Forthcoming

Historical advancements in Indian monsoon forecasting: A review

Authors

DOI:

https://doi.org/10.14719/pst.6407

Keywords:

agriculture, indian monsoon, seasonal forecast

Abstract

The seasonal forecast is an important type of forecast in the agriculture sector particularly in India where the vast population relies on agriculture. Monsoon trade winds contribute to vast portion of Indian rainfall. Owing to its importance, the research activities on the prediction of the Indian monsoon started in ancient times and are carried over for the development of a perfect forecast system. India has bimodal rainfall with two major monsoons. The southwest monsoon contributes more with widespread rainfall over India and the northeast monsoon is the returning monsoon which brings dry wind to northern India and provides huge rain in southern India, particularly Tamil Nadu. Most of the work regarding monsoon has been con- centrated on southwest monsoon and less on northeast monsoon based on its importance. Over the years, several projects have been undertaken to enhance seasonal forecasting, with the Monsoon Mission being one of the most recent and significant initiatives aimed at improving prediction accuracy. Additionally, Agromet Advisory Services Bulletins have been developed using seasonal outlooks to provide tailored recommendations to farmers, helping them optimize agricultural practices based on forecasted conditions. This review highlights the advancements in seasonal forecasting, the regional focus on monsoons, and the role of these forecasts in supporting India’s agricultural sector.

Downloads

Download data is not yet available.

References

Gadgil S. The Indian monsoon and its variability. Annu Rev Earth Planet Sci. 2003;31:429–67. https://doi.org/10.1146/annurev.earth.31.100901.141251

Ramage CS. Monsoon meteorology. 1st ed. International Geophysics Series, Volume 15; 1971

Blanford HF. On the connexion of the Himalaya snowfall with dry winds and seasons of drought in India. Proc R Soc London. 1884;37(232–234):3–22. https://doi.org/10.1098/rspl.1884.0003

Gadgil S. The monsoon system: Land–sea breeze or the ITCZ?. J Earth Syst Sci. 2018;127(1):1–29. https://doi.org/10.1007/s12040-017-0916-x/metrics

Simpson DGC. The origin of the South-west monsoon. Mon Weather Rev. 1921;49(5):303. https://doi.org/10.1175/1520-0493(1921)49%3C303d:OOTSM%3E2.0.CO;2

Parthasarathy B, Munot AA, Kothawale DR. All-India monthly and seasonal rainfall series: 1871-1993. Theor Appl Climatol. 1994;49(4):217–24. https://doi.org/10.1007/BF00867461

Rai D, Raveh-Rubin S. Enhancement of Indian summer monsoon rainfall by cross-equatorial dry intrusions. npj Clim Atmos Sci. 2023;6(1):1–10. https://doi.org/10.1038/s41612-023-00374-7

Geetha B, Balachandran S. An analytical study of easterly waves over southern peninsular India during the Northeast monsoon 2010. MAUSAM. 2014;65(4):591–602. https://doi.org/10.54302/mausam.v65i4.1243

Geetha B, Raj Yea. Spatial patterns of Northeast monsoon rainfall over sub-regions of southern peninsular India and Sri Lanka as revealed through empirical orthogonal function analysis. MAUSAM. 2014;65(2):185–204. https://doi.org/10.54302/mausam.v65i2.973

Gadgil S. The Indian monsoon: 3. Physics of the monsoon. Resonance. 2007;12:4–20. https://doi.org/10.1007/s12045-007-0045-y

Dandi AR, Pillai PA, Chowdary JS, Desamsetti S, Srinivas G, Rao KK, et al. Inter-annual variability and skill of tropical rainfall and SST in APCC seasonal forecast models. Clim Dyn. 2021;56(1–2):439–56. https://doi.org/10.1007/s00382-020-05487-w

Dhar ON, Rakhecha PR. Foreshadowing Northeast monsoon rainfall over Tamil Nadu, India. Mon Weather Rev. 1983;111(1):109–12. https://doi.org/10.1175/1520-0493(1983)111%3C0109:FNMROT%3E2.0.CO;2

Gulati A, Saini S, Jain S. Monsoon 2013: Estimating the impact on agriculture; 2013.

