Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Study of indigenous and non-indigenous practices for disease resistance in Capsicum: A review

DOI
https://doi.org/10.14719/pst.9416
Submitted
11 May 2025
Published
20-02-2026

Abstract

Chilli pepper is a major cash crop in many countries, making a substantial contribution to export markets and national Gross Domestic Product (GDP). The production and quality of chilli peppers is significantly affected by biotic and abiotic stresses, particularly diseases caused by fungal, bacterial and viral pathogens. This review focuses on the major diseases such as anthracnose, root rot, powdery mildew and Fusarium wilt that led to substantial crop losses every year. Both traditional and contemporary non-indigenous strategies for inducing disease resistance have been discussed. The article maps key practices including the adoption of proper cultural practices, use of algal extracts and raising of disease-resistant varieties, application of biological and chemical control methods aimed at enhancing disease resistance in chilli. Relevant case studies are included to assess and support the effectiveness of agricultural practices that have proven effective in reducing crop losses and improving yield quality. The economic implications of improved disease resistance for tropical regions have also been discussed. Key recommendations are provided for policymakers, farmers and exporters and the need for technical and financial support as well as modern processing facilities to meet international market demands is emphasized. Further studies are required especially from the tropical areas where chilli consumption and cultivation are increasing. Proactive measures such as sustainable nursery management, integrated approaches and cluster-based frameworks are recommended to enhance early intervention and risk mitigation to protect crop and achieve sustainability. These insights offer a foundation for developing targeted strategies to improve crop resilience and productivity in regions facing similar challenges.

References

  1. 1. Basu SK, De AK. Capsicum: historical and botanical perspectives. In: Capsicum. Boca Raton: CRC Press; 2003. p. 21-35
  2. 2. Linnaeus C. Species Plantarum. Holmiae (Stockholm): Impensis Laurentii Salvii; 1753
  3. 3. Arin S. Scenario of chilli production and hindrances faced by the growers of Sindh province of Pakistan. Mod Concepts Dev Agron. 2019;4(3):436-42. https://doi.org/10.31031/MCDA.2019.04.000588
  4. 4. Kiran R, Akhtar J, Kumar P, Shekhar M. Anthracnose of chilli: status, diagnosis and management. In: Capsicum. London: IntechOpen; 2020. p. 200 https://doi.org/10.5772/intechopen.93614
  5. 5. Ganguly S, Praveen KP, Para PA, Sharma V. Medicinal properties of chilli pepper in human diet. ARC J Public Health Community Med. 2017;2(1):6-7. https://doi.org/10.20431/2456-0596.0201002
  6. 6. Saxena A, Raghuwanshi R, Gupta VK, Singh HB. Chilli anthracnose: the epidemiology and management. Front Microbiol. 2016;7:1527. https://doi.org/10.3389/fmicb.2016.01527
  7. 7. Food and Agriculture Organization of the United Nations. FAOSTAT. Rome: FAO; 2024.
  8. 8. Food and Agriculture Organization of the United Nations. FAOSTAT. Rome: FAO; 2025.
  9. 9. Government of Pakistan. Economic survey of Pakistan 2023-2024. Islamabad: Ministry of Finance; 2024.
  10. 10. El-Baky NA, Amara AAAF. Recent approaches towards control of fungal diseases in plants: an updated review. J Fungi. 2021;7:900. https://doi.org/10.3390/jof7110900
  11. 11. Zhou W, Yashwanth A, Raul FM, Julio B, Luis CZ, Mustafa ES, et al. Integrated pest management: an update on the sustainability approach to crop protection. ACS Omega. 2024;9:41130-47. https://doi.org/10.1021/acsomega.4c06628
  12. 12. Ridzuan R, Rafii MY, Ismail SI, Mohammad Yusoff M, Miah G, Usman M. Breeding for anthracnose disease resistance in chili: progress and prospects. Int J Mol Sci. 2018;19(10):3122. https://doi.org/10.3390/ijms19103122
  13. 13. Oo MM, Oh SK. Chilli anthracnose (Colletotrichum spp.) disease and its management approach. Korean J Agric Sci. 2016;43(2):153-62. https://doi.org/10.7744/kjoas.20160018
  14. 14. Poonpolgul S, Kumphai S. Chilli pepper anthracnose in Thailand. In: Oh DG, Kim KT, editors. Abstracts of the First International Symposium on Chilli Anthracnose. Republic of Korea: National Horticultural Research Institute, Rural Development Administration; 2007. p. 23.
