Analysis of Vegetation and Plant Diversity in High Conservation Value Areas in Oil Palm Plantations
DOI:
https://doi.org/10.14719/pst.2924Keywords:
Diversity, HCV, Oil Palm, Plantation, VegetationAbstract
The expansion of oil palm plantations is often rumored to impact the destruction of forests and other ecosystems with high conservation value (HCV). This study aimed to analyze the vegetation and plant diversity in the HCV area of oil palm plantations. The research was conducted on an oil palm plantation in Seruyan District, Central Kalimantan Province, Indonesia with an HCV area of 5379 ha. The research was carried out using the grid transect method on various types of vegetation, divided into four plots: seedlings, saplings, poles and trees. Parameters observed included the number of species, the number of individuals and the level of plant diversity. The results showed that the research location had good vegetation and plant diversity in the HCV area. There were 25 plant species from 17 families with a total of 355 plants. The number of species found in the seedling plots was 11 species (6 families) with a total of 38 plants; in the sapling plots was 16 species (12 families) with a total of 159 plants; in the pole plots was 14 species (11 families) with a total of 43 plants, and in the tree plots was 13 species (10 families) 115 plants. There was variation in the number of species and families in each plot. The overall plant diversity index was low. The diversity index of plants in the plots of seedlings, saplings, poles and trees (and the average) was in the low category.
Downloads
References
Mustajab R. Luas kebun kelapa sawit Indonesia hampir 15 juta hektare pada; 2022. Available from: https://dataindonesia.id/sektor-riil/detail/luas-kebun-sawit-indonesia-hampir-15-juta-hektare-pada-2022
Krishna VV, Kubitza C. Impact of oil palm expansion on the provision of private and community goods in rural Indonesia. Ecol Econo. 2021;179:106829. http://doi.org/10.1016/j.ecolecon.2020.106829
Abdul-Hamid AQ, Ali MH, Osman LH, Tseng ML, Lim MK. Industry 4.0 quasi-effect between circular economy and sustainability: Palm oil industry. Int J Prod Econ. 2022;253:108616. Available from: http://doi.org/10.1016/j.ijpe.2022.108616
Rajakal JP, Hwang JZH, Hassim MH, Andiappan V, Tan QT, Ng DKS. Integration and optimisation of palm oil sector with multiple-industries to achieve circular economy. Sustain Prod Consum. 2023;40:318-36. http://doi.org/10.1016/j.spc.2023.06.022
Foong SY, Chan YH, Lock SSM, Chin BLF, Yiin CL, Cheah KW et al. Microwave processing of oil palm wastes for bioenergy production and circular economy: Recent advancements, challenges and future prospects. Bioresour Technol. 2023;369:128478. https://doi.org/10.1016/j.biortech.2022.128478
Cheah WY, Siti-Dina RP, Leng STK, Er AC, Show PL. Circular bioeconomy in palm oil industry: Current practices and future perspectives. Environ Technol Innov. 2023;30:103050. https://doi.org/10.1016/j.eti.2023.103050
Waudby H, Zein SH. A circular economy approach for industrial scale biodiesel production from palm oil mill effluent using microwave heating: Design, simulation, techno-economic analysis and location comparison. Process Safety and Environmental Protection. 2021;148:1006-18. http://doi.org/10.1016/j.psep.2021.02.011
Dermawan A, Hospes O, Termeer CJAM. Between zerodeforestation and zero-tolerance from the state: Navigating strategies of palm oil companies of Indonesia. For Policy Econ. 2022;136:102690. https://doi.org/10.1016/j.forpol.2022.102690
Lieke SD, Spiller A, Busch G. Can consumers understand that there is more to palm oil than deforestation?. Sustain Prod Consum. 2023;39:495-505. https://doi.org/10.1016/j.spc.2023.05.037
Leijten F, Lantz C Baldos U, Johnson JA, Sim S, Verburg PH. Projecting global oil palm expansion under zero-deforestation commitments: Direct and indirect land use change impacts. iScience. 2023;26(6):106971. https://doi.org/10.1016/j.isci.2023.106971
