Green guardians: Harnessing biopesticides for sustainable vegetable pest management
DOI:
https://doi.org/10.14719/pst.3688Keywords:
Vegetables, insect pests, biopesticides, sustainable managementAbstract
Insect pests pose significant challenges to vegetable crops, causing not only economic losses but also compromising the quality of our food. Shockingly, up to 20 % of globally produced goods fall victim to these insidious invaders. While chemical insecticides have historically bolstered food production, they come with notable drawbacks, including handling risks, residue concerns and negative impacts on non-target species and the environment.
Though they have not yet completely replaced chemical insecticides, biopesticides are becoming key in reducing pesticide overuse and promoting safer, residue-free food and environments. Derived from plants and microorganisms, biopesticides offer a safer alternative, ranging from plant extracts to microbial agents such as bacteria, fungi, viruses and nematodes. Additionally, insect hormones and semiochemicals, along with silica-based mineral products like activated clay and rice husk, contribute to eco-friendly pest control solutions. Cutting-edge nano biopesticides also deliver unparalleled pest control with precision targeting and excellent environmental credentials.
In this comprehensive exploration, we delve deep into the myriad forms of biopesticides, their commercial availability, modes of action and the advantages and disadvantages in vegetable pest management. Crucially, we illuminate the path toward integrating biopesticides into holistic pest management strategies, which can lead to healthier crops, increased yields and more sustainable agricultural practices. By emphasizing biopesticides, we can promote environmental safety and support a greener future in agriculture.
Downloads
References
Mantzoukas S, Eliopoulos PA. Endophytic entomopathogenic fungi: A valuable biological control tool against plant pests. Applied Sciences. 2020;10(1):360. https://doi.org/10.3390/app10010360
Rathee M, Dalal P. Emerging insect pests in Indian agriculture. Indian Journal of Entomology. 2018;80(2):267-81. https://doi.org/10.5958/0974-8172.2018.00043.3
Borges S, Alkassab AT, Collison E, Hinarejos S, Jones B, McVey E, et al. Overview of the testing and assessment of effects of microbial pesticides on bees: strengths, challenges and perspectives. Apidologie. 2021;1-22. https://doi.org/10.1007/s13592-021-00900-7
Kumar J, Ramlal A, Mallick D, Mishra V. An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants. 2021;10(6):1185. https://doi.org/10.3390/plants10061185
Jin Y, Wang Z, Dong AY, Huang YQ, Hao GF, Song BA. Web repositories of natural agents promote pests and pathogenic microbes management. Brief Bioinform. 2021;22(6):bbab205. https://doi.org/10.1093/bib/bbab205
Adeleke BS, Ayilara MS, Akinola SA, Babalola OO. Biocontrol mechanisms of endophytic fungi. Egypt J Biol Pest Control. 2022;32(1):1-17. https://doi.org/10.1186/s41938-022-00547-1
Saxena AK, Kumar M, Chakdar H, Anuroopa N, Bagyaraj DJ. Bacillus species in soil as a natural resource for plant health and nutrition. J Appl Microbiol. 2020;128(6):1583-94. https://doi.org/10.1111/jam.14506
Sansinenea E. Bacillus spp.: As plant growth-promoting bacteria. Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms: Discovery and Applications. 2019;225-37. https://doi.org/10.1007/978-981-13-5862-3_11
