecol Lett. 2007;10(10):926-36. https://doi.org/10.1111/j.1461-0248.2007.01084.x.
Soler R, Harvey JA, Kamp AF, Vet LE, Van der Putten WH, Van Dam NM, et al. Root herbivores influence the behaviour of an aboveground parasitoid through changes in plant-volatile signals. Oikos. 2007a;116(3):367-76. https://doi.org/10.1111/j.0030-1299.2007.15501.x.
Soler R, Bezemer TM, Van Der Putten WH, Vet LE, Harvey JA. Root herbivore effects on above-ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. J Anim Ecol. 2005;74:1121-30. https://doi.org/10.1111/j.1365-2656.2005.01006.x.
Wurst S, Jones TH. Indirect effects of earthworms (Aporrectodea caliginosa) on an above-ground tritrophic interaction. Pedobiologia. 2003;47(1):91-97. https://doi.org/10.1078/0031-4056-00173.
Poveda K, Steffan-Dewenter I, Scheu S, Tscharntke T. Effects of below-and above-ground herbivores on plant growth, flower visitation and seed set. Oecologia. 2003;135:601-05. https://doi.org/10.1007/s00442-003-1228-1.
Schoonhoven LM, van Loon JJA, Dicke M. Plants as insect food: not the ideal. Oxford: Oxford University Press; 2005. p. 99-134.https://doi.org/10.1093/oso/9780198525943.003.0005
Tariq M, Rossiter JT, Wright DJ, Staley JT. Drought alters interactions between root and foliar herbivores. Oecologia. 2013;172:1095-104. https://doi.org/10.1007/s00442-012-2572-9.
Karssemeijer PN, Reichelt M, Gershenzon J, van Loon J, Dicke M. Foliar herbivory by caterpillars and aphids differentially affects phytohormonal signalling in roots and plant defence to a root herbivore. Plant Cell Environ. 2020;43(3):775-86. https://doi.org/10.1111/pce.13707.
Birch ANE, Wynne Griffiths D, Hopkins RJ, Macfarlane Smith WH, McKinlay RG. Glucosinolate responses of swede, kale, forage and oilseed rape to root damage by turnip root fly (Delia floralis) larvae. J Sci Food Agric. 1992;60(1):1-9. https://doi.org/10.1002/jsfa.2740600102
Kostenko O, Mulder PP, Bezemer TM. Effects of root herbivory on pyrrolizidine alkaloid content and aboveground plant-herbivore-parasitoid interactions in Jacobaea vulgaris. Journal of Chemical Ecology. 2013;39:109-19. https://doi.org/10.1007/s10886-012-0234-3
Kumar P, Ortiz EV, Garrido E, Poveda K, Jander G. Potato tuber herbivory increases resistance to aboveground lepidopteran herbivores. Oecologia. 2016;182:177-87.https://doi.org/10.1007/s00442-016-3633-2
Bezemer TM, Wagenaar R, Van Dam NM, Wäckers FL. Interactions between above-and belowground insect herbivores as mediated by the plant defense system. Oikos. 2003;101(3):555-62. https://doi.org/10.1034/j.1600-0706.2003.12424.x
Anderson P, Sadek MM, Wäckers FL. Root herbivory affects oviposition and feeding behavior of a foliar herbivore. Behav Ecol. 2011;22(6):1272-77. https://doi.org/10.1093/beheco/arr12
Johnson SN, Clark KE, Hartley SE, Jones TH, McKenzie SW, Koricheva J. Aboveground–belowground herbivore interactions: a meta-analysis. Ecology. 2012;93(10):2208-15. https://doi.org/10.1890/11-2272.1