  15. 15. Hadden JF, Black LL. Anthracnose of pepper caused by Colletotrichum spp. In: Proceedings of the International Symposium on Integrated Management Practices: Tomato and Pepper Production in the Tropics. Taiwan: Asian Vegetable Research and Development Centre; 1989. p. 189-99.
  16. 16. Ciofini A, Negrini F, Baroncelli R, Baraldi E. Management of post-harvest anthracnose: current approaches and future perspectives. Plants. 2022;11:1856. https://doi.org/10.3390/plants11141856
  17. 17. Crawford EF. The etiology and control of chile wilt, produced by Fusarium annuum. New Mexico Agric Exp Stn Tech Bull. 1934;223.
  18. 18. Sanogo S. Chile pepper and the threat of wilt diseases. Plant Health Prog. 2003;4(1):23. https://doi.org/10.1094/PHP-2003-0430-01-RV
  19. 19. Cerkauskas R. Cercospora leaf spot. In: Tom K, editor. AVRDC fact sheet: pepper diseases. Taiwan: AVRDC-The World Vegetable Center; 2004
  20. 20. Sanogo S, Carpenter J. Incidence of Phytophthora blight and Verticillium wilt within chile pepper fields in New Mexico. Plant Dis. 2006;90(3):291-6. https://doi.org/10.1094/PD-90-0291
  21. 21. Koike ST, Gladders P, Paulus AO. Vegetable diseases: a color handbook. London: Gulf Professional Publishing; 2007. p. 208-9
  22. 22. Than PP, Jeewon R, Hyde KD, Pongsupasamit S, Mongkolporn O, Taylor PWJ. Characterization and pathogenicity of Colletotrichum species associated with anthracnose on chilli Capsicum spp. in Thailand. Plant Pathol. 2008;57(3):562-72. https://doi.org/10.1111/j.1365-3059.2007.01782.x
  23. 23. Saxena A, Raghuwanshi R, Singh HB. Molecular, phenotypic and pathogenic variability in Colletotrichum isolates of subtropical region in north-eastern India, causing fruit rot of chillies. J Appl Microbiol. 2014;117(5):1422-34. https://doi.org/10.1111/jam.12607
  24. 24. Glawe DA, Barlow T, Eggers JE, Hamm PB. First report of powdery mildew caused by Leveillula taurica of field-grown sweet pepper in the Pacific Northwest. Plant Health Prog. 2010;11(1):45. https://doi.org/10.1094/PHP-2007-0708-01-BR
  25. 25. Yadav M, Dubey MK, Upadhyay RS. Systemic resistance in chilli pepper against anthracnose (caused by Colletotrichum truncatum) induced by Trichoderma harzianum, Trichoderma asperellum and Paenibacillus dendritiformis. J Fungi. 2021;7(4):307. https://doi.org/10.3390/jof7040307
  26. 26. de Silva DD, Groenewald JZ, Crous PW, Ades PK, Nasruddin A, Mongkolporn O, et al. Identification, prevalence and pathogenicity of Colletotrichum species causing anthracnose of Capsicum annuum in Asia. IMA Fungus. 2019;10(1):8. https://doi.org/10.1186/s43008-019-0001-y
  27. 27. Abbasi PA, Soltani N, Cuppels DA, Lazarovits G. Reduction of bacterial spot disease severity on tomato and pepper plants with foliar application of ammonium lignosulfonate and potassium phosphate. Plant Dis. 2002;86:1232-6. https://doi.org/10.1094/PDIS.2002.86.11.1232
  28. 28. Nguyen MT, Ranamukhaarachchi SL. Soil-borne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. J Plant Pathol. 2010;92(2):395-405.