Cisneros E, Kis-Katos K, Nuryartono N. Palm oil and the politics of deforestation in Indonesia. J Environ Econ Manage. 2021;108:102453. https://doi.org/10.1016/j.jeem.2021.102453
Li X, Zhang X, Yang H. Estimating the opportunity costs of avoiding oil palm-based deforestation in Indonesia: Implications for REDD+. Chinese JPop, Res and Environ. 2020;18(1):9-15. http://doi.org/10.1016/j.cjpre.2021.04.010
Papilo P, Marimin M, Hambali E, Machfud M, Yani M, Asrol M et al. Palm oil-based bioenergy sustainability and policy in Indonesia and Malaysia: A systematic review and future agendas. Heliyon. 2022;8(10):e10919-e10919. https://doi.org/10.1016/j.heliyon.2022.e10919
da Silva CFA, de Andrade MO, dos Santos AM, de Melo SN. Road network and deforestation of indigenous lands in the Brazilian Amazon. Transp Res D Transp Environ. 2023;119:103735. https://doi.org/10.1016/j.trd.2023.103735
Bose P. Equitable land-use policy? Indigenous peoples’ resistance to mining-induced deforestation. Land use policy. 2023;129:106648. https://doi.org/10.1016/j.landusepol.2023.106648
Camino M, Aceves PAV, Alvarez A, Chianetta P, de la Cruz LM, Alonzo K et al. Indigenous Lands with secure landtenure can reduce forestloss in deforestation hotspots. Global Environmental Change. 2023;81:102678. https://doi.org/10.1016/j.gloenvcha.2023.102678
Silva JG da, Almeida RB de, Carvalho LV. An economic analysis of a zero-deforestation policy in the Brazilian Amazon. Ecological Economics. 2023;203:107613. https://doi.org/10.1016/j.ecolecon.2022.107613
Fortin D, Cimon-Morin J. Public opinion on the conflict between the conservation of at-risk species and the extraction of natural resources: The case of caribou in the boreal forest. Sci TotEnviron. 2023;897:165433. https://doi.org/10.1016/j.scitotenv.2023.165433
Pardo LE, Roque F de O, Campbell MJ, Younes N, Edwards W, Laurance WF. Identifying critical limits in oil palm cover for the conservation of terrestrial mammals in Colombia. Biol Conserv. 2018;227:65-73. https://doi.org/10.1016/j.biocon.2018.08.026
Ancrenaz M, Oram F, Nardiyono N, Silmi M, Jopony ME, Voigt M, Seaman DJ, Sherman J, Lackman I, Traeholt C, Wich SA. Importance of small forest fragments in agricultural landscapes for maintaining orangutan metapopulations. Fron Forests and Gl Change. 2021;4:560944. https://doi.org/10.3389/ffgc.2021.560944
Sharma S, MacKenzie RA, Tieng T, Soben K, Tulyasuwan N, Resanond A et al. The impacts of degradation, deforestation and restoration on mangrove ecosystem carbon stocks across Cambodia. Sci Tot Environ. 2020;706:135416. https://doi.org/10.1016/j.scitotenv.2019.135416
Silva RM da, Lopes AG, Santos CAG. Deforestation and fires in the Brazilian Amazon from 2001 to 2020: Impacts on rainfall variability and land surface temperature. J Environ Manage. 2023;326:116664. https://doi.org/10.1016/j.jenvman.2022.116664
Chaddad F, Mello FAO, Tayebi M, Safanelli JL, Campos LR, Amorim MTA et al. Impact of mining-induced deforestation on soil surface temperature and carbon stocks: A case study using remote sensing in the Amazon rainforest. J South Am Earth Sci. 2022;119:103983. https://doi.org/10.1016/j.jsames.2022.103983
Davari M, Gholami L, Nabiollahi K, Homaee M, Jafari HJ. Deforestation and cultivation of sparse forest impacts on soil quality (case study: West Iran, Baneh). Soil Tillage Res. 2020;198:104504. https://doi.org/10.1016/j.still.2019.104504
Dietz J, Treydte AC, Lippe M. Exploring the future of Kafue National Park, Zambia: Scenario-based land use and land cover modelling to understand drivers and impacts of deforestation. Land Use Policy. 2023;126:106535. https://doi.org/10.1016/j.landusepol.2023.106535
Khodadadi M, Alewell C, Mirzaei M, Ehssan-Malahat E, Asadzadeh F, Strauss P et al. Understanding deforestation impacts on soil erosion rates using 137Cs, 239+240Pu and 210Pbex and soil physicochemical properties in western Iran. J Environ Radioact. 2023;257:107078. https://doi.org/10.1016/j.jenvrad.2022.107078