Erb M, Flors V, Karlen D, De Lange E, Planchamp C, D’Alessandro M, et al. Signal signature of aboveground-induced resistance upon belowground herbivory in maize. Plant J. 2009a;59(2):292-302. https://doi.org/10.1111/j.1365-313X.2009.03868.x
van Dam NM, Heil M. Multitrophic interactions below and above ground: en route to the next level. J Ecol. 2011;99(1):77-88. https://doi.org/10.1111/j.1365-2745.2010.01761.x
Erb M, Gordon-Weeks R, Flors V, Camañes G, Turlings TC, Ton J. Belowground ABA boosts aboveground production of DIMBOA and primes induction of chlorogenic acid in maize. Plant Signal Behav. 2009b;4(7):639-41. https://doi.org/10.4161/psb.4.7.8973
Erb M, Köllner TG, Degenhardt J, Zwahlen C, Hibbard BE, Turlings TC. The role of abscisic acid and water stress in root herbivore-induced leaf resistance. New Phytol. 2011a;189(1):308-20. https://doi.org/10.1111/j.1469-8137.2010.03450.x
Gange AC, Brown VK. Effects of root herbivory by an insect on a foliar-feeding species, mediated through changes in the host plant. Oecologia. 1989;81:38-42. https://doi.org/10.1007/BF00377007
Masters GJ. The effect of herbivore density on host plant mediated interactions between two insects. Ecol Res. 1995;10(2):125-33. https://doi.org/10.1007/BF02347934
Tindall KV, Stout MJ. Plant-mediated interactions between the rice water weevil and fall armyworm in rice. Entomol Exp Appl. 2001;101(1):9-17. https://doi.org/10.1046/j.1570-7458.2001.00885.x
White JA, Andow DA. Habitat modification contributes to associational resistance between herbivores. Oecologia. 2006;148:482-90. https://doi.org/10.1007/s00442-006-0388-1
Johnson SN, Hawes C, Karley AJ. Reappraising the role of plant nutrients as mediators of interactions between root- and foliar-feeding insects. Funct Ecol. 2009;23(4):699-706. https://doi.org/10.1111/j.1365-2435.2009.01550.x
Megías AG, Müller C. Root herbivores and detritivores shape above-ground multitrophic assemblage through plant-mediated effects. J Anim Ecol. 2010;79(4):923-31. https://doi.org/10.1111/j.1365-2656.2010.01681.x
Soler R, Harvey JA, Rouchet R, Schaper SV, Bezemer TM. Impacts of belowground herbivory on oviposition decisions in two congeneric butterfly species. Entomol Exp Appl. 2010;136(2):191-98. https://doi.org/10.1111/j.1570-7458.2010.01015.x
Johnson SN, Mitchell C, McNicol JW, Thompson J, Karley AJ. Downstairs drivers—root herbivores shape communities of above-ground herbivores and natural enemies via changes in plant nutrients. J Anim Ecol. 2013;82(5):1021-30. https://doi.org/10.1111/1365-2656.12070
Strong DR, Lawton JH, Southwood SR. Insects on plants. Community patterns and mechanisms. Blackwell Scientific Publications; 1984.
Ingham RE, Detling JK. Effects of root-feeding nematodes on aboveground net primary production in North American grassland. Plant Soil. 1990;121:279-81. https://doi.org/10.1007/BF00012321.