Samui RP, Kamble M V, Sabale JP. Northeast monsoon rainfall and agricultural production in Tamilnadu and Andhra Pradesh I-Rainfall variability and its significance in agricultural production. Mausam. 2013;64(2):309–16. https://doi.org/10.54302/mausam.v64i2.687

White B. The importance of climate variability and seasonal forecasting to the Australian economy. 2000:1–22. https://doi.org/10.1007/978-94-015-9351-9_1

Halley E. An historical account of the trade winds and monsoons, observable in the seas between and near the Tropicks, with an attempt to assign the physical cause of the said winds. Philos Trans R Soc London. 1686;16(183):153–68. https://doi.org/10.1098/rstl.1686.0026

IMD. History of meteorological services in India [Internet]. Available from: https://mausam.imd.gov.in/imd_latest/contents/history.php

Pai DS, Sreejith OP, Nargund SG, Musale M, Tyagi A. Present operational long range forecasting system for Southwest monsoon rainfall over India and its performance during 2010. Mausam. 2011;62(2):179–96. https://doi.org/10.54302/mausam.v62i2.283

Manabe S, Smagorinsky J, Strickler RF. Simulated climatology of a general circulation model with a hydrologic cycle. Mon Weather Rev. 1965;93(12):769–98. https://doi.org/10.1175/1520-0493(1965)093%3C0769:SCOAGC%3E2.3.CO;2

Hahn DG, Manabe S. The role of mountains in the South Asian monsoon circulation. J Atmos Sci. 1975;32(8):1515–41. https://doi.org/10.1175/1520-0469(1975)032%3C1515:TROMIT%3E2.0.CO;2

Charney JG, Shukla J. Modelling and theoretical studies. In: Lighthill J, Pearce RP, editors. Monsoon Dynamics. Cam-bridge University Press; 1981.

Sato N, Sellers PJ, Randall DA, Schneider EK, Shukla J, Kinter III JL, et al. Effects of implementing the simple biosphere model in a general circulation model. J Atmos Sci. 1989;46(18):2757–82. https://doi.org/10.1175/1520-0469(1989)046%3C2757:EOITSB%3E2.0.CO;2

Moorthi S, Suarez MJ. Relaxed Arakawa-Schubert. A parameterization of moist convection for general circulation models. Mon Weather Rev. 1992;120(6):978–1002. https://doi.org/10.1175/1520-0493(1992)120%3C0978:RASAPO%3E2.0.CO;2

Hack JJ. Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2). J Geophys Res Atmos. 1994;99(D3):5551–68. https://doi.org/10.1029/93JD03478

Das PK. The monsoon experiment (MONEX). Curr Sci. 1979;187–89.

Krishnamurti TN. Summer monsoon experiment—A review. Mon Weather Rev. 1985;113(9):1590–626. https://doi.org/10.1175/1520-0493(1985)113%3C1590:SMER%3E2.0.CO;2

Walker GT. Correlations in seasonal variations of weather. VIII, A further study of world weather. Men Indian Meteor Dept. 1924;24:275–332.

Palmer TN, Brankovi? ?, Viterbo P, Miller MJ. Modeling interannual variations of summer monsoons. J Clim. 1992;5(5):399–417. https://doi.org/10.1175/1520-0442(1992)005%3C0399:MIVOSM%3E2.0.CO;2

McPhaden MJ, Busalacchi AJ, Cheney R, Donguy J, Gage KS, Halpern D, et al. The tropical ocean?global atmosphere observing system: A decade of progress. J Geophys Res Ocean. 1998;103(C7):14169–240. https://doi.org/10.1029/97JC02906

Bourke W. Systematic errors in extended range predictions. World Meteorological Organization; 1991.

AMIP. WGNE atmospheric model intercomparision project [Internet]; 1991. Available from: https://pcmdi.llnl.gov/mips/amip/home/news/amipnl1.pdf?id=81

Gates WL. AN AMS continuing series: Global CHANGE--AMIP: The atmospheric model intercomparison project. Bull Am Meteorol Soc. 1992;73(12):1962–70. https://doi.org/10.1175/1520-0477(1992)073%3C1962:ATAMIP%3E2.0.CO;2

Phillips TJ. A summary documentation of the AMIP models. Lawrence Livermore National Laboratory California; 1994. https://doi.org/10.2172/26547

Sperber KR, Palmer TN. Interannual tropical rainfall variability in general circulation model simulations associated with the atmospheric model intercomparison project. J Clim. 1996;9(11):2727–50. https://doi.org/10.1175/1520-0442(1996)009%3C2727:ITRVIG%3E2.0.CO;2