Ortiz A, Sansinenea E. Recent advancements for microorganisms and their natural compounds useful in agriculture. Appl Microbiol Biotechnol. 2021;105:891-97. https://doi.org/10.1007/s00253-020-11030-y
Xiao Y, Wu K. Recent progress on the interaction between insects and Bacillus thuringiensis crops. Philosophical Transactions of the Royal Society B. 2019;374(1767):20180316. https://doi.org/10.1098/rstb.2018.0316
Ujváry I. Pest control agents from natural products. In: Hayes’ Handbook of Pesticide Toxicology. Elsevier; 2010. p. 119-229. https://doi.org/10.1016/B978-0-12-374367-1.00003-3
Ruiu L. Microbial biopesticides in agroecosystems. Agronomy. 2018;8(11):235. https://doi.org/10.3390/agronomy8110235
Ramanujam B, Rangeshwaran R, Sivakmar G, Mohan M, Yandigeri MS. Management of insect pests by microorganisms. Proceedings of the Indian National Science Academy. 2014;80(2):455-71. https://doi.org/10.16943/ptinsa/2014/v80i2/3
Sithanantham S. Organic pest management: Emerging trends and future thrusts. Organic Crop Production Management. 2023;267-77. https://doi.org/10.1201/9781003283560-17
Subbanna A, Khan MS, Stanley J, Kalyana Babu B. Diversity of Bacillus thuringiensis isolates native to Uttarakhand Himalayas, India and their bioefficacy against selected insect pests. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2018;88:1489-98. https://doi.org/10.1007/s40011-017-0892-6
Reyaz AL, Gunapriya L, Indra Arulselvi P. Molecular characterization of indigenous Bacillus thuringiensis strains isolated from Kashmir valley. 3 Biotech. 2017;7:1-11. https://doi.org/10.1007/s13205-017-0756-z
Zaki O, Weekers F, Thonart P, Tesch E, Kuenemann P, Jacques P. Limiting factors of mycopesticide development. Biological Control. 2020;144:104220. https://doi.org/10.1016/j.biocontrol.2020.104220
Gabarty A, Salem HM, Fouda MA, Abas AA, Ibrahim AA. Pathogencity induced by the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in Agrotis ipsilon (Hufn.). J Radiat Res Appl Sci. 2014;7(1):95-100. https://doi.org/10.1016/j.jrras.2013.12.004
Qayyum MA, Saeed S, Wakil W, Nawaz A, Iqbal N, Yasin M, et al. Diversity and correlation of entomopathogenic and associated fungi with soil factors. Journal of King Saud University-Science. 2021;33(6):101520. https://doi.org/10.1016/j.jksus.2021.101520
Akmal M, Freed S, Malik MN, Gul HT. Efficacy of Beauveria bassiana (Deuteromycotina: Hypomycetes) against different aphid species under laboratory conditions. Pak J Zool. 2013;45(1).
Woo RM, Park MG, Choi JY, Park DH, Kim JY, Wang M, et al. Insecticidal and insect growth regulatory activities of secondary metabolites from entomopathogenic fungi, Lecanicillium attenuatum. Journal of Applied Entomology. 2020;144(7):655-63. https://doi.org/10.1111/jen.12788
Nicoletti R, Becchimanzi A. Endophytism of Lecanicillium and Akanthomyces. Agriculture. 2020;10(6):205. https://doi.org/10.3390/agriculture10060205
Rivas F, Nuñez P, Jackson T, Altier N. Effect of temperature and water activity on mycelia radial growth, conidial production and germination of Lecanicillium spp. isolates and their virulence against Trialeurodes vaporariorum on tomato plants. BioControl. 2014;59(1):99-109. https://doi.org/10.1007/s10526-013-9542-y
Azizoglu U, Jouzani GS, Yilmaz N, Baz E, Ozkok D. Genetically modified entomopathogenic bacteria, recent developments, benefits and impacts: A review. Science of the Total Environment. 2020;734:139169. https://doi.org/10.1016/j.scitotenv.2020.139169