Nordhaus I, Toben M, Fauziyah A. Impact of deforestation on mangrove tree diversity, biomass and community dynamics in the Segara Anakan lagoon, Java, Indonesia: A ten-year perspective. Estuar Coast Shelf Sci. 2019;227:106300. https://doi.org/10.1016/j.ecss.2019.106300
Peña-Arancibia JL, Bruijnzeel LA, Mulligan M, van Dijk AIJM. Forests as sponges and pumps: Assessing the impact of deforestation on dry-season flows across the tropics. J Hydrol (Amst). 2019;574:946-63. https://doi.org/10.1016/j.jhydrol.2019.04.064
Rico-Straffon J, Wang Z, Panlasigui S, Loucks CJ, Swenson J, Pfaff A. Forest concessions and eco-certifications in the Peruvian Amazon: Deforestation impacts of logging rights and logging restrictions. J Environ Econ Manage. 2023;118:102780. https://doi.org/10.1016/j.jeem.2022.102780
Gatti RC, Velichevskaya A. Certified “sustainable” palm oil took the place of endangered Bornean and Sumatran large mammals habitat and tropical forests in the last 30 years. Sci Total Environ. 2020;742:140712. https://doi.org/10.1016/j.scitotenv.2020.140712
Rocha MH, Capaz RS, Silva Lora EE, Horta Nogueira LA, Vicente Leme MM, Grillo Reno ML et al. Life cycle assessment (LCA) for biofuels in Brazilian conditions: AF meta-analysis. Renewable& Sustainable Energy Reviews. 2014;7:435-59. https://doi.org/10.1016/j.rser.2014.05.036
Konczal AA, Derks J, de Koning JHC, Winkel G. Integrating nature conservation measures in European forest management – An exploratory study of barriers and drivers in 9 European countries. J Environ Manage. 2023;325:116619. https://doi.org/10.1016/j.jenvman.2022.116619
Rajarajeswari C, Anbalagan C. Integration of the green and lean principles for more sustainable development: A case study. Mater Today Proc. 2023. https://doi.org/10.1016/j.matpr.2023.03.275
Ashiagbor G, Asante WA, Forkuo EK, Acheampong E, Foli E. Monitoring cocoa-driven deforestation: The contexts of encroachment and land use policy implications for deforestation free cocoa supply chains in Ghana. Applied Geography. 2022;147:102788. https://doi.org/10.1016/j.apgeog.2022.102788
Zovko K, Šeri? L, Perkovi? T, Belani H, Šoli? P. IoT and health monitoring wearable devices as enabling technologies for sustainable enhancement of life quality in smart environments. J Clean Prod. 2023;413:137506. https://doi.org/10.1016/j.jclepro.2023.137506
Contini G, Peruzzini M, Bulgarelli S, Bosi G. Developing key performance indicators for monitoring sustainability in the ceramic industry: The role of digitalization and industry 4.0 technologies. J Clean Prod. 2023;414:137664. https://doi.org/10.1016/j.jclepro.2023.137664
Chibueze Izah S, Omozemoje Aigberua A, Lal Srivastav A. Microbial fuel cells: Potentially sustainable technology for bioelectricity production using palm oil mill effluents. Artificial Intelligence for Renewable Energy systems. 2022;105-29. https://doi.org/10.1016/B978-0-323-90396-7.00014-6
Castellanos-Navarrete A. Oil palm dispersal into protected wetlands: Human–environment dichotomies and the limits to governance in southern Mexico. Land Use Policy. 2021;103:105304. https://doi.org/10.1016/j.landusepol.2021.105304
Sakai K, Hassan MA, Vairappan CS, Shirai Y. Promotion of a green economy with the palm oil industry for biodiversity conservation: A touchstone toward a sustainable bioindustry. J Biosci Bioeng. 2022;133(5):414-24. Available from: http://doi.org/10.1016/j.jbiosc.2022.01.001
Nicholas KM, Fanzo J, MacManus K. Palm oil in Myanmar: A spatiotemporal study of how industrial farming affects biodiversity loss and the sustainable diet. Ann Glob Health. 2017;83(1):188. https://doi.org/10.1016/j.aogh.2017.03.473
Ayompe LM, Schaafsma M, Egoh BN. Towards sustainable palm oil production: The positive and negative impacts on ecosystem services and human wellbeing. J Clean Prod. 2021;278:123914. Available from: https://doi.org/10.1016/j.jclepro.2020.123914
Hamzah A, Salleh SNM, Sarmani S. Enhancing biodegradation of crude oil in soil using fertilizer and empty fruit bunch of oil palm. Sains Malays. 2014;43(9):1327-32.