Bado V, Sawadogo A, Thio B, Bationo A, Traoré K, Cescas M. Nematode infestation and N-effect of legumes on soil and crop yelds in legume-sorghum rotations. Agric Sci. 2011;2(02):49-55. https://doi.org/10.4236/as.2011.22008
Zinov'eva SV, Vasyukova NI, Ozeretskovskaya OL. Biochemical aspects of plant interactions with phytoparasitic nematodes: a review. Appl Biochem Microbiol. 2004;40:111-19. https://doi.org/10.1023/B.0000018912.93529.78
Van Dam NM, Raaijmakers CE, Van Der Putten WH. Root herbivory reduces growth and survival of the shoot feeding specialist Pieris rapae on Brassica nigra. Entomol Exp Appl. 2005;115(1):161-70. https://doi.org/10.1111/j.1570-7458.2005.00241.x
Wurst S, van der Putten WH. Root herbivore identity matters in plant-mediated interactions between root and shoot herbivores. Basic Appl Ecol. 2007;8(6):491-99. https://doi.org/10.1016/j.baae.2006.09.015
Kaplan I, Sardanelli S, Denno RF. Field evidence for indirect interactions between foliar-feeding insect and root-feeding nematode communities on Nicotiana tabacum. Ecol Entomol. 2009;34(2):262-70. https://doi.org/10.1111/j.1365-2311.2008.01062.x
Olson DM, Davis RF, Wäckers FL, Rains GC, Potter T. Plant–herbivore–carnivore interactions in cotton, Gossypium hirsutum: linking belowground and aboveground. J Chem Ecol. 2008;34:1341-48. https://doi.org/10.1007/s10886-008-9532-1
Hong SC, Donaldson J, Gratton C. Soybean cyst nematode effects on soybean aphid preference and performance in the laboratory. Environ Entomol. 2010;39(5):1561-69. https://doi.org/10.1603/EN10091
Hol WG, De Boer W, Termorshuizen AJ, Meyer KM, Schneider JH, Van Dam NM, et al. Reduction of rare soil microbes modifies plant–herbivore interactions. Ecol Lett. 2010;13(3):292-301. https://doi.org/10.1111/j.1461-0248.2009.01424.x
Sun X, Siemann E, Liu Z, Wang Q, Wang D, Huang W, et al. Root-feeding larvae increase their performance by inducing leaf volatiles that attract above-ground conspecific adults. J Ecol. 2019;107(6):2713-23. https://doi.org/10.1111/1365-2745.13196
Rillig MC. Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett. 2004;7(8):740-54. https://doi.org/10.1111/j.1461-0248.2004.00620.x
Kempel A, Schmidt AK, Brandl R, Schädler M. Support from the underground: induced plant resistance depends on arbuscular mycorrhizal fungi. Funct Ecol. 2010;24(2):293-300. https://doi.org/10.1111/j.1365-2435.2009.01647.x
Krishna KR, Suresh HM, Syamsunder J, Bagyaraj DJ. Changes in the leaves of finger millet due to VA mycorrhizal infection. New Phytol. 1981;87(4):717-22. https://doi.org/10.1111/j.1469-8137.1981.tb01706.x
Gange AC, Bower E, Brown VK. Positive effects of an arbuscular mycorrhizal fungus on aphid life history traits. Oecologia. 1999;120:123-31. https://doi.org/10.1007/s004420050840
Gange AC. Species-specific responses of a root-and shoot-feeding insect to arbuscular mycorrhizal colonization of its host plant. New Phytol. 2001;150(3):611-18. https://doi.org/10.1046/j.1469-8137.2001.00137.x
Gange AC, Nice HE. Performance of the thistle gall fly, Urophora cardui, in relation to host plant nitrogen and mycorrhizal colonization. New Phytol. 1997;137(2):335-43. https://doi.org/10.1046/j.1469-8137.1997.00813.x
Trimble MR, Knowles NR. Influence of phosphorus nutrition and vesicular-arbuscular mycorrhizal fungi on growth and yield of greenhouse cucumber (Cucumis sativus L.). Can J Plant Sci. 1995;75(1):251-59. https://doi.org/10.4141/cjps95-046
Goverde M, van der Heijden MV, Wiemken A, Sanders I, Erhardt A. Arbuscular mycorrhizal fungi influence life history traits of a lepidopteran herbivore. Oecologia. 2000;125:362-69. https://doi.org/10.1007/s004420000465