Guerrero-Guerra C, Reyes-Montes M del R, Toriello C, Hernández-Velázquez V, Santiago-López I, Mora-Palomino L, et al. Study of the persistence and viability of Metarhizium acridum in Mexico’s agricultural area. Aerobiologia (Bologna). 2013;29:249-61. https://doi.org/10.1007/s10453-012-9277-8
Wang XiaoShuang WX, Xu Jing XJ, Wang XingMin WX, Qiu BaoLi QB, Cuthbertson AGS, Du CaiLian DC, et al. Isaria fumosorosea-based zero-valent iron nanoparticles affect the growth and survival of sweet potato whitefly, Bemisia tabaci (Gennadius). 2019; https://doi.org/10.1002/ps.5340
Aw KMS, Hue SM. Mode of infection of Metarhizium spp. fungus and their potential as biological control agents. Journal of Fungi. 2017;3(2):30. https://doi.org/10.3390/jof3020030
López-Ferber M. Special issue “Insect Viruses and Pest Management.” Vol. 12, Viruses. MDPI; 2020. p. 431. https://doi.org/10.3390/v12040431
Reid S, De Malmanche H, Chan L, Popham H, Van Oers MM. Production of entomopathogenic viruses. In: Mass Production of Beneficial Organisms. Elsevier; 2023. p. 375-406. https://doi.org/10.1016/B978-0-12-822106-8.00020-8
Zhang XX, Liang ZP, Peng HY, Zhang ZX, Tang XC, Liu TQ. Characterization and partial genome sequence analysis of Clostera anachoreta granulovirus. Virus Res. 2005;113(1):36-43. https://doi.org/10.1016/j.virusres.2005.04.013
Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS. Insect pathogens as biological control agents: Back to the future. J Invertebr Pathol. 2015;132:1-41. https://doi.org/10.1016/j.jip.2015.07.009
Miranti M, Panatarani C, Joni IM, Putri MHO, Kasmara H, Melanie M, et al. Preparation and evaluation of zeolite nanoparticles as a delivery system for Helicoverpa armigera nucleopolyhedrovirus (Ha NPV) against the Spodoptera litura (Fabricius, 1775) larvae. Microorganisms. 2023;11(4):847. https://doi.org/10.3390/microorganisms11040847
Thakore Y. The biopesticide market for global agricultural use. Industrial Biotechnology. 2006;2(3):194-208. https://doi.org/10.1089/ind.2006.2.194
Kumar D, Kumari P, Kamboj R, Kumar A, Banakar P, Kumar V. Entomopathogenic nematodes as potential and effective biocontrol agents against cutworms, Agrotis spp.: present and future scenario. Egypt J Biol Pest Control. 2022;32(1):1-10. https://doi.org/10.1186/s41938-022-00543-5
Shapiro-Ilan D, Arthurs SP, Lacey LA. Microbial control of arthropod pests of orchards in temperate climates. Microbial Control of Insect and Mite Pests. 2017;253-67. https://doi.org/10.1016/B978-0-12-803527-6.00017-2
Kalia V, Sharma G, Shapiro-Ilan DI, Ganguly S. Biocontrol potential of Steinernema thermophilum and its symbiont Xenorhabdus indica against lepidopteran pests: virulence to egg and larval stages. J Nematol. 2014;46(1):18.
Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, Ray A, et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int J Mol Sci. 2022;23(5):2690. https://doi.org/10.3390/ijms23052690
Karimi A, Meiners T. Antifungal activity of Zataria multiflora Boiss. essential oils and changes in volatile compound composition under abiotic stress conditions. Ind Crops Prod. 2021;171:113888. https://doi.org/10.1016/j.indcrop.2021.113888
Selvaraj C, Kennedy JS, Suganthy M. Oviposition deterrence effect of EC formulations of Strychnos nux-vomica L. plant extracts against Plutella xylostella Linn. under laboratory conditions. J Entomol Zool Stud. 2017;5:180-84.
