Green guardians: Harnessing biopesticides for sustainable vegetable pest management

Authors

DOI:

https://doi.org/10.14719/pst.3688

Keywords:

Vegetables, insect pests, biopesticides, sustainable management

Abstract

Insect pests pose significant challenges to vegetable crops, causing not only economic losses but also compromising the quality of our food. Shockingly, up to 20 % of globally produced goods fall victim to these insidious invaders. While chemical insecticides have historically bolstered food production, they come with notable drawbacks, including handling risks, residue concerns and negative impacts on non-target species and the environment.
Though they have not yet completely replaced chemical insecticides, biopesticides are becoming key in reducing pesticide overuse and promoting safer, residue-free food and environments. Derived from plants and microorganisms, biopesticides offer a safer alternative, ranging from plant extracts to microbial agents such as bacteria, fungi, viruses and nematodes. Additionally, insect hormones and semiochemicals, along with silica-based mineral products like activated clay and rice husk, contribute to eco-friendly pest control solutions. Cutting-edge nano biopesticides also deliver unparalleled pest control with precision targeting and excellent environmental credentials.
In this comprehensive exploration, we delve deep into the myriad forms of biopesticides, their commercial availability, modes of action and the advantages and disadvantages in vegetable pest management. Crucially, we illuminate the path toward integrating biopesticides into holistic pest management strategies, which can lead to healthier crops, increased yields and more sustainable agricultural practices. By emphasizing biopesticides, we can promote environmental safety and support a greener future in agriculture.

Downloads

Download data is not yet available.

References

Mantzoukas S, Eliopoulos PA. Endophytic entomopathogenic fungi: A valuable biological control tool against plant pests. Applied Sciences. 2020;10(1):360. https://doi.org/10.3390/app10010360

Rathee M, Dalal P. Emerging insect pests in Indian agriculture. Indian Journal of Entomology. 2018;80(2):267-81. https://doi.org/10.5958/0974-8172.2018.00043.3

Borges S, Alkassab AT, Collison E, Hinarejos S, Jones B, McVey E, et al. Overview of the testing and assessment of effects of microbial pesticides on bees: strengths, challenges and perspectives. Apidologie. 2021;1-22. https://doi.org/10.1007/s13592-021-00900-7

Kumar J, Ramlal A, Mallick D, Mishra V. An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants. 2021;10(6):1185. https://doi.org/10.3390/plants10061185

Jin Y, Wang Z, Dong AY, Huang YQ, Hao GF, Song BA. Web repositories of natural agents promote pests and pathogenic microbes management. Brief Bioinform. 2021;22(6):bbab205. https://doi.org/10.1093/bib/bbab205

Adeleke BS, Ayilara MS, Akinola SA, Babalola OO. Biocontrol mechanisms of endophytic fungi. Egypt J Biol Pest Control. 2022;32(1):1-17. https://doi.org/10.1186/s41938-022-00547-1

Saxena AK, Kumar M, Chakdar H, Anuroopa N, Bagyaraj DJ. Bacillus species in soil as a natural resource for plant health and nutrition. J Appl Microbiol. 2020;128(6):1583-94. https://doi.org/10.1111/jam.14506

Sansinenea E. Bacillus spp.: As plant growth-promoting bacteria. Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms: Discovery and Applications. 2019;225-37. https://doi.org/10.1007/978-981-13-5862-3_11

Ortiz A, Sansinenea E. Recent advancements for microorganisms and their natural compounds useful in agriculture. Appl Microbiol Biotechnol. 2021;105:891-97. https://doi.org/10.1007/s00253-020-11030-y

Xiao Y, Wu K. Recent progress on the interaction between insects and Bacillus thuringiensis crops. Philosophical Transactions of the Royal Society B. 2019;374(1767):20180316. https://doi.org/10.1098/rstb.2018.0316

Ujváry I. Pest control agents from natural products. In: Hayes’ Handbook of Pesticide Toxicology. Elsevier; 2010. p. 119-229. https://doi.org/10.1016/B978-0-12-374367-1.00003-3