  29. 29. Venzon M, Rosado MC, Molina-Rugama AJ, Duarte VS, Dias R, Pallini A. Acaricidal efficacy of neem against Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae). Crop Prot. 2008;27(3-5):869-72. https://doi.org/10.1016/j.cropro.2007.10.001
  30. 30. Tapia DH, Troncoso AJ, Vargas RR, Olivares-Donoso R, Niemeyer HM. Experimental evidence for competitive exclusion of Myzus persicae nicotianae by Myzus persicae ss (Hemiptera: Aphididae) on sweet pepper, Capsicum annuum (Solanaceae). Eur J Entomol. 2008;105(4):643-8. https://doi.org/10.14411/eje.2008.088
  31. 31. Varghese TS, Mathew TB. Evaluation of newer insecticides against chilli aphids and their effect on natural enemies. Pest Manag Hortic Ecosyst. 2012;18(1):114-17.
  32. 32. Maharijaya A, Vosman B, Steenhuis-Broers G, Harpenas A, Purwito A, Visser RGF, et al. Screening of pepper accessions for resistance against two thrips species (Frankliniella occidentalis and Thrips parvispinus). Euphytica. 2011;177(3):401-10. https://doi.org/10.1007/s10681-010-0277-x
  33. 33. Johari A, Herlinda S, Pujiastuti Y, Irsan C, Sartiami D. Morphological and genetic variation of Thrips parvispinus (Thysanoptera: Thripidae) in chili plantation (Capsicum annuum L.) in the lowland and highland of Jambi Province, Indonesia. Am J Biosci. 2014;2:17-21.
  34. 34. Banya M, Garg S, Meena NL. A review: chilli anthracnose, its spread and management. J Pharmacogn Phytochem. 2020;9(4):1432-8.
  35. 35. Agrios GN. Plant pathology. 5th ed. Amsterdam: Elsevier Academic Press; 2005. p. 922
  36. 36. Simmonds JH. Type specimens of Colletotrichum gloeosporioides var. minor and Colletotrichum acutatum. Queensl J Agric Anim Sci. 1968;25:178.
  37. 37. Damm U, Woudenberg JH, Cannon PF, Crous PW. Colletotrichum species with curved conidia from herbaceous hosts. Fungal Divers. 2009;39:45-87.
  38. 38. Ramachandran N, Rathnamma K. Colletotrichum acutatum-a new addition to the species of chilli anthracnose pathogen in India. In: Annual Meeting and Symposium of the Indian Phytopathological Society. Kasaragod: Central Plantation Crops Research Institute; 2006. p. 27-28.
  39. 39. Thind TS, Jhooty JS. Studies on variability in two Colletotrichum species causing anthracnose and fruit rot of chillies in Punjab. Indian Phytopathol. 1990;43(1):53-8.
  40. 40. Hegde GM, Anahosur KH, Srikant K. Biological control of Colletotrichum capsici causing fruit rot of chilli. Plant Pathol News. 2002;20:4-5.
  41. 41. Paul YS, Behl MK. Some studies on bell pepper anthracnose caused by Colletotrichum capsici and its control. Seed Sci Res. 1990;93(1):656-9.
  42. 42. Susheela K. Evaluation of screening methods for anthracnose disease in chilli. Pest Manag Hortic Ecosyst. 2012;18(2):188-93.
  43. 43. Selvakumar R. Variability among Colletotrichum capsici causing chilli anthracnose in north east India. In: Proceedings of the First International Symposium on Chilli Anthracnose. Seoul: Seoul National University; 2007. p. 35.
  44. 44. Kaur S, Singh J. Colletotrichum acutatum-a new threat to chilli crop in Punjab. Indian Phytopathol. 1990;43(1):108-10.