Suganthy M, Gajendra CV. Chemical characterization of Strychnos nux-vomica L. leaves for biopesticidal properties using GC-MS. Int J Chem Stud. 2020;8(1):1112-16. https://doi.org/10.22271/chemi.2020.v8.i1o.8398
Masih SC, Ahmad BR. Insect growth regulators for insect pest control. Int J Curr Microbiol App Sci. 2019;8(12):208-18. https://doi.org/10.20546/ijcmas.2019.812.030
Das G, Joarder J, Khan MAM. Efficacy of chitin synthesis inhibitors in arresting growth and development of Okra Jassid, Amrasca Biguttula Biguttula (Ishida). Sustainability in Food and Agriculture (SFNA). 2021;2(2):64-68. https://doi.org/10.26480/sfna.02.2021.64.68
Cohen E. Chitin synthesis and inhibition: a revisit. Pest Manag Sci. 2001;57(10):946-50. https://doi.org/10.1002/ps.363
Yankanchi SR, Gadache AH. Grain protectant efficacy of certain plant extracts against rice weevil, Sitophilus oryzae L. (Coleoptera: Curculionidae). Journal of Biopesticides. 2010;3(2):511-13. https://doi.org/10.57182/jbiopestic.3.2.511-513
Sláma K. Insect hormones: more than 50-years after the discovery of insect juvenile hormone analogues (JHA, juvenoids). Terr Arthropod Rev. 2013;6(4):257-333. https://doi.org/10.1163/18749836-06041073
Chaubey MK. Role of phytoecdysteroids in insect pest management: a review. Journal of Agronomy. 2018;17(1):1-10. https://doi.org/10.3923/ja.2018.1.10
Ezzat SM, Jeevanandam J, Egbuna C, Merghany RM, Akram M, Daniyal M, et al. Semiochemicals: A green approach to pest and disease control. In: Natural Remedies for Pest, Disease and Weed Control. Elsevier; 2020. p. 81-89. https://doi.org/10.1016/B978-0-12-819304-4.00007-5
Darshanee HLC, Ren H, Ahmed N, Zhang ZF, Liu YH, Liu TX. Volatile-mediated attraction of greenhouse whitefly Trialeurodes vaporariorum to tomato and eggplant. Front Plant Sci. 2017;8:1285. https://doi.org/10.3389/fpls.2017.01285
Dar SA, Wani SH, Mir SH, Showkat A, Dolkar T, Dawa T. Biopesticides: mode of action, efficacy and scope in pest management. Journal of Advanced Research in Biochemistry and Pharmacology. 2021;4(1):1-8.
Witzgall P, Kirsch P, Cork A. Sex pheromones and their impact on pest management. J Chem Ecol. 2010;36:80-100. https://doi.org/10.1007/s10886-009-9737-y
Reddy GVP, Guerrero A. New pheromones and insect control strategies. Vitam Horm. 2010;83:493-519. https://doi.org/10.1016/S0083-6729(10)83020-1
Constantinescu-Aruxandei D, Lupu C, Oancea F. Siliceous natural nanomaterials as biorationals—plant protectants and plant health strengtheners. Agronomy. 2020;10(11):1791. https://doi.org/10.3390/agronomy10111791
Suganthy M, Sowmiya A, Yuvaraj M, Anitha R. Silicon- a potential alternative in insect pest management for sustainable agriculture. Silicon. 2023;1-24.
Sankari SA, Narayanasamy P. Bio-efficacy of flyash-based herbal pesticides against pests of rice and vegetables. Curr Sci. 2007;811-16.
Bagchi SS, Jadhan RT. Pesticide dusting powder formulation using flyash-A cost effective innovation. Indian Journal of Environmental Protection. 2006;26(11):1019.
Bakhat HF, Bibi N, Hammad HM, Shah GM, Abbas S, Rafique HM, et al. Effect of silicon fertilization on eggplant growth and insect population dynamics. Silicon. 2023;15(8):3515-23. https://doi.org/10.1007/s12633-022-02279-1
Hariani OS. Effect of using rice husk ash on the growth of chili (Capsicum annuum L.). Contributions of Central Research Institute for Agriculture. 2023;17(2):52-57. https://doi.org/10.35335/cceria.v17i2.75
Vinutha JS, Bhagat D, Bakthavatsalam N. Nanotechnology in the management of polyphagous pest Helicoverpa armigera. J Acad Indus Res. 2013;1(10):606-08.