Ruiu L. Microbial biopesticides in agroecosystems. Agronomy. 2018;8(11):235. https://doi.org/10.3390/agronomy8110235

Ramanujam B, Rangeshwaran R, Sivakmar G, Mohan M, Yandigeri MS. Management of insect pests by microorganisms. Proceedings of the Indian National Science Academy. 2014;80(2):455-71. https://doi.org/10.16943/ptinsa/2014/v80i2/3

Sithanantham S. Organic pest management: Emerging trends and future thrusts. Organic Crop Production Management. 2023;267-77. https://doi.org/10.1201/9781003283560-17

Subbanna A, Khan MS, Stanley J, Kalyana Babu B. Diversity of Bacillus thuringiensis isolates native to Uttarakhand Himalayas, India and their bioefficacy against selected insect pests. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2018;88:1489-98. https://doi.org/10.1007/s40011-017-0892-6

Reyaz AL, Gunapriya L, Indra Arulselvi P. Molecular characterization of indigenous Bacillus thuringiensis strains isolated from Kashmir valley. 3 Biotech. 2017;7:1-11. https://doi.org/10.1007/s13205-017-0756-z

Zaki O, Weekers F, Thonart P, Tesch E, Kuenemann P, Jacques P. Limiting factors of mycopesticide development. Biological Control. 2020;144:104220. https://doi.org/10.1016/j.biocontrol.2020.104220

Gabarty A, Salem HM, Fouda MA, Abas AA, Ibrahim AA. Pathogencity induced by the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in Agrotis ipsilon (Hufn.). J Radiat Res Appl Sci. 2014;7(1):95-100. https://doi.org/10.1016/j.jrras.2013.12.004

Qayyum MA, Saeed S, Wakil W, Nawaz A, Iqbal N, Yasin M, et al. Diversity and correlation of entomopathogenic and associated fungi with soil factors. Journal of King Saud University-Science. 2021;33(6):101520. https://doi.org/10.1016/j.jksus.2021.101520

Akmal M, Freed S, Malik MN, Gul HT. Efficacy of Beauveria bassiana (Deuteromycotina: Hypomycetes) against different aphid species under laboratory conditions. Pak J Zool. 2013;45(1).

Woo RM, Park MG, Choi JY, Park DH, Kim JY, Wang M, et al. Insecticidal and insect growth regulatory activities of secondary metabolites from entomopathogenic fungi, Lecanicillium attenuatum. Journal of Applied Entomology. 2020;144(7):655-63. https://doi.org/10.1111/jen.12788

Nicoletti R, Becchimanzi A. Endophytism of Lecanicillium and Akanthomyces. Agriculture. 2020;10(6):205. https://doi.org/10.3390/agriculture10060205

Rivas F, Nuñez P, Jackson T, Altier N. Effect of temperature and water activity on mycelia radial growth, conidial production and germination of Lecanicillium spp. isolates and their virulence against Trialeurodes vaporariorum on tomato plants. BioControl. 2014;59(1):99-109. https://doi.org/10.1007/s10526-013-9542-y

Azizoglu U, Jouzani GS, Yilmaz N, Baz E, Ozkok D. Genetically modified entomopathogenic bacteria, recent developments, benefits and impacts: A review. Science of the Total Environment. 2020;734:139169. https://doi.org/10.1016/j.scitotenv.2020.139169

Guerrero-Guerra C, Reyes-Montes M del R, Toriello C, Hernández-Velázquez V, Santiago-López I, Mora-Palomino L, et al. Study of the persistence and viability of Metarhizium acridum in Mexico’s agricultural area. Aerobiologia (Bologna). 2013;29:249-61. https://doi.org/10.1007/s10453-012-9277-8

Wang XiaoShuang WX, Xu Jing XJ, Wang XingMin WX, Qiu BaoLi QB, Cuthbertson AGS, Du CaiLian DC, et al. Isaria fumosorosea-based zero-valent iron nanoparticles affect the growth and survival of sweet potato whitefly, Bemisia tabaci (Gennadius). 2019; https://doi.org/10.1002/ps.5340