Adman B, Muslim, Muslim T, Arifin Z, Priyono, Rengku MT et al. Kawasan wana patra lestari gunung sepuluh timur PT pertamina RU V. Yassir I, editor. Balikpapan: Balai Penelitian Teknologi Konservasi Sumber Daya Alam. 2018;1-132. p.
Uddin ABMN, Hossain F, Reza ASMA, Nasrin MS, Alam AHMK. Traditional uses, pharmacological activities and phytochemical constituents of the genus Syzygium: A review. Vol. 10, Food Science and Nutrition. John Wiley and Sons Inc. 2022; p. 1789-819. https://doi.org/10.1002/fsn3.2797
Usmadi D, Witono JR, Siregar M, Purnomo DW. Keanekaragaman dan status konservasi tumbuhan di hutan in situ kebun raya tanjung puri tabalong, kalimantan selatan. In: Pros Sem Nas Masy Biodiv Indon. 2018;304-09.
Atmoko T, Gunawan W, Emilia F, Mukhlisi, Prayana A, Arifin Z. Budaya masyarakat dayak benuaq dan potensi flora hutan lembonah. Sutedjo, editor. Balikpapan: Balai Penelitian Teknologi Konservasi Sumber Daya Alam. 2016;1-108 p.
Basrowi M, Qayim I, Raffiudin R. Pemodelan habitat potensial tumbuhan lebah apis dorsata di membalong, Belitung. Jurnal Ilmu Pertanian Indonesia. 2022;27(4):562-73. https://doi.org/10.18343/jipi.27.4.562
Patomihardjo T, Hermawan E, Wira Pradana E, Widiastuti Y. Flora riparian dan hutan rawa gambut untuk restorasi area dengan nilai konservasi tinggi (NKT) terdegradasi. Buchori D, Patomihardjo T, ed. Zoological Society of London (ZSL) Indonesia Programme. 2020;1-277 p.
Renner SS. The subfamily kibessioideae, its tribe pternandreae and its sole genus, pternandra. Systematics, Evolution and Ecology of Melastomataceae. 2022;193-95. https://doi.org/10.1007/978-3-030-99742-7_7
Fitri ZA, Hazlan NHN, Norafida NAN, Nizam MohdS, Latiff A. A preliminary checklist of flowering plants in pangkor selatan forest reserve, Perak, Peninsular Malaysia. Am J Agric Forest. 2021;9(4):258. https://doi.org/10.11648/j.ajaf.20210904.23
Harvey J. Groote Eylandt Mining Company (GEMCO). South32 Australia Regionç; 2016.
Phuspa MM, Kissinger, Asyari M. Karakteristik vegetasi sekitar jenis balangeran (Shorea balangeran korth) di taman hutan raya sultan adam mandiangin kabupaten banjar provinsi kalimantan selatan. Jurnal Sylva Scienteae. 2021;4(6):1092-101. https://doi.org/10.20527/jss.v4i6.4612
Tarsius, Hardiansyah G, Husni H. Keanekaragaman jenis vegetasi tingkat pohon di hutan adat gunung soka dusun padang sebatik kecamatan air besar kabupaten landak. Jurnal Hutan Lestari. 2019;7(1):559-68. https://doi.org/10.26418/jhl.v7i1.32712
Istikorini Y, Sari OY. Identification of endophytic fungi of balangeran (Shorea balangeran Korth.) by morphological characterization. Jurnal Sylva Lestari. 2022;10(2):211-22. https://doi.org/10.23960/jsl.v10i2.547
Indriani F, Siregar UJ, Matra DD, Siregar IZ. Ecological aspects and genetic diversity of Shorea balangeran in two forest types of Muara Kendawangan Nature Reserve, West Kalimantan, Indonesia. Biodiversitas. 2019;20(2):482-88. https://doi.org/10.13057/biodiv/d200226
Shipley JR, Gossner MM, Rigling A, Krumm F. Conserving forest insect biodiversity requires the protection of key habitat features. Trends Ecol Evol. 2023; https://doi.org/10.1016/j.tree.2023.05.015
Fahrig L, Arroyo-Rodríguez V, Bennett JR, Boucher-Lalonde V, Cazetta E, Currie DJ et al. Is habitat fragmentation bad for biodiversity?. Biol Conserv. 2019;230:179-86. http://doi.org/10.1016/j.biocon.2018.12.026
Al-Amin AQ, Azam MN, Kari F, Leal Filho W. Assessing the scenario concerning environmental sustainability in Malaysia. Scientific Research and Essays. 2011;6(1):103-09.