Fabiyi OA, Alabi RO, Ansari RA. Nanoparticles’ synthesis and their application in the management of phytonematodes: An overview. Management of Phytonematodes: Recent Advances and Future Challenges. 2020;125-40. https://doi.org/10.1007/978-981-15-4087-5_6
Singh M, Manikandan S, Kumaraguru AK. Nanoparticles: a new technology with wide applications. Research Journal of Nanoscience and Nanotechnology. 2011;1(1):1-11. https://doi.org/10.3923/rjnn.2011.1.11
Riseh RS, Hassanisaadi M, Vatankhah M, Soroush F, Varma RS. Nano/microencapsulation of plant biocontrol agents by chitosan, alginate and other important biopolymers as a novel strategy for alleviating plant biotic stresses. Int J Biol Macromol. 2022;
Sobral MCM, Martins IM, Sobral AJFN. Role of chitosan and chitosan-based nanoparticles against heavy metal stress in plants. In: Role of Chitosan and Chitosan-Based Nanomaterials in Plant Sciences. Elsevier; 2022. p. 273-96. https://doi.org/10.1016/B978-0-323-85391-0.00011-3
Shahid M, Naeem-Ullah U, Khan WS, Saeed S, Razzaq K. Biocidal activity of green synthesized silver nanoformulation by Azadirachta indica extract a biorational approach against notorious cotton pest whitefly, Bemisia tabaci (Homoptera; Aleyrodidae). Int J Trop Insect Sci. 2022;42(3):2443-54. https://doi.org/10.1007/s42690-022-00771-0
Kantrao S, Ravindra MA, Akbar SMD, Jayanthi PDK, Venkataraman A. Effect of biosynthesized silver nanoparticles on growth and development of Helicoverpa armigera (Lepidoptera: Noctuidae): Interaction with midgut protease. J Asia Pac Entomol. 2017;20(2):583-89. https://doi.org/10.1016/j.aspen.2017.03.018
Kamaraj C, Gandhi PR, Elango G, Karthi S, Chung IM, Rajakumar G. Novel and environmental friendly approach; impact of neem (Azadirachta indica) gum nano formulation (NGNF) on Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.). Int J Biol Macromol. 2018;107:59-69. https://doi.org/10.1016/j.ijbiomac.2017.08.145
El-Wahab A, El-Bendary HM. Nano silica as a promising nano pesticide to control three different aphid species under semi-field conditions in Egypt. Egyptian Academic Journal of Biological Sciences, F Toxicology and Pest Control. 2016;8(2):35-49. https://doi.org/10.21608/eajbsf.2016.17117
Khoshraftar Z, Safekordi AA, Shamel A, Zaefizadeh M. Synthesis of natural nanopesticides with the origin of Eucalyptus globulus extract for pest control. Green Chem Lett Rev. 2019;12(3):286-98. https://doi.org/10.1080/17518253.2019.1643930
Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. Journal of Controlled Release. 2019;294:131-53. https://doi.org/10.1016/j.jconrel.2018.12.012
Sabbour MM, Singer SM. Observations of the effect of two isolated nano Bacillus thuringiensis on Tuta absoluta infestation under laboratory and field condition. Res J Pharm Biol Chem Sci. 2016;7(2):1891-97.