Aw KMS, Hue SM. Mode of infection of Metarhizium spp. fungus and their potential as biological control agents. Journal of Fungi. 2017;3(2):30. https://doi.org/10.3390/jof3020030

López-Ferber M. Special issue “Insect Viruses and Pest Management.” Vol. 12, Viruses. MDPI; 2020. p. 431. https://doi.org/10.3390/v12040431

Reid S, De Malmanche H, Chan L, Popham H, Van Oers MM. Production of entomopathogenic viruses. In: Mass Production of Beneficial Organisms. Elsevier; 2023. p. 375-406. https://doi.org/10.1016/B978-0-12-822106-8.00020-8

Zhang XX, Liang ZP, Peng HY, Zhang ZX, Tang XC, Liu TQ. Characterization and partial genome sequence analysis of Clostera anachoreta granulovirus. Virus Res. 2005;113(1):36-43. https://doi.org/10.1016/j.virusres.2005.04.013

Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS. Insect pathogens as biological control agents: Back to the future. J Invertebr Pathol. 2015;132:1-41. https://doi.org/10.1016/j.jip.2015.07.009

Miranti M, Panatarani C, Joni IM, Putri MHO, Kasmara H, Melanie M, et al. Preparation and evaluation of zeolite nanoparticles as a delivery system for Helicoverpa armigera nucleopolyhedrovirus (Ha NPV) against the Spodoptera litura (Fabricius, 1775) larvae. Microorganisms. 2023;11(4):847. https://doi.org/10.3390/microorganisms11040847

Thakore Y. The biopesticide market for global agricultural use. Industrial Biotechnology. 2006;2(3):194-208. https://doi.org/10.1089/ind.2006.2.194

Kumar D, Kumari P, Kamboj R, Kumar A, Banakar P, Kumar V. Entomopathogenic nematodes as potential and effective biocontrol agents against cutworms, Agrotis spp.: present and future scenario. Egypt J Biol Pest Control. 2022;32(1):1-10. https://doi.org/10.1186/s41938-022-00543-5

Shapiro-Ilan D, Arthurs SP, Lacey LA. Microbial control of arthropod pests of orchards in temperate climates. Microbial Control of Insect and Mite Pests. 2017;253-67. https://doi.org/10.1016/B978-0-12-803527-6.00017-2

Kalia V, Sharma G, Shapiro-Ilan DI, Ganguly S. Biocontrol potential of Steinernema thermophilum and its symbiont Xenorhabdus indica against lepidopteran pests: virulence to egg and larval stages. J Nematol. 2014;46(1):18.

Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, Ray A, et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int J Mol Sci. 2022;23(5):2690. https://doi.org/10.3390/ijms23052690

Karimi A, Meiners T. Antifungal activity of Zataria multiflora Boiss. essential oils and changes in volatile compound composition under abiotic stress conditions. Ind Crops Prod. 2021;171:113888. https://doi.org/10.1016/j.indcrop.2021.113888

Selvaraj C, Kennedy JS, Suganthy M. Oviposition deterrence effect of EC formulations of Strychnos nux-vomica L. plant extracts against Plutella xylostella Linn. under laboratory conditions. J Entomol Zool Stud. 2017;5:180-84.

Suganthy M, Gajendra CV. Chemical characterization of Strychnos nux-vomica L. leaves for biopesticidal properties using GC-MS. Int J Chem Stud. 2020;8(1):1112-16. https://doi.org/10.22271/chemi.2020.v8.i1o.8398

Masih SC, Ahmad BR. Insect growth regulators for insect pest control. Int J Curr Microbiol App Sci. 2019;8(12):208-18. https://doi.org/10.20546/ijcmas.2019.812.030

Das G, Joarder J, Khan MAM. Efficacy of chitin synthesis inhibitors in arresting growth and development of Okra Jassid, Amrasca Biguttula Biguttula (Ishida). Sustainability in Food and Agriculture (SFNA). 2021;2(2):64-68. https://doi.org/10.26480/sfna.02.2021.64.68