  45. 45. Sharma PN, Kaur M, Sharma OP, Sharma P, Pathania A. Morphological, pathological and molecular variability in Colletotrichum capsici, the cause of fruit rot of chillies in the subtropical region of north western India. J Phytopathol. 2005;153(4):232-7. https://doi.org/10.1111/j.1439-0434.2005.00959.x
  46. 46. Sharma G, Shenoy BD. Colletotrichum fructicola and C. siamense are involved in chilli anthracnose in India. Arch Phytopathol Plant Prot. 2014;47(10):1179-94. https://doi.org/10.1080/03235408.2013.833749
  47. 47. Harp TL, Pernezny K, Ivey ML, Miller SA, Kuhn PJ, Datnoff L. The etiology of recent pepper anthracnose Capsicum outbreaks in Florida. Crop Prot. 2008;27(10):1380-4. https://doi.org/10.1016/j.cropro.2008.05.006
  48. 48. Saini TJ, Gupta SG, Char BR, Zehr UB, Anandalakshmi R. First report of chilli anthracnose caused by Colletotrichum karstii in India. New Dis Rep. 2016;34:6. https://doi.org/10.5197/j.2044-0588.2016.034.006
  49. 49. Krishnan S, Kaari M, Sawhney S, Sheoran N, Gautam RK, Das MM, et al. First report of Colletotrichum siamense from Andaman and Nicobar Islands causing anthracnose in chilli. J Plant Pathol. 2019;101(3):767. https://doi.org/10.1007/s42161-018-00230-1
  50. 50. Akhtar J, Singh MK. Studies on the variability in Colletotrichum capsici causing chilli anthracnose. Indian Phytopathol. 2007;60(1):63-7.
  51. 51. Park KS, Kim CH. Identification, distribution and etiological characteristics of anthracnose fungi of red pepper in Korea. Korean J Plant Pathol. 1992;8:61-9.
  52. 52. Roberts PD, Pernezny KL, Kucharek TA. Anthracnose caused by Colletotrichum sp. on pepper. Gainesville: Univ Florida Inst Food Agric Sci Ext; 2001.
  53. 53. Don LD, Van TT, Phuong Vy TT, Kieu PT. Colletotrichum spp. attacking chilli pepper growing in Vietnam. In: Abstracts of the First International Symposium on Chilli Anthracnose. Republic of Korea: Natl Hort Res Inst, Rural Development Administration; 2007. p. 24.
  54. 54. Montri P, Taylor PW, Mongkolporn O. Pathotypes of Colletotrichum capsici, the causal agent of chili anthracnose, in Thailand. Plant Dis. 2009;93(1):17-20. https://doi.org/10.1094/PDIS-93-1-0017
  55. 55. Voorrips RE, Finkers R, Sanjaya L, Groenwold R. QTL mapping of anthracnose (Colletotrichum spp.) resistance in a cross between Capsicum annuum and C. chinense. Theor Appl Genet. 2004;109(6):1275-82. https://doi.org/10.1007/s00122-004-1738-1
  56. 56. Opina NL. Occurrence, seed transmission and identification of Colletotrichum species causing pepper anthracnose in the Philippines and varietal screening for resistance. Philipp Phytopathol. 1993;29:72-83.
  57. 57. Cueva FD, Mendoza JS, Balendres MA. A new Colletotrichum species causing anthracnose of chilli in the Philippines and its pathogenicity to chilli cultivar Django. Crop Prot. 2018;112:264-8. https://doi.org/10.1016/j.cropro.2018.06.011
  58. 58. Tozze Jr HJ, Massola Jr NM, Camara MP, Gioria R, Suzuki O, Brunelli KR, et al. First report of Colletotrichum boninense causing anthracnose on pepper in Brazil. Plant Dis. 2009;93(1):106. https://doi.org/10.1094/PDIS-93-1-0106A
  59. 59. Rajapakse RG. Observations on anthracnose of chilli pepper (Capsicum annuum L.) caused by Colletotrichum species in Sri Lanka. PhD [dissertation]. London: Imperial College London, Univ London; 1998.
  60. 60. Damm U, Cannon PF, Woudenberg JH, Crous PW. The Colletotrichum acutatum species complex. Stud Mycol. 2012;73:37-113. https://doi.org/10.3114/sim0010
  61. 61. Manandhar JB, Hartman GL, Wang TC. Anthracnose development on pepper fruits inoculated with Colletotrichum gloeosporioides. Plant Dis. 1995;79:380-3. https://doi.org/10.1094/PD-79-0380
  62. 62. Sariah M. Incidence of Colletotrichum spp. on chili in Malaysia and pathogenicity of C. gloeosporioides. BIOTROP Spec Publ. 1994;54:103-20.
  63. 63. Yu CH, Jin LH, Zhou MG. Effect of azoxystrobin on oxygen consumption and cyt b gene expression of Colletotrichum capsici from chilli fruits. Agric Sci China. 2009;8(5):628-31. https://doi.org/10.1016/S1671-2927(08)60255-2
  64. 64. Chakravarthy BP, Anil Kumar TB. Control of seed borne infection of Colletotrichum capsici in chillies. Curr Res. 1975;4:172.