Zheng Y, You S, Ji C, Yin M, Yang W, Shen J. Development of an amino acid-functionalized fluorescent nanocarrier to deliver a toxin to kill insect pests. Advanced Materials. 2016;28(7):1375-80. https://doi.org/10.1002/adma.201504993
de Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv. 2014;32(8):1550-61. https://doi.org/10.1016/j.biotechadv.2014.10.010
Zhang D, Zhang Z, Unver T, Zhang B. CRISPR/Cas: A powerful tool for gene function study and crop improvement. J Adv Res. 2021;29:207-21. https://doi.org/10.1016/j.jare.2020.10.003
Palli SR. RNA interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide. Curr Opin Insect Sci. 2014;6:1-8. https://doi.org/10.1016/j.cois.2014.09.011
Yu X, Liu Z, Huang S, Chen Z, Sun Y, Duan P, et al. RNAi-mediated plant protection against aphids. Pest Manag Sci. 2016;72(6):1090-98. https://doi.org/10.1002/ps.4258
Chen IW, Grebenok RJ, Zhao C, He L, Lei J, Ji R, et al. RNAi-mediated plant sterol modification to control insect herbivore pests: insights from Arabidopsis and the diamondback moth. J Pest Sci. 2024;97(2):725-37. https://doi.org/10.1007/s10340-023-01651-3
Ali SR, Lucas-Herald A, Bryce J, Ahmed SF. The role of international databases in understanding the aetiology and consequences of differences/disorders of sex development. Int J Mol Sci. 2019;20(18):4405. https://doi.org/10.3390/ijms20184405
Mohite PA, Khan SAR. Field evaluation of certain chemicals and biopesticides against pod borer, Helicoverpa armigera (Hubner) in Chickpea: An experimental research. Research Highlights in Agricultural Sciences. 2022;6:45-54. https://doi.org/10.9734/bpi/rhas/v6/4408A
El Husseini MM. Pathogenicity of nuclear polyhedrosis virus to Galleria mellonella L. (Lepidoptera: Pyralidae) and its control on stored beeswax foundations. Egypt J Biol Pest Control. 2020;30(1):101. https://doi.org/10.1186/s41938-020-00302-4
Singh KI, Debbarma A, Singh HR. Field efficacy of certain microbial insecticides against Plutella xylostella Linnaeus and Pieris brassicae Linnaeus under cabbage-crop-ecosystem of Manipur. Journal of Biological Control. 2015;194-202. https://doi.org/10.18641/jbc/29/4/94913
Gao G, Sai L. Towards a ‘virtual’world: Social isolation and struggles during the COVID-19 pandemic as single women living alone. Gend Work Organ. 2020;27(5):754-62. https://doi.org/10.1111/gwao.12468
Vijaykumar L, Anusha SB, Ashwini SB, Divya B. Bio-efficacy of Beauveria bassiana against gram pod borer, Helicoverpa armigera Hubner (Noctuidae: Lepidoptera) in chickpea. J Pharmacogn Phytochem. 2022;11(2):197-201.
Ali K, Wakil W, Zia K, Sahi ST. Control of Earias vittella (Lepidoptera: Noctuidae) by Beauveria bassiana along with Bacillus thuringiensis. Int J Agric Biol. 2015;17(4). https://doi.org/10.17957/IJAB/14.0009
Fallet P, Bazagwira D, Guenat JM, Bustos-Segura C, Karangwa P, Mukundwa IP, et al. Laboratory and field trials reveal the potential of a gel formulation of entomopathogenic nematodes for the biological control of fall armyworm caterpillars (Spodoptera frugiperda). Biological Control. 2022;176:105086. https://doi.org/10.1016/j.biocontrol.2022.105086
Toepfer S, Hatala-Zseller I, Ehlers RU, Peters A, Kuhlmann U. The effect of application techniques on field-scale efficacy: can the use of entomopathogenic nematodes reduce damage by western corn rootworm larvae? 2010; https://doi.org/10.1111/j.1461-9563.2010.00487.x
Gafar BB, Yadav U, Mushinamwar DR, Chavan SR. Efficacy of certain biopesticides and chemicals against gram pod borer [Helicoverpa armigera (Hubner)] on chickpea (Cicer arietinum L). International Journal of Advanced Biochemistry Research. 2024;8(5):339-42. https://doi.org/10.33545/26174693.2024.v8.i5d.1104
Upadhyay RR, Singh PS, Singh SK. Comparative efficacy and economics of certain insecticides against gram pod borer, Helicoverpa armigera (Hübner) in chickpea. Int J Plant Prot. 2020;48(4):403-10.
Chitralekha YGS, Verma T. Efficacy of insecticides against Helicoverpa armigera on chickpea. J Entomol Zool Stud. 2018;6(3):1058-61.
Abbas A, Wang Y, Muhammad U, Fatima A. Efficacy of different insecticides against gram pod borer (Helicoverpa armigera) and their safety to the beneficial fauna. Int J Biosci. 2021;18:82-88.
