Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Exploring root system architecture and its importance in solanaceous vegetables: A review

DOI
https://doi.org/10.14719/pst.4878
Submitted
30 August 2024
Published
21-12-2024
Versions

Abstract

The root system architecture (RSA) in solanaceous vegetables has become an exciting area of research, uncovering complex networks essential for plant development, nutrient absorption, and resistance. This review delves into the comprehensive scope of research surrounding roots, shedding light on their dynamic nature and implications for agricultural practices. The Solanaceae family comprises of various vegetables, including tomatoes, potatoes, peppers, and eggplants, each with distinct root systems. Innovative methodologies have uncovered the complex and adaptive nature of these root systems. Roots of solanaceous vegetables have plasticity, reflecting their capacity to adjust to soil conditions, nutrient availability, and stressors. From the taproot structures in potatoes to the fibrous nature of tomato roots, this review synthesizes findings to elucidate the mechanisms behind root development and responses to environmental stimuli. Furthermore, the symbiotic associations between solanaceous crop roots and soil microorganisms have attracted significant interest. Understanding the intricate interactions between root exudates, microbial communities, and nutrient cycling opens avenues for sustainable agriculture, emphasizing the role of root architecture in fostering beneficial soil ecosystems. The implications of many research studies on RSA extend beyond academic interest and play a role in improving crop productivity. Understanding root system architecture enables breeders and agronomists to create cultivars with superior root characteristics, hence enhancing crop output, water-use efficiency, and resilience to abiotic challenges. Nonetheless, certain gaps persist, requiring additional investigation. A deeper investigation into the molecular mechanisms governing root development in solanaceous vegetables, particularly under changing climate scenarios is important for future research.