  65. 65. Gopinath K, Radhakrishnan NV, Jayaraj J. Effect of propiconazole and difenoconazole on the control of anthracnose of chilli fruits caused by Colletotrichum capsici. Crop Prot. 2006;25(9):1024-31. https://doi.org/10.1016/j.cropro.2006.02.001
  66. 66. Chauhan Y, Patel R, Chaudhary R, Rathod N. Efficacy of different fungicides for the management of chilli anthracnose caused by Colletotrichum capsici. Bioscan. 2014;9(1):399-402.
  67. 67. Pandey KK, Gupta RC. Management of anthracnose (Colletotrichum capsici) in chilli (Capsicum annuum L.) through fungicides, bioagents and hand-picking methods. J Spices Aromat Crops. 2015;24(2):141-4.
  68. 68. Park JW, Balaraju K, Kim JW, Lee SW, Park K. Systemic resistance and growth promotion of chili pepper induced by an antibiotic producing Bacillus vallismortis strain BS07. Biol Control. 2013;65(2):246-57. https://doi.org/10.1016/j.biocontrol.2013.02.002
  69. 69. Loc NH, Huy ND, Quang HT, Lan TT, Thu Ha TT. Characterisation and antifungal activity of extracellular chitinase from a biocontrol fungus, Trichoderma asperellum PQ34. Mycology. 2020;11(1):38-48. https://doi.org/10.1080/21501203.2019.1703839
  70. 70. Rodríguez-Martínez ES, Rios-Velasco C, Sepúlveda-Ahumada DR, Buenrostro-Figueroa JJ, Correia KC, Guigón-López C, et al. Trichoderma species from semiarid regions and their antagonism against the microorganisms that cause pepper wilt. J Fungi. 2025;11(3):174. https://doi.org/10.3390/jof11030174
  71. 71. Nawaz K, Shahid AA, Bengyella L, Subhani MN, Ali M, Anwar W, et al. Diversity of Trichoderma species in chili rhizosphere that promote vigor and antagonism against virulent Phytophthora capsici. Sci Hortic. 2018;239:242-52. https://doi.org/10.1016/j.scienta.2018.05.048
  72. 72. Naglot A, Goswami S, Rahman I, Shrimali DD, Yadav KK, Gupta VK, et al. Antagonistic potential of native Trichoderma viride strain against potent tea fungal pathogens in Northeast India. Plant Pathol J. 2015;31(3):278-89. https://doi.org/10.5423/PPJ.OA.01.2015.0004
  73. 73. Ngullie M, Daiho L, Upadhyay DN. Biological management of fruit rot in the world's hottest chilli (Capsicum chinense Jacq.). J Plant Prot Res. 2010;50(3):269-73. https://doi.org/10.2478/v10045-010-0047-8
  74. 74. Fatima SN, Rizvi ZF, Hyder S, Gondal AS, Latif M, Nazir HM, et al. Biochemical profiling of selected plant extracts and their antifungal activity in comparison with fungicides against Colletotrichum capsici L. causing anthracnose of chilli. Plant Stress. 2023;10:100287. https://doi.org/10.1016/j.stress.2023.100287
  75. 75. Singh H, Korpraditskul V, Singh RP, Saxena RC. Evaluation of some plant extracts for the control of Colletotrichum capsici (Syd.) Butler and Bisby, the causal agent of chilli anthracnose. In: Singh RP, Saxena RC, editors. Azadirachta indica A Juss. Enfield (NH): Science Publishers; 1999. p. 131-8.