Golvankar GM, Desai VS, Dhobe NS. Management of chickpea pod borer, Helicoverpa armigera Hubner by using microbial pesticides and botanicals. Trends Biosci. 2015;8(4):887-90.
Meena RK, Naqui AR, Meena DS, Shibbhagvan S. Evaluation of bio-pesticides and indoxacarb against gram pod borer on chickpea. J Entomol Zool Stud. 2018;6(2):2208-12.
Archana HR, Darshan K, Lakshmi MA, Ghoshal T, Bashayal BM, Aggarwal R. Biopesticides: A key player in agro-environmental sustainability. In: Trends of Applied Microbiology for Sustainable Economy. Elsevier; 2022. p. 613-53. https://doi.org/10.1016/B978-0-323-91595-3.00021-5
Sezen K, Demir Ý, Demirba? Z. Identification and pathogenicity of entomopathogenic bacteria from common cockchafer, Melolontha melolontha (Coleoptera: Scarabaeidae). N Z J Crop Hortic Sci. 2007;35(1):79-85. https://doi.org/10.1080/01140670709510171
Legwaila MM, Munthali DC, Kwerepe BC, Obopile M. Efficacy of Bacillus thuringiensis (var. kurstaki) against diamondback moth (Plutella xylostella L.) eggs and larvae on cabbage under semi-controlled greenhouse conditions. Int J Insect Sci. 2015;7:IJIS-S23637. https://doi.org/10.4137/IJIS.S23637
Cordova-Kreylos AL, Fernandez LE, Koivunen M, Yang A, Flor-Weiler L, Marrone PG. Isolation and characterization of Burkholderia rinojensis sp. nov., a non-Burkholderia cepacia complex soil bacterium with insecticidal and miticidal activities. Appl Environ Microbiol. 2013;79(24):7669-78. https://doi.org/10.1128/AEM.02365-13
Kil YJ, Seo MJ, Kang DK, Oh SN, Cho HS, Youn YN, et al. Effects of Enterobacteria (Burkholderia spp.) on development of Riptortus pedestris. 2014; https://doi.org/10.5109/1434382
Kaur T, Vasudev A, Sohal SK, Manhas RK. Insecticidal and growth inhibitory potential of Streptomyces hydrogenans DH16 on major pest of India, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). BMC Microbiol. 2014;14:1-9. https://doi.org/10.1186/s12866-014-0227-1
Nishi O, Sushida H, Higashi Y, Iida Y. Epiphytic and endophytic colonisation of tomato plants by the entomopathogenic fungus Beauveria bassiana strain GHA. Mycology. 2021;12(1):39-47. https://doi.org/10.1080/21501203.2019.1707723
Wakil W, Kavallieratos NG, Ghazanfar MU, Usman M, Habib A, El-Shafie HAF. Efficacy of different entomopathogenic fungal isolates against four key stored-grain beetle species. J Stored Prod Res. 2021;93:101845. https://doi.org/10.1016/j.jspr.2021.101845
Mathur A, Singh S, Singh NP, Meena M. Field evaluation of plant products and microbial formulations against brinjal shoot and fruit borer, Leucinodes orbonalis Guenee under semi-arid conditions of Rajasthan. Journal of Biopesticides. 2012;5(1):71. https://doi.org/10.57182/jbiopestic.5.1.71-74
Chelvi CT, Thilagaraj WR, Nalini R. Field efficacy of formulations of microbial insecticide Metarhizium anisopliae (Hyphocreales: Clavicipitaceae) for the control of sugarcane white grub Holotrichia serrata F (Coleoptera: Scarabidae). Journal of Biopesticides. 2011;4(2):186. https://doi.org/10.57182/jbiopestic.4.2.186-189
Ujjan AA, Shahzad S. Use of entomopathogenic fungi for the control of mustard aphid (Lipaphis erysimi) on canola (Brassica napus L.). Pak J Bot. 2012;44(6):2081-86.