Cohen E. Chitin synthesis and inhibition: a revisit. Pest Manag Sci. 2001;57(10):946-50. https://doi.org/10.1002/ps.363

Yankanchi SR, Gadache AH. Grain protectant efficacy of certain plant extracts against rice weevil, Sitophilus oryzae L. (Coleoptera: Curculionidae). Journal of Biopesticides. 2010;3(2):511-13. https://doi.org/10.57182/jbiopestic.3.2.511-513

Sláma K. Insect hormones: more than 50-years after the discovery of insect juvenile hormone analogues (JHA, juvenoids). Terr Arthropod Rev. 2013;6(4):257-333. https://doi.org/10.1163/18749836-06041073

Chaubey MK. Role of phytoecdysteroids in insect pest management: a review. Journal of Agronomy. 2018;17(1):1-10. https://doi.org/10.3923/ja.2018.1.10

Ezzat SM, Jeevanandam J, Egbuna C, Merghany RM, Akram M, Daniyal M, et al. Semiochemicals: A green approach to pest and disease control. In: Natural Remedies for Pest, Disease and Weed Control. Elsevier; 2020. p. 81-89. https://doi.org/10.1016/B978-0-12-819304-4.00007-5

Darshanee HLC, Ren H, Ahmed N, Zhang ZF, Liu YH, Liu TX. Volatile-mediated attraction of greenhouse whitefly Trialeurodes vaporariorum to tomato and eggplant. Front Plant Sci. 2017;8:1285. https://doi.org/10.3389/fpls.2017.01285

Dar SA, Wani SH, Mir SH, Showkat A, Dolkar T, Dawa T. Biopesticides: mode of action, efficacy and scope in pest management. Journal of Advanced Research in Biochemistry and Pharmacology. 2021;4(1):1-8.

Witzgall P, Kirsch P, Cork A. Sex pheromones and their impact on pest management. J Chem Ecol. 2010;36:80-100. https://doi.org/10.1007/s10886-009-9737-y

Reddy GVP, Guerrero A. New pheromones and insect control strategies. Vitam Horm. 2010;83:493-519. https://doi.org/10.1016/S0083-6729(10)83020-1

Constantinescu-Aruxandei D, Lupu C, Oancea F. Siliceous natural nanomaterials as biorationals—plant protectants and plant health strengtheners. Agronomy. 2020;10(11):1791. https://doi.org/10.3390/agronomy10111791

Suganthy M, Sowmiya A, Yuvaraj M, Anitha R. Silicon- a potential alternative in insect pest management for sustainable agriculture. Silicon. 2023;1-24.

Sankari SA, Narayanasamy P. Bio-efficacy of flyash-based herbal pesticides against pests of rice and vegetables. Curr Sci. 2007;811-16.

Bagchi SS, Jadhan RT. Pesticide dusting powder formulation using flyash-A cost effective innovation. Indian Journal of Environmental Protection. 2006;26(11):1019.

Bakhat HF, Bibi N, Hammad HM, Shah GM, Abbas S, Rafique HM, et al. Effect of silicon fertilization on eggplant growth and insect population dynamics. Silicon. 2023;15(8):3515-23. https://doi.org/10.1007/s12633-022-02279-1

Hariani OS. Effect of using rice husk ash on the growth of chili (Capsicum annuum L.). Contributions of Central Research Institute for Agriculture. 2023;17(2):52-57. https://doi.org/10.35335/cceria.v17i2.75

Vinutha JS, Bhagat D, Bakthavatsalam N. Nanotechnology in the management of polyphagous pest Helicoverpa armigera. J Acad Indus Res. 2013;1(10):606-08.