Xu X, Xie Y, Qi K, Luo Z, Wang X. Detecting the response of bird communities and biodiversity to habitat loss and fragmentation due to urbanization. Sci Total Environ. 2018;624:1561-76. https://doi.org/10.1016/j.scitotenv.2017.12.143
Ramalho WP, With KA, de Sousa Mesquita G, de Arruda FV, Guerra V, Ferraz D et al. Habitat fragmentation rather than habitat amount or habitat split reduces the diversity and abundance of ground-dwelling anurans within forest remnants of the Brazilian Cerrado. J Nat Conserv. 2022;69:126259. http://doi.org/10.1016/j.jnc.2022.126259
Fletcher RJ, Didham RK, Banks-Leite C, Barlow J, Ewers RM, Rosindell J et al. Is habitat fragmentation good for biodiversity?. Biol Conserv. 2018;226:9-15. https://doi.org/10.1016/j.biocon.2018.07.022
Banks-Leite C, Ewers RM, Folkard-Tapp H, Fraser A. Countering the effects of habitat loss, fragmentation and degradation through habitat restoration. One Earth. 2020;3(6):672-76. https://doi.org/10.1016/j.oneear.2020.11.016
Rogan JE, Lacher TE. Impacts of habitat loss and fragmentation on terrestrial biodiversity. Reference Module in Earth Systems and Environmental Sciences. 2018; https://doi.org/10.1016/B978-0-12-409548-9.10913-3
Pardini R, Nichols E, Püttker T. Biodiversity response to habitat loss and fragmentation. Encyclopedia of the Anthropocene. 2018;1(5):229-39. https://doi.org/10.1016/B978-0-12-809665-9.09824-4
Synes NW, Ponchon A, Palmer SCF, Osborne PE, Bocedi G, Travis JMJ et al. Prioritising conservation actions for biodiversity: Lessening the impact from habitat fragmentation and climate change. Biol Conserv. 2020;252:108819. https://doi.org/10.1016/j.biocon.2020.108819
Padalia H, Bahuguna U. Spatial modelling of congruence of native biodiversity and potential hotspots of forest invasive species (FIS) in central Indian landscape. J Nat Conserv. 2017;36:29-37. https://doi.org/10.1016/j.jnc.2017.02.001
Piiroinen R, Fassnacht FE, Heiskanen J, Maeda E, Mack B, Pellikka P. Invasive tree species detection in the Eastern Arc Mountains biodiversity hotspot using one class classification. Remote Sens Environ. 2018;218:119-31. https://doi.org/10.1016/j.rse.2018.09.018
Mancuso FP, D’Agostaro R, Milazzo M, Badalamenti F, Musco L, Mikac B et al. The invasive seaweed Asparagopsis taxiformis erodes the habitat structure and biodiversity of native algal forests in the Mediterranean Sea. Mar Environ Res. 2022;173:105515. https://doi.org/10.1016/j.marenvres.2021.105515
Gross M. How to stop species invasions. Current Biology. 2022;32(24):R1325-28. https://doi.org/10.1016/j.cub.2022.11.065
Mou AT, Uddin MT, Rahman MH. Empirical assessment of species vulnerability for biodiversity conservation: A case study on Chalan beel of Bangladesh. Heliyon. 2023;9(4):e15251. https://doi.org/10.1016/j.heliyon.2023.e15251
Alharbi W, Petrovskii S. Effect of complex landscape geometry on the invasive species spread: Invasion with stepping stones. J Theor Biol. 2019;464:85-97. https://doi.org/10.1016/j.jtbi.2018.12.019
Shabani F, Ahmadi M, Kumar L, Solhjouy-fard S, Shafapour Tehrany M, Shabani F et al. Invasive weed species’ threats to global biodiversity: Future scenarios of changes in the number of invasive species in a changing climate. Ecol Indic. 2020;116:106436. https://doi.org/10.1016/j.ecolind.2020.106436