Gates WL, Boyle JS, Covey C, Dease CG, Doutriaux CM, Drach RS, et al. An overview of the results of the atmospheric model intercomparison project (AMIP I). Bull Am Meteorol Soc. 1999;80(1):29–56. https://doi.org/10.1175/1520-0477(1999)080%3C0029:AOOTRO%3E2.0.CO;2

Gadgil S, Sajani S. Monsoon precipitation in the AMIP runs. Clim Dyn. 1998;14(9):659–89. https://doi.org/10.1007/s003820050248

Rajeevan M, Unnikrishnan CK, Preethi B. Evaluation of the ENSEMBLES multi-model seasonal forecasts of Indian summer monsoon variability. Clim Dyn. 2012;38(11–12):2257–74. https://doi.org/10.1007/s00382-011-1061-x

WMO. Sub-seasonal to seasonal prediction research implementation plan [Internet]; 2013. Available from: http://www.s2sprediction.net/file/documents_reports/S2S_Implem_plan_en.pdf

Malik I, Mishra V. Sub-seasonal to seasonal (S2S) prediction of dry and wet extremes for climate adaptation in India. Clim Serv. 2024;34:100457. https://doi.org/10.1016/J.CLISER.2024.100457

Alves O, Wang G, Zhong A, Smith N, Tseitkin F, Warren G, et al. POAMA: Bureau of meteorology operational coupled model seasonal forecast system. In: Proceedings of National Drought Forum, Brisbane; 2003. p. 49–56.

Wu T, Song L, Li W, Wang Z, Zhang H, Xin X, et al. An overview of BCC climate system model development and application for climate change studies. J Meteorol Res. 2014;28:34–56. https://doi.org/10.1007/s13351-014-3041-7

Mastrangelo D, Malguzzi P, Rendina C, Drofa O, Buzzi A. First outcomes from the CNR-ISAC monthly forecasting system. Adv Sci Res. 2012;8(1):77–82. https://doi.org/10.5194/asr-8-77-2012

Voldoire A, Saint?Martin D, Sénési S, Decharme B, Alias A, Chevallier M, et al. Evaluation of CMIP6 deck experiments with CNRM?CM6?1. J Adv Model Earth Syst. 2019;11(7):2177–213. https://doi.org/10.1029/2019MS001683

Guimarães BS, Coelho CAS, Woolnough SJ, Kubota PY, Bastarz CF, Figueroa SN, et al. Configuration and hindcast quality assessment of a Brazilian global sub?seasonal prediction system. Q J R Meteorol Soc. 2020;146(728):1067–84. https://doi.org/10.1002/qj.3725

Lin H, Gagnon N, Beauregard S, Muncaster R, Markovic M, Denis B, et al. GEPS-based monthly prediction at the Canadian meteorological centre. Mon Weather Rev. 2016;144(12):4867–83. https://doi.org/10.1175/MWR-D-16-0138.1

Vitart F. Evolution of ECMWF sub-seasonal forecast skill scores. Q J R Meteorol Soc. 2014;140(683):1889–99. https://doi.org/10.1002/QJ.2256

Bundel’ AY, Astakhova ED, Rozinkina IA, Alferov DY, Semenov AE. Verification of short-and medium-range precipitation forecasts from the ensemble modeling system of the hydrometcenter of Russia. Russ Meteorol Hydrol. 2011;36:653–62. https://doi.org/10.3103/S1068373911100025

Kubo Y. The current development status of next seasonal ensemble prediction system (JMA/MRI-CPS3). In: 99th American Meteorological Society Annual Meeting. AMS; 2019.

Kim H, Lee J, Hyun YK, Hwang SO. The KMA global seasonal forecasting system (GloSea6)-Part 1: operational system and improvements. Atmosphere (Basel). 2021;31(3):341–59.

Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, et al. The NCEP climate forecast system version 2. J Clim. 2014;27(6):2185–208. https://doi.org/10.1175/JCLI-D-12-00823.1

He B, Bao Q, Wang X, Zhou L, Wu X, Liu Y, et al. CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project simulation. Adv Atmos Sci. 2019;36:771–78. https://doi.org/10.1007/s00376-019-9027-8

Davis P, Ruth C, Scaife AA, Kettleborough J. A large ensemble seasonal forecasting system: GloSea6. In: AGU Fall Meeting Abstracts; 2020. p. A192-205.