Fabiyi OA, Alabi RO, Ansari RA. Nanoparticles’ synthesis and their application in the management of phytonematodes: An overview. Management of Phytonematodes: Recent Advances and Future Challenges. 2020;125-40. https://doi.org/10.1007/978-981-15-4087-5_6

Singh M, Manikandan S, Kumaraguru AK. Nanoparticles: a new technology with wide applications. Research Journal of Nanoscience and Nanotechnology. 2011;1(1):1-11. https://doi.org/10.3923/rjnn.2011.1.11

Riseh RS, Hassanisaadi M, Vatankhah M, Soroush F, Varma RS. Nano/microencapsulation of plant biocontrol agents by chitosan, alginate and other important biopolymers as a novel strategy for alleviating plant biotic stresses. Int J Biol Macromol. 2022;

Sobral MCM, Martins IM, Sobral AJFN. Role of chitosan and chitosan-based nanoparticles against heavy metal stress in plants. In: Role of Chitosan and Chitosan-Based Nanomaterials in Plant Sciences. Elsevier; 2022. p. 273-96. https://doi.org/10.1016/B978-0-323-85391-0.00011-3

Shahid M, Naeem-Ullah U, Khan WS, Saeed S, Razzaq K. Biocidal activity of green synthesized silver nanoformulation by Azadirachta indica extract a biorational approach against notorious cotton pest whitefly, Bemisia tabaci (Homoptera; Aleyrodidae). Int J Trop Insect Sci. 2022;42(3):2443-54. https://doi.org/10.1007/s42690-022-00771-0

Kantrao S, Ravindra MA, Akbar SMD, Jayanthi PDK, Venkataraman A. Effect of biosynthesized silver nanoparticles on growth and development of Helicoverpa armigera (Lepidoptera: Noctuidae): Interaction with midgut protease. J Asia Pac Entomol. 2017;20(2):583-89. https://doi.org/10.1016/j.aspen.2017.03.018

Kamaraj C, Gandhi PR, Elango G, Karthi S, Chung IM, Rajakumar G. Novel and environmental friendly approach; impact of neem (Azadirachta indica) gum nano formulation (NGNF) on Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.). Int J Biol Macromol. 2018;107:59-69. https://doi.org/10.1016/j.ijbiomac.2017.08.145

El-Wahab A, El-Bendary HM. Nano silica as a promising nano pesticide to control three different aphid species under semi-field conditions in Egypt. Egyptian Academic Journal of Biological Sciences, F Toxicology and Pest Control. 2016;8(2):35-49. https://doi.org/10.21608/eajbsf.2016.17117

Khoshraftar Z, Safekordi AA, Shamel A, Zaefizadeh M. Synthesis of natural nanopesticides with the origin of Eucalyptus globulus extract for pest control. Green Chem Lett Rev. 2019;12(3):286-98. https://doi.org/10.1080/17518253.2019.1643930

Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. Journal of Controlled Release. 2019;294:131-53. https://doi.org/10.1016/j.jconrel.2018.12.012

Sabbour MM, Singer SM. Observations of the effect of two isolated nano Bacillus thuringiensis on Tuta absoluta infestation under laboratory and field condition. Res J Pharm Biol Chem Sci. 2016;7(2):1891-97.

Zheng Y, You S, Ji C, Yin M, Yang W, Shen J. Development of an amino acid-functionalized fluorescent nanocarrier to deliver a toxin to kill insect pests. Advanced Materials. 2016;28(7):1375-80. https://doi.org/10.1002/adma.201504993

de Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv. 2014;32(8):1550-61. https://doi.org/10.1016/j.biotechadv.2014.10.010

Zhang D, Zhang Z, Unver T, Zhang B. CRISPR/Cas: A powerful tool for gene function study and crop improvement. J Adv Res. 2021;29:207-21. https://doi.org/10.1016/j.jare.2020.10.003

Palli SR. RNA interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide. Curr Opin Insect Sci. 2014;6:1-8. https://doi.org/10.1016/j.cois.2014.09.011

Yu X, Liu Z, Huang S, Chen Z, Sun Y, Duan P, et al. RNAi-mediated plant protection against aphids. Pest Manag Sci. 2016;72(6):1090-98. https://doi.org/10.1002/ps.4258

Chen IW, Grebenok RJ, Zhao C, He L, Lei J, Ji R, et al. RNAi-mediated plant sterol modification to control insect herbivore pests: insights from Arabidopsis and the diamondback moth. J Pest Sci. 2024;97(2):725-37. https://doi.org/10.1007/s10340-023-01651-3