Putnoky-Csicsó B, Tonk S, Szabó A, Márton Z, Tóthné Bogdányi F, Tóth F, et al. Effectiveness of the entomopathogenic fungal species Metarhizium anisopliae strain NCAIM 362 treatments against soil inhabiting Melolontha melolontha larvae in sweet potato (Ipomoea batatas L.). Journal of Fungi. 2020;6(3):116. https://doi.org/10.3390/jof6030116
Mariam GH, Hala H, Elsherbiny EA, Nofal AM. Efficacy of entomopathogenic fungi Metarhizium anisopliae and Cladosporium cladosporioides as biocontrol agents against two tetranychid mites (Acari: Tetranychidae). Egypt J Biol Pest Control. 2016;26(2).
Maqsood S, Afzal M, Aqueel MA, Raza ABM, Wakil W, Babar MH. Efficacy of nuclear polyhedrosis virus and flubendiamide alone and in combination against Spodoptera litura F. Pak J Zool. 2017;49(5). https://doi.org/10.17582/journal.pjz/2017.49.5.1783.1788
Nawaz A, Ali H, Sufyan M, Gogi MD, Arif MJ, Ranjha MH, et al. Comparative bio-efficacy of nuclear polyhedrosis virus (NPV) and spinosad against American bollworm, Helicoverpa armigera (Hubner). Rev Bras Entomol. 2020; 63:277-82. https://doi.org/10.1016/j.rbe.2019.09.001
Kour R, Gupta RK, Hussain B, Kour S. Synergistic effect of naturally occurring granulosis virus isolates (PbGV) with phagostimulants against the cabbage butterfly, Pieris brassicae (L.) for its eco-friendly management. Egypt J Biol Pest Control. 2022;32(1):5. https://doi.org/10.1186/s41938-022-00502-0
Saravanan G. Plants and phytochemical activity as botanical pesticides for sustainable agricultural crop production in India- Mini review. J Agric Food Res. 2022;9:100345. https://doi.org/10.1016/j.jafr.2022.100345
Ngegba PM, Cui G, Khalid MZ, Zhong G. Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture. 2022;12(600). https://doi.org/10.3390/agriculture12050600
Divekar P. Botanical pesticides: An eco-friendly approach for management of insect pests. Acta Scientific Agriculture (ISSN: 2581-365X). 2023;7(2). https://doi.org/10.31080/ASAG.2023.07.1236
Jayanthi PD K, Aurade RM, Kempraj V, Chakravarthy AK, Verghese A. Glimpses of semiochemical research applications in Indian horticulture: Present status and future perspectives. New Horizons in Insect Science: Towards Sustainable Pest Management. 2015;239-57. https://doi.org/10.1007/978-81-322-2089-3_22
Sharma A, Raina R, Kapoor R, Thakur KS. Eco-friendly management of tobacco caterpillar with pheromone traps and Bacillus thuringiensis var. kurstaki in Chamba district of Himachal Pradesh, India. Journal of Entomological Research. 2020;44(4):523-28. https://doi.org/10.5958/0974-4576.2020.00088.2
Soti A, Regmi R, Shrestha AK, Thapa RB. Effect of net house on tomato leaf miner (Tuta absoluta) (Meyrick) (Lepidoptera: Gelechiidae) population in tomato cultivated in Chitwan, Nepal. Turkish Journal of Agriculture-Food Science and Technology. 2020;8(11):2368-71. https://doi.org/10.24925/turjaf.v8i11.2368-2371.3608
Mitchell ER. Disruption of pheromonal communication among coexistent pest insects with multichemical formulations. Bioscience. 1975;25(8):493-99. https://doi.org/10.2307/1296961
Sohrab WH, Prasad CS. Investigation on level of infestation and management of cucurbit fruit fly, Bactrocera cucurbitae (Coquillett) in different cucurbit crops. International Journal of Pure Applied Bioscience SPI. 2018;6(1):184-96. https://doi.org/10.18782/2320-7051.1124
Downloads
Published
Versions
- 18-11-2024 (2)
- 11-11-2024 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 Varshini A C Priya , M Suganthy, A Sowmiya, G Preetha, P Janaki, E Parameswari, R Krishnan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).