Ogallo L, Bessemoulin P, Ceron JP, Mason SJ, Connor SJ. Adapting to climate variability and change: the Climate Outlook Forum process; 2008.

Stacey J, Salmon K, Janes T, Colman A, Colledge F, Bett PE, et al. Diverse skill of seasonal dynamical models in forecasting South Asian monsoon precipitation and the influence of ENSO and IOD. Clim Dyn. 2023;61(7):3857–74. https://doi.org/10.1007/s00382-023-06770-2

Rajeevan M. Interactions among deep convection, sea surface temperature and radiation in the Asian monsoon region. Mausam. 2001;52(1):83–96. https://doi.org/10.54302/mausam.v52i1.1679

Gadgil S, Rajeevan M, Nanjundiah R. Monsoon prediction–Why yet another failure?. Curr Sci. 2005;88(9):1389–400.

Wang B, Kang IS, Shukla J. Dynamic seasonal prediction and predictability of the monsoon. In: The Asian Monsoon. Springer Praxis Books. Springer, Berlin, Heidelberg; 2006. p. 585–612. https://doi.org/10.1007/3-540-37722-0_15

Krishna KK, Hoerling M, Rajagopalan B. Advancing dynamical prediction of Indian monsoon rainfall. Geophys Res Lett. 2005;32(8). https://doi.org/10.1029/2004gl021979

Gadgil S, Srinivasan. Seasonal prediction of the Indian monsoon. J Curr Sci. 2011;100(3):343–53.

Rao SA, Goswami BN, Sahai AK, Rajagopal EN, Mukhopadhyay P, Rajeevan M, et al. Monsoon mission: a targeted activity to improve monsoon prediction across scales. Bull Am Meteorol Soc. 2019;100(12):2509–32. https://doi.org/10.1175/BAMS-D-17-0330.1

Preethi B, Revadekar JV, Munot AA. Extremes in summer monsoon precipitation over India during 2001–2009 using CPC high-resolution data. Int J Remote Sens. 2011;32(3):717–35. https://doi.org/10.1080/01431161.2010.517795

Rao SA, Rajeevan M, Mahapatra S, Goswam BN. Science and implementation plan for the monsoon mission [Report]; 2014. Available from: https://www.tropmet.res.in/monsoon/monsoon2/assets/files/Monson_Mission_Science_Plan.pdf

Drbohlav HKL, Krishnamurthy V. Spatial structure, forecast errors and predictability of the South Asian monsoon in CFS monthly retrospective forecasts. J Clim. 2010;23(18):4750–69. https://doi.org/10.1175/2010JCLI2356.1

Behringer DW. The global ocean data assimilation system (godas) at ncep. In: Proceedings of the 11th symposium on integrated observing and assimilation systems for the atmosphere, oceans, and land surface. Amer Meteor Soc San Antonio, TX; 2007. p. 14–18.

Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, et al. NCEP–DOE AMIP-II reanalysis (r-2). Bull Am Meteorol Soc. 2002;83(11):1631–44. https://doi.org/10.1175/BAMS-83-11-1631

Rajeevan MN, Santos J, Rao SA. India’s monsoon mission. CLIVAR Exch No79; 2020.

Saha SK, Pokhrel S, Chaudhari HS, Dhakate A, Shewale S, Sabeerali CT, et al. Improved simulation of Indian summer monsoon in latest NCEP climate forecast system free run. Int J Climatol. 2014;34(5):1628-41. https://doi.org/10.1002/joc.3791

Ramu DA, Sabeerali CT, Chattopadhyay R, Rao DN, George G, Dhakate AR, et al. Indian summer monsoon rainfall simulation and prediction skill in the CFSv2 coupled model: Impact of atmospheric horizontal resolution. J Geophys Res. 2016;121(5):2205–21. https://doi.org/10.1002/2015JD024629

Abhilash S, Sahai AK, Pattnaik S, Goswami BN, Kumar A. Extended range prediction of active-break spells of Indian summer monsoon rainfall using an ensemble prediction system in NCEP climate forecast system. Int J Climatol. 2014;34(1):98–113. https://doi.org/10.1002/JOC.3668

Sahai AK, Borah N, Chattopadhyay R, Joseph S, Abhilash S. A bias-correction and downscaling technique for operational extended range forecasts based on self organizing map. Clim Dyn. 2017;48(7–8):2437–51. https://doi.org/10.1007/S00382-016-3214-4