Ali SR, Lucas-Herald A, Bryce J, Ahmed SF. The role of international databases in understanding the aetiology and consequences of differences/disorders of sex development. Int J Mol Sci. 2019;20(18):4405. https://doi.org/10.3390/ijms20184405

Mohite PA, Khan SAR. Field evaluation of certain chemicals and biopesticides against pod borer, Helicoverpa armigera (Hubner) in Chickpea: An experimental research. Research Highlights in Agricultural Sciences. 2022;6:45-54. https://doi.org/10.9734/bpi/rhas/v6/4408A

El Husseini MM. Pathogenicity of nuclear polyhedrosis virus to Galleria mellonella L. (Lepidoptera: Pyralidae) and its control on stored beeswax foundations. Egypt J Biol Pest Control. 2020;30(1):101. https://doi.org/10.1186/s41938-020-00302-4

Singh KI, Debbarma A, Singh HR. Field efficacy of certain microbial insecticides against Plutella xylostella Linnaeus and Pieris brassicae Linnaeus under cabbage-crop-ecosystem of Manipur. Journal of Biological Control. 2015;194-202. https://doi.org/10.18641/jbc/29/4/94913

Gao G, Sai L. Towards a ‘virtual’world: Social isolation and struggles during the COVID-19 pandemic as single women living alone. Gend Work Organ. 2020;27(5):754-62. https://doi.org/10.1111/gwao.12468

Vijaykumar L, Anusha SB, Ashwini SB, Divya B. Bio-efficacy of Beauveria bassiana against gram pod borer, Helicoverpa armigera Hubner (Noctuidae: Lepidoptera) in chickpea. J Pharmacogn Phytochem. 2022;11(2):197-201.

Ali K, Wakil W, Zia K, Sahi ST. Control of Earias vittella (Lepidoptera: Noctuidae) by Beauveria bassiana along with Bacillus thuringiensis. Int J Agric Biol. 2015;17(4). https://doi.org/10.17957/IJAB/14.0009

Fallet P, Bazagwira D, Guenat JM, Bustos-Segura C, Karangwa P, Mukundwa IP, et al. Laboratory and field trials reveal the potential of a gel formulation of entomopathogenic nematodes for the biological control of fall armyworm caterpillars (Spodoptera frugiperda). Biological Control. 2022;176:105086. https://doi.org/10.1016/j.biocontrol.2022.105086

Toepfer S, Hatala-Zseller I, Ehlers RU, Peters A, Kuhlmann U. The effect of application techniques on field-scale efficacy: can the use of entomopathogenic nematodes reduce damage by western corn rootworm larvae? 2010; https://doi.org/10.1111/j.1461-9563.2010.00487.x

Gafar BB, Yadav U, Mushinamwar DR, Chavan SR. Efficacy of certain biopesticides and chemicals against gram pod borer [Helicoverpa armigera (Hubner)] on chickpea (Cicer arietinum L). International Journal of Advanced Biochemistry Research. 2024;8(5):339-42. https://doi.org/10.33545/26174693.2024.v8.i5d.1104

Upadhyay RR, Singh PS, Singh SK. Comparative efficacy and economics of certain insecticides against gram pod borer, Helicoverpa armigera (Hübner) in chickpea. Int J Plant Prot. 2020;48(4):403-10.

Chitralekha YGS, Verma T. Efficacy of insecticides against Helicoverpa armigera on chickpea. J Entomol Zool Stud. 2018;6(3):1058-61.

Abbas A, Wang Y, Muhammad U, Fatima A. Efficacy of different insecticides against gram pod borer (Helicoverpa armigera) and their safety to the beneficial fauna. Int J Biosci. 2021;18:82-88.

Golvankar GM, Desai VS, Dhobe NS. Management of chickpea pod borer, Helicoverpa armigera Hubner by using microbial pesticides and botanicals. Trends Biosci. 2015;8(4):887-90.