Steinhagen S, Hoffmann S, Pavia H, Toth GB. Molecular identification of the ubiquitous green algae Ulva reveals high biodiversity, crypticity and invasive species in the Atlantic-Baltic Sea region. Algal Res. 2023;73:103132. https://doi.org/10.1016/j.algal.2023.103132
Demeter L, Molnár ÁP, Bede-Fazekas Á, Öllerer K, Varga A, Szabados K et al. Controlling invasive alien shrub species, enhancing biodiversity and mitigating flood risk: A win–win–win situation in grazed floodplain plantations. J Environ Manage. 2021;295:113053. https://doi.org/10.1016/j.jenvman.2021.113053
Hale SS, Buffum HW, Hughes MM. Six decades of change in pollution and benthic invertebrate biodiversity in a southern New England estuary. Mar Pollut Bull. 2018;133:77-87. https://doi.org/10.1016/j.marpolbul.2018.05.019
Wang X, Teng Y, Wang X, Xu Y, Li R, Sun Y et al. Effects of combined pollution of organic pollutants and heavy metals on biodiversity and soil multifunctionality in e-waste contaminated soil. J Hazard Mater. 2022;440:129727. https://doi.org/10.1016/j.jhazmat.2022.129727
Barton MG, Henderson I, Border JA, Siriwardena G. A review of the impacts of air pollution on terrestrial birds. Sci Total Environ. 2023;873:162136. https://doi.org/10.1016/j.scitotenv.2023.162136
Zhang W, Shen J, Wang J. Linking pollution to biodiversity and ecosystem multifunctionality across benthic-pelagic habitats of a large eutrophic lake: A whole-ecosystem perspective. Environmental Pollution. 2021;285:117501. https://doi.org/10.1016/j.envpol.2021.117501
Dulsat-Masvidal M, Ciudad C, Infante O, Mateo R, Lacorte S. Water pollution threats in important bird and biodiversity areas from Spain. J Hazard Mater. 2023;448:130938.http://doi.org/10.1016/j.jhazmat.2023.130938
Abdelhady AA, Khalil MM, Ismail E, Mohamed RSA, Ali A, Snousy MG et al. Potential biodiversity threats associated with the metal pollution in the Nile–Delta ecosystem (Manzala lagoon, Egypt). Ecol Indic. 2019;98:844-53. https://doi.org/10.1016/j.ecolind.2018.12.002
Soto-Navarro J, Jordá G, Compa M, Alomar C, Fossi MC, Deudero S. Impact of the marine litter pollution on the Mediterranean biodiversity: A risk assessment study with focus on the marine protected areas. Mar Pollut Bull. 2021;165:112169. https://doi.org/10.1016/j.marpolbul.2021.112169
Farooq U, Ashfaq K, Rustamovna RD, Al-Naimi AA. Impact of air pollution on corporate investment: New empirical evidence from BRICS. Borsa Istanbul Review. 2023;23(4):876-86. https://doi.org/10.1016/j.bir.2023.03.004
Feckler A, Wolfram J, Schulz R, Bundschuh M. Reducing pollution to levels not harming biodiversity and ecosystem functions – one perspective on the post-2020 Global Biodiversity Framework. Curr Opin Environ Sci Health. 2023;100495. https://doi.org/10.1016/j.coesh.2023.100495
Shannon L, Coll M. Assessing the changing biodiversity of exploited marine ecosystems. Curr Opin Environ Sustain. 2017;29:89-97. https://doi.org/10.1016/j.cosust.2018.01.008
Katic PG, Cerretelli S, Haggar J, Santika T, Walsh C. Mainstreaming biodiversity in business decisions: Taking stock of tools and gaps. Biol Conserv.2023;277:109831. https://doi.org/10.1016/j.biocon.2022.109831
Duchesne T, Rault PA, Quistinic P, Dufrêne M, Lourdais O. Combining forest exploitation and heathland biodiversity: Edges structure drives microclimates quality and reptile abundance in a coniferous plantation. For Ecol Manage. 2023;544:121188. https://doi.org/10.1016/j.foreco.2023.121188