Chattopadhyay R, Rao SA, Sabeerali CT, George G, Rao DN, Dhakate A, et al. Large-scale teleconnection patterns of Indian summer monsoon as revealed by CFSv2 retrospective seasonal forecast runs. Int J Climatol. 2016;36(9). https://doi.org/10.1002/joc.4556

Pokhrel S, Saha SK, Dhakate A, Rahman H, Chaudhari HS, Salunke K, et al. Seasonal prediction of Indian summer monsoon rainfall in NCEP CFSv2: Forecast and predictability error. Clim Dyn. 2016;46(7–8):2305–26. https://doi.org/10.1007/s00382-015-2703-1

Pillai PA, Rao SA, Ramu DA, Pradhan M, George G. Seasonal prediction skill of Indian summer monsoon rainfall in NMME models and monsoon mission CFSv2. Int J Climatol. 2018;38(S1):e847-61. https://doi.org/10.1002/joc.5413

Shukla A, Mehrotra RC, Ali SN. Early Eocene leaves of Northwestern India and their response to climate change. J Asian Earth Sci. 2018;166:152–61. https://doi.org/10.1016/j.jseaes.2018.07.035

Bach E, Krishnamurthy V, Mote S, Shukla J, Sharma AS, Kalnay E, et al. Improved subseasonal prediction of South Asian monsoon rainfall using data-driven forecasts of oscillatory modes. Proc Natl Acad Sci. 2024;121(15)e2312573121. https://doi.org/10.1073/pnas.2312573121

Rajeevan M, Mohapatra M, Unnikrishnan CK, Geetha B, Balachandran S, Sreejith OP, et al. IMD meteorological monograph: Northeast monsoon of South Asia [Internet]; 2022. Available from: https://mausam.imd.gov.in/responsive/metmonograph.php

Geethalakshmi V, McBride J, Huda S. Impact of ENSO on Tamil Nadu rainfall. J Meteorol. 2005.

Geethalakshmi V, Yatagai A, Palanisamy K, Umetsu C. Impact of ENSO and the Indian ocean dipole on the North?East monsoon rainfall of Tamil Nadu state in India. Hydrol Process An Int J. 2009;23(4):633–47. https://doi.org/10.1002/hyp.7191

Kokilavani S, Ramaraj AP, Panneerselvam S. Exploring the relationship of Enso and rainfall variability over southern zone of Tamil Nadu. Int J Environ Sci Technol. 2015;4(4):955–65.

Yadav RK. Why is ENSO influencing Indian Northeast monsoon in the recent decades?. Int J Climatol. 2012;32(14). https://doi.org/10.1002/joc.2430

Bhuvaneswari K, Geethalakshmi V, Lakshmanan A, Srinivasan R, Sekhar NU. The impact of El Nino/Southern oscillation on hydrology and rice productivity in the Cauvery basin, India: Application of the soil and water assessment tool. Weather Clim Extrem. 2013;2:39–47. https://doi.org/10.1016/j.wace.2013.10.003

Iyer DV. Forecasting of Northeast monsoon rainfall of South Chennai. India Met Dept Sci Notes. 1941;8(98).

Rao PRK, Jagannathan P. A study of the Northeast monsoon rainfall of Tamil Nadu. MAUSAM. 1953;4(1):22–44. https://doi.org/10.54302/mausam.v4i1.4775

Raj YEA. Statistical relations between winter monsoon rainfall and the preceding summer monsoon. Mausam. 1989;40(1):65–70. https://doi.org/10.54302/mausam.v40i1.1941

Raj YEA. Objective determination of Northeast monsoon onset dates over coastal Tamil Nadu for the period 1901-90. Mausam. 1992;43(3):273–82. https://doi.org/10.54302/mausam.v43i3.3455

Raj YEA, Sen PN, Jamadar SM. Outlook on Northeast monsoon rainfall of Tamil Nadu. Mausam. 1993;44(1):19–22. https://doi.org/10.54302/mausam.v44i1.3739

Raj YEA. A scheme for advance prediction of Northeast monsoon rainfall of Tamil Nadu. Mausam. 1998;49(2):247–54. https://doi.org/10.54302/mausam.v49i2.3625

Raj YEA. A statistical technique for determination of withdrawal of Northeast monsoon over coastal Tamilnadu. Mausam. 1998;49(3):309–20. https://doi.org/10.54302/mausam.v49i3.3636