Meena RK, Naqui AR, Meena DS, Shibbhagvan S. Evaluation of bio-pesticides and indoxacarb against gram pod borer on chickpea. J Entomol Zool Stud. 2018;6(2):2208-12.

Archana HR, Darshan K, Lakshmi MA, Ghoshal T, Bashayal BM, Aggarwal R. Biopesticides: A key player in agro-environmental sustainability. In: Trends of Applied Microbiology for Sustainable Economy. Elsevier; 2022. p. 613-53. https://doi.org/10.1016/B978-0-323-91595-3.00021-5

Sezen K, Demir Ý, Demirba? Z. Identification and pathogenicity of entomopathogenic bacteria from common cockchafer, Melolontha melolontha (Coleoptera: Scarabaeidae). N Z J Crop Hortic Sci. 2007;35(1):79-85. https://doi.org/10.1080/01140670709510171

Legwaila MM, Munthali DC, Kwerepe BC, Obopile M. Efficacy of Bacillus thuringiensis (var. kurstaki) against diamondback moth (Plutella xylostella L.) eggs and larvae on cabbage under semi-controlled greenhouse conditions. Int J Insect Sci. 2015;7:IJIS-S23637. https://doi.org/10.4137/IJIS.S23637

Cordova-Kreylos AL, Fernandez LE, Koivunen M, Yang A, Flor-Weiler L, Marrone PG. Isolation and characterization of Burkholderia rinojensis sp. nov., a non-Burkholderia cepacia complex soil bacterium with insecticidal and miticidal activities. Appl Environ Microbiol. 2013;79(24):7669-78. https://doi.org/10.1128/AEM.02365-13

Kil YJ, Seo MJ, Kang DK, Oh SN, Cho HS, Youn YN, et al. Effects of Enterobacteria (Burkholderia spp.) on development of Riptortus pedestris. 2014; https://doi.org/10.5109/1434382

Kaur T, Vasudev A, Sohal SK, Manhas RK. Insecticidal and growth inhibitory potential of Streptomyces hydrogenans DH16 on major pest of India, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). BMC Microbiol. 2014;14:1-9. https://doi.org/10.1186/s12866-014-0227-1

Nishi O, Sushida H, Higashi Y, Iida Y. Epiphytic and endophytic colonisation of tomato plants by the entomopathogenic fungus Beauveria bassiana strain GHA. Mycology. 2021;12(1):39-47. https://doi.org/10.1080/21501203.2019.1707723

Wakil W, Kavallieratos NG, Ghazanfar MU, Usman M, Habib A, El-Shafie HAF. Efficacy of different entomopathogenic fungal isolates against four key stored-grain beetle species. J Stored Prod Res. 2021;93:101845. https://doi.org/10.1016/j.jspr.2021.101845

Mathur A, Singh S, Singh NP, Meena M. Field evaluation of plant products and microbial formulations against brinjal shoot and fruit borer, Leucinodes orbonalis Guenee under semi-arid conditions of Rajasthan. Journal of Biopesticides. 2012;5(1):71. https://doi.org/10.57182/jbiopestic.5.1.71-74

Chelvi CT, Thilagaraj WR, Nalini R. Field efficacy of formulations of microbial insecticide Metarhizium anisopliae (Hyphocreales: Clavicipitaceae) for the control of sugarcane white grub Holotrichia serrata F (Coleoptera: Scarabidae). Journal of Biopesticides. 2011;4(2):186. https://doi.org/10.57182/jbiopestic.4.2.186-189

Ujjan AA, Shahzad S. Use of entomopathogenic fungi for the control of mustard aphid (Lipaphis erysimi) on canola (Brassica napus L.). Pak J Bot. 2012;44(6):2081-86.

Putnoky-Csicsó B, Tonk S, Szabó A, Márton Z, Tóthné Bogdányi F, Tóth F, et al. Effectiveness of the entomopathogenic fungal species Metarhizium anisopliae strain NCAIM 362 treatments against soil inhabiting Melolontha melolontha larvae in sweet potato (Ipomoea batatas L.). Journal of Fungi. 2020;6(3):116. https://doi.org/10.3390/jof6030116

Mariam GH, Hala H, Elsherbiny EA, Nofal AM. Efficacy of entomopathogenic fungi Metarhizium anisopliae and Cladosporium cladosporioides as biocontrol agents against two tetranychid mites (Acari: Tetranychidae). Egypt J Biol Pest Control. 2016;26(2).