  76. 76. Ali A, Bordoh PK, Singh A, Siddiqui Y, Droby S. Post-harvest development of anthracnose in pepper (Capsicum spp.): etiology and management strategies. Crop Prot. 2016;90:132-41. https://doi.org/10.1016/j.cropro.2016.07.026
  77. 77. Ali M, Li QH, Zou T, Wei AM, Gombojav G, Lu G, et al. Chitinase gene positively regulates hypersensitive and defense responses of pepper to Colletotrichum acutatum infection. Int J Mol Sci. 2020;21(18):6624. https://doi.org/10.3390/ijms21186624
  78. 78. Nguyen NT, Nguyen DH, Pham DD, Dang VP, Nguyen QH, Hoang DQ. New oligochitosan-nanosilica hybrid materials: preparation and application on chili plants for resistance to anthracnose disease and growth enhancement. Polym J. 2017;49(12):861-9. https://doi.org/10.1038/pj.2017.58
  79. 79. Meena M, Yadav G, Sonigra P, Nagda A, Mehta T, Swapnil P, et al. Role of elicitors to initiate the induction of systemic resistance in plants to biotic stress. Plant Stress. 2022;5:100103. https://doi.org/10.1016/j.stress.2022.100103
  80. 80. Jeyalakshmi C, Seetharaman K. Biological control of fruit rot and die-back of chilli with plant products and antagonistic microorganisms. Plant Dis Res. 1998;13:46-8.
  81. 81. Rahman MS, Akhter MS, Maya MA, Rahman A, Akanda AM. Field resistance of chilli cultivars against anthracnose disease caused by Colletotrichum capsici. Thai J Agric Sci. 2011;44(4):243-50.
  82. 82. GBS MC, Ruban S. In vitro antagonistic potential of bacterial endophytes against chilli anthracnose pathogen Colletotrichum acutatum. Indian J Exp Biol. 2024;62(10):824-33.
  83. 83. Atiq M, Rajput NA, Sahi ST, Akram A, Usman M, Kachelo GA, et al. A way forward towards the management of chilli anthracnose: a review. J Agric Sci. 2022;4(1):1-10. https://doi.org/10.56520/asj.v4i1.137
  84. 84. Hyder S, Gondal AS, Rizvi ZF, Ahmad R, Alam MM, Hannan A, et al. Characterization of native plant growth promoting rhizobacteria and their anti-oomycete potential against Phytophthora capsici affecting chilli pepper (Capsicum annuum L.). Sci Rep. 2020;10(1):13859. https://doi.org/10.1038/s41598-020-69410-3
  85. 85. McCoy JE, Bosland PW. Identification of resistance to powdery mildew in chilli pepper. HortScience. 2019;54(1):4-7. https://doi.org/10.21273/HORTSCI13596-18
  86. 86. Tilahun T, Abate S, Andualem S, Kebede D, Gebreamanule B, Taye M. Hot pepper wilt intensity, management practices and pathogenic variability of Fusarium oxysporum f. sp. capsici isolates in northwest Ethiopia. Arch Phytopathol Plant Prot. 2024;57(17-20):933-62. https://doi.org/10.1080/03235408.2024.2426827
  87. 87. Saeed S, Sahi ST, Atiq M, Shahid M, Arshad M. Exploration of resistance and susceptibility in chilli varieties and advanced lines against Fusarium wilt caused by Fusarium oxysporum f. sp. capsici. Int J Phytopathol. 2022;11(1):59-64. https://doi.org/10.33687/phytopath.011.01.4148
  88. 88. Abbas MT, Anjum T, Anwar W, Khurshid M, Akhter A. Characterization and induction of biochar-induced Capsicum annuum defense against bacterial wilt. J Soil Sci Plant Nutr. 2024;24(3):6211-23. https://doi.org/10.1007/s42729-024-01991-8
  89. 89. Kaale LD, Kimanya ME, Macha IJ, Mlalila N. Aflatoxin contamination and recommendations to improve its control: a review. World Mycotoxin J. 2021;14(1):27-40. https://doi.org/10.3920/WMJ2020.2599
  90. 90. Hua SST, Parfitt DE, Sarreal SBL, Sidhu G. Dual culture of atoxigenic and toxigenic strains of Aspergillus flavus to gain insight into repression of aflatoxin biosynthesis and fungal interaction. Mycotoxin Res. 2019;35(4):381-9. https://doi.org/10.1007/s12550-019-00364-w
  91. 91. Sahar N, Arif S, Afzal Q, Ahmed M, Ara J, Chaudhry Q. Impact of discoloration and picking practices of red chilies on aflatoxin levels. Pak J Bot. 2013;45(5):1669-72.