Strack D, Fester T, Hause B, Schliemann W, Walter MH. Arbuscular mycorrhiza: biological, chemical and molecular aspects. J Chem Ecol. 2003;29:1955-79. https://doi.org/10.1023/A:1025695032113
Rabin LB, Pacovsky RS. Reduced larva growth of two lepidoptera (Noctuidae) on excised leaves of soybean infected with a mycorrhizal fungus. J Econ Entomol. 1985;78(6):1358-63. https://doi.org/10.1093/jee/78.6.1358
Borowicz VA. A fungal root symbiont modifies plant resistance to an insect herbivore. Oecologia. 1997;112:534-42. https://doi.org/10.1007/s004420050342
Cosme M, Stout MJ, Wurst S. Effect of arbuscular mycorrhizal fungi (Glomus intraradices) on the oviposition of rice water weevil (Lissorhoptrus oryzophilus). Mycorrhiza. 2011;21:651-58. https://doi.org/10.1007/s00572-011-0399-6
Wang M, Biere A, Van der Putten WH, Bezemer TM. Sequential effects of root and foliar herbivory on aboveground and belowground induced plant defense responses and insect performance. Oecologia. 2014;175:187-98. https://doi.org/10.1007/s00442-014-2885-y
Bernaola L, Cosme M, Schneider RW, Stout M. Belowground inoculation with arbuscular mycorrhizal fungi increases local and systemic susceptibility of rice plants to different pest organisms. Front Plant Sci. 2018;9:747. https://doi.org/10.3389/fpls.2018.00747
Wardle DA. Communities and ecosystems: linking the aboveground and belowground components (MPB-34). Monographs in Population Biology, vol 34. Princeton: Princeton University Press; 2013. 408 p. https://doi.org/10.1515/9781400847297
Newington JE, Setälä H, Bezemer TM, Jones TH. Potential effects of earthworms on leaf-chewer performance. Funct Ecol. 2004;18(5):746-51. https://doi.org/10.1111/j.0269-8463.2004.00888.x
Wurst S, Dugassa-Gobena D, Scheu S. Earthworms and litter distribution affect plant-defensive chemistry. J Chem Ecol. 2004a;30:691-701. https://doi.org/10.1023/B0000028425.43869.b8
Wurst S, Dugassa-Gobena D, Langel R, Bonkowski M, Scheu S. Combined effects of earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance. New Phytol. 2004b;163(1):169-76. https://doi.org/10.1111/j.1469-8137.2004.01106.x
Lehrer AT, Dugassa-Gobena D, Vidal S, Seifert K. Transport of resistance-inducing sterols in phloem sap of barley. Z Naturforsch. 2000;55(11-12):948-52. https://doi.org/10.1515/znc-2000-11-1216
Bonkowski M, Geoghegan IE, Birch AN, Griffiths BS. Effects of soil decomposer invertebrates (protozoa and earthworms) on an above-ground phytophagous insect (cereal aphid) mediated through changes in the host plant. Oikos. 2001;95(3):441-50. https://doi.org/10.1034/j.1600-0706.2001.950309.x
Scheu S, Theenhaus A, Jones TH. Links between the detritivore and the herbivore system: effects of earthworms and Collembola on plant growth and aphid development. Oecologia. 1999;119:541-51. https://doi.org/10.1007/s004420050817
Wurst S, Langel R, Rodger S, Scheu S. Effects of belowground biota on primary and secondary metabolites in Brassica oleracea. Chemoecology. 2006;16:69-73. https://doi.org/10.1007/s00049-005-0328-2
Lohmann M, Scheu S, Müller C. Decomposers and root feeders interactively affect plant defence in Sinapis alba. Oecologia. 2009;160:289-98. https://doi.org/10.1007/s00442-009-1306-0
Blouin M, Zuily-Fodil Y, Pham-Thi AT, Laffray D, Reversat G, Pando A, et al. Belowground organism activities affect plant aboveground phenotype, inducing plant tolerance to parasites. Ecology Lett. 2005;8(2):202-08. https://doi.org/10.1111/j.1461-0248.2004.00711.x
Boyer J, Reversat G, Lavelle P, Chabanne A. Interactions between earthworms and plant-parasitic nematodes. Eur J Soil Biol. 2013;59:43-50. https://doi.org/10.1016/j.ejsobi.2013.10.004
Ke X, Scheu S. Earthworms, Collembola and residue management change wheat (Triticum aestivum) and herbivore pest performance (Aphidina: Rhophalosiphum padi). Oecologia. 2008;157:603-17. https://doi.org/10.1007/s00442-008-1106-y