References

  1. Lynch J. Root architecture and plant productivity. Plant Physiol. 1995;109(1):7-13. https://doi.org/10.1104/pp.109.1.7
  2. Kano M, Inukai Y, Kitano H, Yamauchi A. Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice. Plant Soil. 2011;342:117-28. https://doi.org/10.1007/s11104-010-0675-9
  3. Grossman JD, Rice KJ. Evolution of root plasticity responses to variation in soil nutrient distribution and concentration. Evol Appl. 2012;5(8):850-57. https://doi.org/10.1111/j.1752-4571.2012.00263.x
  4. Paez-Garcia A, Motes CM, Scheible WR, Chen R, Blancaflor EB, Monteros MJ. Root traits and phenotyping strategies for plant improvement. Plants (Basel). 2015;4(2):334-55. https://doi.org/10.3390/plants4020334
  5. Bao Y, Aggarwal P, Robbins NE, Sturrock CJ, Thompson MC, Tan HQ, et al. Plant roots use a patterning mechanism to position lateral root branches toward available water. Proc Natl Acad Sci U S A. 2014;111(25):9319-24. https://doi.org/10.1073/pnas.1400966111
  6. Robbins NE, Dinneny JR. The divining root: moisture-driven responses of roots at the micro-and macro-scale. J Exp Bot. 2015;66(8):2145-54. https://doi.org/10.1093/jxb/eru496
  7. Ioannou N. Integrating soil solarization with grafting on resistant rootstocks for management of soil-borne pathogens of eggplant. J Hortic Sci Biotechnol. 2001;76(4):396-401. https://doi.org/10.1080/14620316.2001.11511383
  8. King SR, Davis AR, Zhang X, Crosby K. Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Sci Hortic. 2010;127(2):106-11. https://doi.org/10.1016/j.scienta.2010.08.001
  9. Mahmoud AMA. Grafting as a tool to improve TYLCV-tolerance in tomato. J Hort Sci and Ornamen Plants. 2014;6(3):109-15.
  10. Spanò R, Ferrara M, Montemurro C, Mulè G, Gallitelli D, Mascia T. Grafting alters tomato transcriptome and enhances tolerance to an airborne virus infection. Sci Rep. 2020; 2538. https://doi.org/10.1038/s41598-020-59421-5
  11. Smith J, Saravanakumar D. Development of resistance in tomato plants grafted onto Solanum torvum against bacterial wilt disease. J Plant Dis Prot. 2022;129:1389-99. https://doi.org/10.1007/s41348-022-00650-3
  12. Giehl RFH, Gruber BD, Von Wirén N. It’s time to make changes: modulation of root system architecture by nutrient signals. J Exp Bot. 2014;65(3):769-78. https://doi.org/10.1093/jxb/ert421
  13. Lamers J, Van Der Meer T, Testerink C. How plants sense and respond to stressful environments. Plant Physiol. 2020;182(4):1624-35. https://doi.org/10.1104/pp.19.01464
  14. Guan W, Hallet S. Vegetable Grafting Techniques for tomato grafting [Internet]. Purdue University. 2016. Available from: https://extension.purdue.edu/extmedia/HO/HO-260-W.pdf
  15. Gandullo J, Ahmad S, Darwish E, Karlova R, Testerink C. Phenotyping tomato root developmental plasticity in response to salinity in soil rhizotrons. Plant Phenomics. 2021;2021:2760532. https://doi.org/10.34133/2021/2760532
  16. Oda M, Maruyama M, Mori G. Water transfer at graft union of tomato plants grafted on to Solanum rootstocks. J Japan Soc Hort Sci. 2005;74(6):458-63. https://doi.org/10.2503/jjshs.74.458
  17. Petran AJ. Interspecific grafting of tomato (Solanum lycopersicum) onto wild eggplant (Solanum torvum) for increased environmental tolerances. M.S. [Dissertation], Minnesota: University of Minnesota; 2013. Available from: https://conservancy.umn.edu/items/189e4e3a-1fa9-48e8-af38-19e7cce741db
  18. Kumbhar S, Narayanankutty C, Kurian PS, Sreelatha U, Barik S. Evaluation of eggplant rootstocks for grafting eggplant to improve fruit yield and control bacterial wilt disease. Eur J Plant Pathol. 2021;161:73-90. https://doi.org/ 10.1007/s10658-021-02305-9
  19. Gregory PJ. Roots, rhizosphere and soil: The route to a better understanding of soil science?. Eur J Soil Sci. 2006;57(1):2-12. https://doi.org/10.1111/j.1365-2389.2005.00778.x
  20. Ruta N, Liedgens M, Fracheboud Y, Stamp P, Hund A. QTLs for the elongation of axile and lateral roots of maize in response to low water potential. Theor Appl Genet. 2010;120:621-31. https://doi.org/10.1007/s00122-009-1180-5
  21. Richardson AE, Hocking PJ, Simpson RJ, George TS. Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Sci. 2009;60(2):124-43. https://doi.org/10.1071/CP07125
  22. Rogers ED, Benfey PN. Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotechnol. 2015;32:93-98. https://doi.org/10.1016/j.copbio.2014.11.015
  23. Burridge JD, Jochua CN, Bucksch A, Lynch JP. Legume shovelomics: high-throughput phenotyping of commonbean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp, unguiculata) root architecture in the field. Field Crops Res. 2016;192:21-32. https://doi.org/10.1016/j.fcr.2016.04.008
  24. Burridge JD, Rangarajan H, Lynch JP. Comparative phenomics of annual grain legume root architecture. Crop Sci. 2020;60(5):2574-93. https://doi.org/10.1002/csc2.20241
  25. Lynch JP. Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture. New Phytol. 2019;223(2):554-64. https://doi.org/10.1111/nph.15738
  26. Ramesha GK, Naveen Leno, Radhika NS. Linking root phenomics, nutrient acquisition and utilisation in Amaranthus with thermochemical organic fertilizer from biowaste. Rhizosphere. 2021;20:100426. https://doi.org/10.1016/j.rhisph.2021.100426
  27. Colla G, Rouphael Y, Leonardi C, Bie Z. Role of grafting in vegetable crops grown under saline conditions. Sci Hortic. 2010;127(2):147-55. https://doi.org/10.1016/j.scienta.2010.08.004
  28. Dinneny JR. Developmental responses to water and salinity in root systems. Annu Rev Cell Dev Biol. 2019;35:239-57. https://doi.org/10.1146/annurev-cellbio-100617-062949
  29. Ma L, Shi Y, Siemianowski O, Yuan B, Egner TK, Mirnezami SV, et al. Hydrogel-based transparent soils for root phenotyping in vivo. Proc Natl Acad Sci USA. 2019;116(22):11063-68. https://doi.org/10.1073/pnas.1820334116