  92. 92. Akhund S, Akram A, Hanif NQ, Qureshi R, Naz F, Nayyar BG. Pre-harvest aflatoxins and Aspergillus flavus contamination in variable germplasms of red chillies from Kunri, Pakistan. Mycotoxin Res. 2017;33(2):147-55. https://doi.org/10.1007/s12550-017-0274-1
  93. 93. Zhao X, Schaffner DW, Yue T. Quantification of aflatoxin risk associated with Chinese spices: point and probability risk assessments for aflatoxin B1. Food Control. 2013;33(2):366-77. https://doi.org/10.1016/j.foodcont.2013.03.012
  94. 94. Monger A, Mongar P, Dorji T, Chhetri V. The occurrence and human health risk assessment of total aflatoxins and aflatoxin B1 in selected food commodities in Bhutan. Sci Rep. 2024;14(1):16258. https://doi.org/10.1038/s41598-024-63677-6
  95. 95. San Phyo ST, Maneeboon T, Mahakarnchanakul W, Chuaysrinule C. Prevalence and risk assessment of aflatoxins and ochratoxin A in dried chili and pepper products in Myanmar. J Agric Food Res. 2024;18(2):101541. https://doi.org/10.1016/j.jafr.2024.101541
  96. 96. Reddy SV, Kiran Mayi D, Uma Reddy M, Thirumala-Devi K, Reddy DVR. Aflatoxin B1 in different grades of chillies (Capsicum annuum L.) in India as determined by indirect competitive ELISA. Food Addit Contam. 2001;18(6):553-8. https://doi.org/10.1080/02652030119491
  97. 97. Omrani S, Abid M, Sahar N, Sheikh A. Fungal incidence and aflatoxins contamination in two major chilli varieties of Sindh, Pakistan. Pak J Bot. 2024;56(1):389-93. https://doi.org/10.30848/PJB2024-1(22)
  98. 98. Paterson RRM. Aflatoxins contamination in chilli samples from Pakistan. Food Control. 2007;18(7):817-20. https://doi.org/10.1016/j.foodcont.2006.04.005
  99. 99. Food and Drug Administration Center for Food Safety and Applied Nutrition, Joint Institute for Food Safety and Applied Nutrition, Risk Sciences International. FDA-iRISK version 4.2. College Park (MD): FDA CFSAN; 2021.
  100. 100. Singh P, Cotty PJ. Aflatoxin contamination of dried red chilies: contrasts between the United States and Nigeria, two markets differing in regulation enforcement. Food Control. 2017;80:374-9. https://doi.org/10.1016/j.foodcont.2017.05.014
  101. 101. Kumar G, Nanda S, Singh SK, Kumar S, Singh D, Singh BN, et al. Seaweed extracts: enhancing plant resilience to biotic and abiotic stresses. Front Mar Sci. 2024;11:1457500. https://doi.org/10.3389/fmars.2024.1457500
  102. 102. Ali O, Ramsubhag A, Jayaraman J. Biostimulant properties of seaweed extracts in plants: implications towards sustainable crop production. Plants. 2021;10(3):531. https://doi.org/10.3390/plants10030531
  103. 103. MacKinnon SL, Hiltz D, Ugarte R, Craft CA. Improved methods of analysis for betaines in Ascophyllum nodosum and its commercial seaweed extracts. J Appl Phycol. 2010;22(4):489-94. https://doi.org/10.1007/s10811-009-9483-0
  104. 104. Agarwal PK, Dangariya M, Agarwal P. Seaweed extracts: potential biodegradable, environmentally friendly resources for regulating plant defence. Algal Res. 2021;58:102363. https://doi.org/10.1016/j.algal.2021.102363
  105. 105. Carillo P, Ciarmiello LF, Woodrow P, Corrado G, Chiaiese P, Rouphael Y. Enhancing sustainability by improving plant salt tolerance through macro- and micro-algal biostimulants. Biology. 2020;9(9):253. https://doi.org/10.3390/biology9090253
  106. 106. Abdelaziz AM, Attia MS, Saleem MS, Refaay DA, Alhoqail WA, Senousy HH. Cyanobacteria-mediated immune responses in pepper plants against Fusarium wilt. Plants. 2022;11(15):2049. https://doi.org/10.3390/plants11152049