Raj YEA. Onset, withdrawal and intra-seasonal variation of Northeast monsoon over coastal Tamil Nadu, 1901-2000. Mausam. 2003;54(3):605–14. https://doi.org/10.54302/mausam.v54i3.1551

Raj YEA, Asokan R, Revikumar PV. Contrasting movement of wind based equatorial trough and equatorial cloud zone over Indian southern peninsula and adjoining Bay of Bengal during the onset phase of Northeast monsoon. Mausam. 2007;58(1):33–48. https://doi.org/10.54302/mausam.v58i1.1126

Satyanarayana GC, Naidu CV, Bhaskar Raod V, Umakanth N, Naveena N. Onset of Northeast monsoon over South Peninsular India. MAUSAM. 2020;71(3):503–12. https://doi.org/10.54302/mausam.v71i3.51

Raj YEA, Amudha B. Extent of diurnal cycle of rainfall and its intra seasonal variation over coastal Tamil Nadu during Northeast monsoon season. MAUSAM. 2022;73(1):1–18. https://doi.org/10.54302/mausam.v73i1.4984

Maharana P, Kumar D, Rai P, Tiwari PR, Dimri AP. Simulation of Northeast monsoon in a coupled regional model framework. Atmos Res. 2022;266:105960. https://doi.org/10.1016/j.atmosres.2021.105960

Prasanna K, Chowdary JS, Singh P, Chiranjeevi D, Naidu CV, Parekh A, et al. Assessment of APCC models fidelity in simulating the Northeast monsoon rainfall variability over southern Peninsular India. Theor Appl Climatol. 2021;144:931–48. https://doi.org/10.1007/s00704-021-03559-3

Ramprasad V. Debt and vulnerability: indebtedness, institutions and smallholder agriculture in South India. J Peasant Stud. 2019;46(6):1286–307. https://doi.org/10.1080/03066150.2018.1460597

Parthasarathy B, Munot AA, Kothawale DR. Regression model for estimation of Indian foodgrain production from summer monsoon rainfall. Agric For Meteorol. 1988;42(2–3):167–82. https://doi.org/10.1016/0168-1923(88)90075-5

Gadgil S. Climate change and agriculture–an Indian perspective. Curr Sci. 1995;69(8):649–59.

Krishna Kumar K, Rupa Kumar K, Ashrit RG, Deshpande NR, Hansen JW. Climate impacts on Indian agriculture. Int J Climatol. 2004;24(11):1375–93. https://doi.org/10.1002/JOC.1081

Bowden C, Foster T, Parkes B. Identifying links between monsoon variability and rice production in India through machine learning. Sci Rep. 2023;13(1):2446. https://doi.org/10.1038/s41598-023-27752-8

Swami D, Dave P, Parthasarathy D. Agricultural susceptibility to monsoon variability: A district level analysis of Maharashtra, India. Sci Total Environ. 2018;619–620:559–77. https://doi.org/10.1016/J.SCITOTENV.2017.10.328

Rao PG, Rao BVR, Singh S. The monsoon and Indian agriculture. J Agrometeorol. 2021;23(2).

Murphy AH. What is a good forecast? An essay on the nature of goodness in weather forecasting. Weather Forecast. 1993;8(2):281–93. https://doi.org/10.1175/1520-0434(1993)008%3C0281:WIAGFA%3E2.0.CO;2

Jones JW, Hansen JW, Royce FS, Messina CD. Potential benefits of climate forecasting to agriculture. Agric Ecosyst Environ. 2000;82(1–3):169–84. https://doi.org/10.1016/S0167-8809(00)00225-5

Chattopadhyay N, Rao KV, Sahai AK, Balasubramanian R, Pai DS, Pattanaik DR, et al. Usability of extended range and seasonal weather forecast in Indian agriculture. MAUSAM. 2018;69(1):29–44. https://doi.org/10.54302/MAUSAM.V69I1.218

Published

24-03-2025

How to Cite

1.
Pugazenthi K, Jeevanand KP, Geethalakshmi V, Jagannathan R, Dheebakaran G, Boomiraj K, Pazhanivelan S. Historical advancements in Indian monsoon forecasting: A review. Plant Sci. Today [Internet]. 2025 Mar. 24 [cited 2025 Mar. 26];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/6407

Issue

Section

Review Articles

Most read articles by the same author(s)

1 2 > >>