Textor S, Gershenzon J. Herbivore induction of the glucosinolate–myrosinase defense system: major trends, biochemical bases and ecological significance. Phytochem Revs. 2009;8:149-70. https://doi.org/10.1007/s11101-008-9117-1
Marlin D, Nicolson SW, Yusuf AA, Stevenson PC, Heyman HM, Krüger K. The only African wild tobacco, Nicotiana africana: alkaloid content and the effect of herbivory. PLoS One. 2014;9(7):e102661. https://doi.org/10.1371/journal.pone.0102661
Pavviya A, Nalini R. Field experiment on the assessment of natural enemy population in different rice varieties under natural and protected conditions. Int J Plant Res Biotechnol. 2017;30(2):6-12. https://doi.org/10.5958/2229-4473.2017.00023.4
Rathika M, Nalini R. Role of rice plant volatiles on the orientation of leaf folder larval parasitoids, Trichomma cnaphalocrocis (Uchida) (Ichneumonidae: Hymenoptera) and Cotesia angustibasis (Gahan) (Braconidae: Hymenoptera). Oryza. 2011;48(3):250-54.https://doi.org/10.1371/journal.pone.0102661
Soler R, Harvey JA, Bezemer TM. Foraging efficiency of a parasitoid of a leaf herbivore is influenced by root herbivory on neighbouring plants. Funct Ecol. 2007b;21(5):969-74. https://doi.org/10.1111/j.1365-2435.2007.01309.x
van Geem M, Gols R, Raaijmakers CE, Harvey JA. Effects of population-related variation in plant primary and secondary metabolites on aboveground and belowground multitrophic interactions. Chemoecology. 2016;26(6):219-33. https://doi.org/10.1007/s00049-016-0222-0
Barber NA, Milano NJ, Kiers ET, Theis N, Bartolo V, Hazzard RV, Adler LS. Root herbivory indirectly affects above-and below-ground community members and directly reduces plant performance. J Ecol. 2015;103(6):1509-18. https://doi.org/10.1111/1365-2745.12464
Hladun KR, Adler LS. Influence of leaf herbivory, root herbivory and pollination on plant performance in Cucurbita moschata. Ecol Entomol. 2009;34(1):144-52. https://doi.org/10.1111/j.1365-2311.2008.01060.x
Gange AC, Smith AK. Arbuscular mycorrhizal fungi influence visitation rates of pollinating insects. Ecol Entomol. 2005;30(5):600-06. https://doi.org/10.1111/j.0307-6946.2005.00732.x
Collison CH. The interrelationships of honeybee activity, foraging behavior, climatic conditions and flowering in the pollination of pickling cucumbers, Cucumis sativus L. [Doctoral Thesis]. East Lansing (MI): Michigan State University; 1976. Available from: https://d.lib.msu.edu/etd/44912.https://doi.org/doi:10.25335/6zd3-3x96
Barber NA, Adler LS, Bernardo HL. Effects of above-and belowground herbivory on growth, pollination and reproduction in cucumber. Oecologia. 2011;165:377-86. https://doi.org/10.1007/s00442-010-1779-x
Wolfe BE, Husband BC, Klironomos JN. Effects of a belowground mutualism on an aboveground mutualism. Ecol Lett. 2005;8(2):218-23. https://doi.org/10.1111/j.1461-0248.2004.00716.x
Barber NA, Kiers ET, Hazzard RV, Adler LS. Context-dependency of arbuscular mycorrhizal fungi on plant-insect interactions in an agroecosystem. Front Plant Sci. 2013;4:338. https://doi.org/10.3389/fpls.2013.00338
Ghyselen C, Bonte D, Brys R. Is there a missing link? Effects of root herbivory on plant–pollinator interactions and reproductive output in a monocarpic species. Plant Biol. 2016;18(1):156-63. https://doi.org/10.1111/plb.12325
Laird RA, Addicott JF. Arbuscular mycorrhizal fungi reduce the construction of extrafloral nectaries in Vicia faba. Oecologia. 2007;152:541-51. https://doi.org/10.1007/s00442-007-0676-4.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 AS Karchikumar, R Nalini, RB Usha, P Prema, K Kumutha, M Paramasivam, K Suresh, VB Saai
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).