  107. 107. Shukla PS, Mantin EG, Adil M, Bajpai S, Critchley AT, Prithiviraj B. Ascophyllum nodosum-based biostimulants: sustainable applications in agriculture for the stimulation of plant growth, stress tolerance and disease management. Front Plant Sci. 2019;10:462648. https://doi.org/10.3389/fpls.2019.00655
  108. 108. Shaari NEM, Khandaker MM, Tajudin MTFM, Majrashi A, Alenazi MM, Badaluddin NA, et al. Enhancing the growth performance, cellular structure and Rubisco gene expression of cadmium-treated Brassica chinensis using Sargassum polycystum and Spirulina platensis extracts. Horticulturae. 2023;9(7):738. https://doi.org/10.3390/horticulturae9070738
  109. 109. Latifah E, Korlina E, Kuntariningsih A, Suswati E. Nursery protection to enhance agricultural yield and promote sustainability in chilli farming. J Sustain Sci Manag. 2021;16(5):67-79. https://doi.org/10.46754/jssm.2021.07.005
  110. 110. Meghwar BL, Khan A, Lakhiar IA, Mirani AA, Daper MS, Kalroo MW. Comparison between solar tunnel, solar-cum gas dryer and open sun drying methods for drying red chilies. Pak J Agric Res. 2023;36(1):63-70. https://doi.org/10.17582/journal.pjar/2022/36.1.63.70
  111. 111. Elmatsani HM, Munarso SJ, Benyamin B, Budiyanto A, Yohanes H, Djafar MJ, et al. Global perspective on red chili drying: insights from two decades of research (2004-2023). Front Sustain Food Syst. 2024;8:1456938. https://doi.org/10.3389/fsufs.2024.1456938
  112. 112. National Foods Limited. Make in Pakistan: case study on value chain sustainability model. Islamabad (Pakistan): National Foods Limited; 2018. p. 10
  113. 113. Maskey B, Bhattarai R, Bhattarai G, Shrestha NK. Post-harvest quality of fresh Akabare chili (Capsicum chinense) as affected by hydrocooling, package modification and storage temperature. Int J Food Prop. 2021;24(1):163-73. https://doi.org/10.1080/10942912.2020.1865399
  114. 114. Wijaya CH, Harda M, Rana B. Diversity and potency of Capsicum spp. grown in Indonesia. In: Capsikum. London: IntechOpen; 2020. p. 3-24.
  115. 115. Spherical Insights. Top chilli consuming countries in 2025: market demand, key growth drivers and trends. 2025.
  116. 116. Wandschneider T, Gniffke P, Kristedi T, Boga K, Adiyoga W. Eastern Indonesia agribusiness development opportunities: chilli value chain. Canberra (Australia): Aust Cent Int Agric Res; 2019.
  117. 117. Suhardiman D, Clare C, NK, Saw. A Karen indigenous approach to food sovereignty: tracing processes of institutional emergence. Geoforum. 2025;159:104214. https://doi.org/10.1016/j.geoforum.2025.104214
  118. 118. Yang W, Li W, Wang L. How should rural development be chosen? The mechanism narration of rural regional function: a case study of Gansu Province, China. Heliyon. 2023;9(10):e20485. https://doi.org/10.1016/j.heliyon.2023.e20485
  119. 119. Liu H, Yang H, Zheng J, Jia D, Wang J, Li Y, et al. Irrigation scheduling strategies based on soil matric potential on yield and fruit quality of mulched-drip irrigated chili pepper in Northwest China. Agric Water Manag. 2012;115:232-41. https://doi.org/10.1016/j.agwat.2012.09.009
  120. 120. Ro N, Lee GA, Ko HC, Oh H, Lee S, Haile M, et al. Exploring disease resistance in pepper (Capsicum spp.) germplasm collection using Fluidigm SNP genotyping. Plants. 2024;13(10):1344. https://doi.org/10.3390/plants13101344
  121. 121. Puripunyavanich V, Nan TN, Suwan N, Orpong P, Picha R, Maikaeo L, et al. Breeding for anthracnose disease resistance in chili pepper (Capsicum annuum L.) using gamma irradiation. Trends Sci. 2024;21(8):7709. https://doi.org/10.48048/tis.2024.7709

Downloads

Download data is not yet available.