Pröbstl F, Paulsch A, Zedda L, Nöske N, Cardona Santos EM, Zinngrebe Y. Biodiversity policy integration in five policy sectors in Germany: How can we transform governance to make implementation work?. Earth System Governance. 2023;16:100175. https://doi.org/10.1016/j.esg.2023.100175
Bush J, Doyon A. Tackling intersecting climate change and biodiversity emergencies: Opportunities for sustainability transitions research. Environ Innov Soc Transit. 2021;41:57-59. https://doi.org/10.1016/j.eist.2021.09.010
Muluneh MG, Worku BB. Contributions of urban green spaces for climate change mitigation and biodiversity conservation in Dessie city, Northeastern Ethiopia. Urban Clim. 2022;46:101294. http://doi.org/10.1016/j.uclim.2022.101294
Dueñas A, Jiménez-Uzcátegui G, Bosker T. The effects of climate change on wildlife biodiversity of the Galapagos islands. Climate Change Ecology. 2021 Dec 1;2:100026. https://doi.org/10.1016/j.ecochg.2021.100026
He X, Ziegler AD, Elsen PR, Feng Y, Baker JCA, Liang S et al. Accelerating global mountain forest loss threatens biodiversity hotspots. One Earth. 2023;6(3):303-15. Available from: http://doi.org/10.1016/j.oneear.2023.02.005
Dai Q, Cao Y, Chu ML, Larson ER, Suski CD. Agricultural conservation may not help Midwestern US freshwater biodiversity in a changing climate. Sci Total Environ. 2023;872:162143. https://doi.org/10.1016/j.scitotenv.2023.162143
Fonseca A, Santos JA, Mariza S, Santos M, Martinho J, Aranha J et al. Tackling climate change impacts on biodiversity towards integrative conservation in Atlantic landscapes. Glob Ecol Conserv. 2022;38:e02216. https://doi.org/10.1016/j.gecco.2022.e02216
Farooqi TJA, Irfan M, Portela R, Zhou X, Shulin P, Ali A. Global progress in climate change and biodiversity conservation research. Glob Ecol Conserv. 2022;38:e02272. https://doi.org/10.1016/j.gecco.2022.e02272
Manes S, Grey KA, Debnath A, Costello MJ, Vale MM. Imperiled by climate change: Global biodiversity rich-spots. Imperiled: The Encyclopedia of Conservation: 2022;1-3:609-21. https://doi.org/10.1016/B978-0-12-821139-7.00162-8
Wu H, Yu L, Shen X, Hua F, Ma K. Maximizing the potential of protected areas for biodiversity conservation, climate refuge and carbon storage in the face of climate change: A case study of Southwest China. Biol Conserv. 2023;284:110213. https://doi.org/10.1016/j.biocon.2023.110213
Talukder B, Ganguli N, Matthew R, vanLoon GW, Hipel KW, Orbinski J. Climate change-accelerated ocean biodiversity loss & associated planetary health impacts. The Journal of Climate Change and Health. 2022;6:100114. https://doi.org/10.1016/j.joclim.2022.100114
Bohan DA, Richter A, Bane M, Therond O, Pocock MJO. Farmer-led agroecology for biodiversity with climate change. Trends Ecol Evol. 2022;37(11):927-30. https://doi.org/10.1016/j.tree.2022.07.006
Filho WL, Nagy GJ, Setti AFF, Sharifi A, Donkor FK, Batista K et al. Handling the impacts of climate change on soil biodiversity. Sci Total Environ. 2023;869:161671. https://doi.org/10.1016/j.scitotenv.2023.161671
Downloads
Published
Versions
- 05-01-2024 (2)
- 27-11-2023 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Erwin Dafis Nasution, Akhmad R Saidy, Bambang J Priatmadi, Hafizianor, Suwardi, Sukarman, Moch. Dasrial, Himmatul Ulya Alfiana, Rahman Jailani
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).