Maqsood S, Afzal M, Aqueel MA, Raza ABM, Wakil W, Babar MH. Efficacy of nuclear polyhedrosis virus and flubendiamide alone and in combination against Spodoptera litura F. Pak J Zool. 2017;49(5). https://doi.org/10.17582/journal.pjz/2017.49.5.1783.1788

Nawaz A, Ali H, Sufyan M, Gogi MD, Arif MJ, Ranjha MH, et al. Comparative bio-efficacy of nuclear polyhedrosis virus (NPV) and spinosad against American bollworm, Helicoverpa armigera (Hubner). Rev Bras Entomol. 2020; 63:277-82. https://doi.org/10.1016/j.rbe.2019.09.001

Kour R, Gupta RK, Hussain B, Kour S. Synergistic effect of naturally occurring granulosis virus isolates (PbGV) with phagostimulants against the cabbage butterfly, Pieris brassicae (L.) for its eco-friendly management. Egypt J Biol Pest Control. 2022;32(1):5. https://doi.org/10.1186/s41938-022-00502-0

Saravanan G. Plants and phytochemical activity as botanical pesticides for sustainable agricultural crop production in India- Mini review. J Agric Food Res. 2022;9:100345. https://doi.org/10.1016/j.jafr.2022.100345

Ngegba PM, Cui G, Khalid MZ, Zhong G. Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture. 2022;12(600). https://doi.org/10.3390/agriculture12050600

Divekar P. Botanical pesticides: An eco-friendly approach for management of insect pests. Acta Scientific Agriculture (ISSN: 2581-365X). 2023;7(2). https://doi.org/10.31080/ASAG.2023.07.1236

Jayanthi PD K, Aurade RM, Kempraj V, Chakravarthy AK, Verghese A. Glimpses of semiochemical research applications in Indian horticulture: Present status and future perspectives. New Horizons in Insect Science: Towards Sustainable Pest Management. 2015;239-57. https://doi.org/10.1007/978-81-322-2089-3_22

Sharma A, Raina R, Kapoor R, Thakur KS. Eco-friendly management of tobacco caterpillar with pheromone traps and Bacillus thuringiensis var. kurstaki in Chamba district of Himachal Pradesh, India. Journal of Entomological Research. 2020;44(4):523-28. https://doi.org/10.5958/0974-4576.2020.00088.2

Soti A, Regmi R, Shrestha AK, Thapa RB. Effect of net house on tomato leaf miner (Tuta absoluta) (Meyrick) (Lepidoptera: Gelechiidae) population in tomato cultivated in Chitwan, Nepal. Turkish Journal of Agriculture-Food Science and Technology. 2020;8(11):2368-71. https://doi.org/10.24925/turjaf.v8i11.2368-2371.3608

Mitchell ER. Disruption of pheromonal communication among coexistent pest insects with multichemical formulations. Bioscience. 1975;25(8):493-99. https://doi.org/10.2307/1296961

Sohrab WH, Prasad CS. Investigation on level of infestation and management of cucurbit fruit fly, Bactrocera cucurbitae (Coquillett) in different cucurbit crops. International Journal of Pure Applied Bioscience SPI. 2018;6(1):184-96. https://doi.org/10.18782/2320-7051.1124

Published

11-11-2024 — Updated on 18-11-2024

Versions

How to Cite

1.
Priya VAC, Suganthy M, Sowmiya A, Preetha G, Janaki P, Parameswari E, Krishnan R. Green guardians: Harnessing biopesticides for sustainable vegetable pest management. Plant Sci. Today [Internet]. 2024 Nov. 18 [cited 2024 Dec. 22];11(4). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/3688

Issue

Section

Review Articles

Most read articles by the same author(s)