  30. Takahashi H, Pradal C. Root phenotyping: important and minimum information required for root modeling in crop plants. Breed Sci. 2021;71(1):109-16. https://doi.org/10.1270/jsbbs.20126
  31. Canales FJ, Nagel KA, Müller C, Rispail N, Prats E. Deciphering root architectural traits involved to cope with water deficit in Oat. Front Plant Sci. 2019;10:1558. https://doi.org/10.3389/fpls.2019.01558
  32. Schroth G, Kolbe D. A method of processing soil core samples for root studies by subsampling. Biol Fertil Soils. 1994;18:60-62. https://doi.org/10.1007/BF00336446
  33. Kuijken RCP, Snel JFH, Heddes MM, Bouwmeester HJ, Marcelis LFM. The importance of a sterile rhizosphere when phenotyping for root exudation. Plant Soil. 2015;387:131-42. https://doi.org/10.1007/s11104-014-2283-6
  34. Khapte PS, Jansirani P, Saraswathi T. Heterosis in oblong fruited Tomato (Solanum lycopersicum) hybrids for growth and yield traits. Indian J Agric Sci. 2019;89(10):1594-98. https://doi.org/10.56093/ijas.v89i10.94584
  35. Kumar P, Rouphael Y, Cardarelli M, Colla G. Vegetable grafting as a tool to improve drought resistance and water use efficiency. Front Plant Sci. 2017;8:1130. https://doi.org/10.3389/fpls.2017.01130
  36. Dharmateja P, Kumar M, Pandey R, Mandal PK, Babu P, Bainsla NK, et al. Deciphering the change in root system architectural traits under limiting and non-limiting phosphorus in Indian bread wheat germplasm. PLoS One. 2021;16(10):e0255840. https://doi.org/10.1371/journal.pone.0255840
  37. Lavania S. Vetiver root system: search for the ideotype. In: Proceedings of 3rd International Conference on Vetiver. 2008 Oct 6-9; Guangzhou, China; 2008. p. 495-99. Available from: https://www.vetiver.org/TVN_ICV3_proceedings.htm
  38. Patel DS, Bardhan K, Patel DP , Parekh V, Jena S, Narwade AV, et al. Does plant root architecture respond to potassium under water stress? A case from rice seedling root responses. Curr Sci. 2021;120(6):1050-56. https://doi.org/10.18520/cs/v120/i6/1050-1056
  39. Khan MA, Dorcus CG, Villordon A. Root System Architecture and Abiotic Stress Tolerance: Current Knowledge in Root and Tuber Crops. Frontiers in Plant Science. 2017; 7. https://doi.org/10.3389/fpls.2016.01584
  40. Le Bot J, Serra V, Fabre J, Draye X, Adamowicz S, Pages L. DART: A software to analyse root system architecture and development from captured images. Plant Soil. 2010;326:261-73. https://doi.org/10.1007/s11104-009-0005-2
  41. Burton AL, Williams M, Lynch JP, Brown KM. RootScan: Software for high-throughput analysis of root anatomical traits. Plant Soil. 2012;357(1-2):189-203. https://doi.org/10.1007/s11104-012-1138-2
  42. Mairhofer S, Zappala S, Tracy SR, Sturrock C, Bennett M, Mooney SJ, et al. RooTrak: Automated recovery of three-dimensional plant root architecture in soil from x-ray microcomputed tomography images using visual tracking. Plant Physiol. 2012;158(2):561-69. https://doi.org/10.1104/pp.111.186221
  43. Galkovskyi T, Mileyko Y, Bucksch A, Moore B, Symonova O, Price CA, et al. GiA Roots: software for the high throughput analysis of plant root system architecture. BMC Plant Biol. 2012;12:116. https://doi.org/10.1186/1471-2229-12-116
  44. Pound MP, French AP, Atkinson JA, Wells DM, Bennett MJ, Pridmore T. RootNav: Navigating images of complex root architectures. Plant Physiol. 2013;162(4):1802-14. https://doi.org/10.1104/pp.113.221531
  45. Pierret A, Gonkhamdee S, Jourdan C, Maeght JL. IJ_Rhizo: An open-source software to measure scanned images of root samples. Plant Soil. 2013;373:531-39. https://doi.org/10.1007/s11104-013-1795-9
  46. Clark RT, Famoso AN, Zhao K, Shaff JE, Craft EJ, Bustamante CD, et al. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ. 2013;36(2):454-66. https://doi.org/10.1111/j.1365-3040.2012.02587.x
  47. Leitner D, Felderer B, Vontobel P, Schnepf A. Recovering root system traits using image analysis exemplified by two-dimensional neutron radiography images of lupine. Plant Physiol. 2014;164(1):24-35. https://doi.org/10.1104/pp.113.227892
  48. Clark RT, MacCurdy RB, Jung JK, Shaff JE, McCouch SR, Aneshansley DJ, et al. Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol. 2011;156(2):455-65. https://doi.org/10.1104/pp.110.169102
  49. Flores FB, Sanchez-Bel P, Estañ MT, Martinez-Rodriguez MM, Moyano E, Morales B, et al. The effectiveness of grafting to improve tomato fruit quality. Sci Hortic. 2010;125(3):211-17. https://doi.org/10.1016/j.scienta.2010.03.026
  50. Semiz GD, Suarez DL. Tomato salt tolerance: impact of grafting and water composition on yield and ion relations. Turk J Agric For. 2015;39(6):876-86. https://doi.org/10.3906/tar-1412-106
  51. Singh H, Kumar P, Chaudhari S, Edelstein M. Tomato grafting: A global perspective. HortScience. 2017;52(10):1328-36. https://doi.org/10.21273/HORTSCI11996-17
  52. Sanwal SK, Mann A, Kumar A, Kesh H, Kaur G, Rai AK, et al. Salt tolerant eggplant rootstocks modulate sodium partitioning in tomato scion and improve performance under saline conditions. Agriculture. 2022;12(2):183. https://doi.org/10.3390/agriculture12020183
  53. York LM, Lobet G. Phenomics of root system architecture: measuring and analyzing root phenes. Plant Cell. 2017;29(9):1-7. https://doi.org/10.1105/tpc.117.tt0917.
  54. Koevoets IT, Venema JH, Elzenga JTM, Testerink C. Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front Plant Sci. 2016;7:1335. https://doi.org/10.3389/fpls.2016.01335
  55. Cheeseman, JM. The evolution of halophytes, glycophytes and crops and its implications for food security under saline conditions. New Phytol. 2015;206(2):557-70. https://doi.org/10.1111/nph.13217
  56. Kirchgesser J, Hazarika M, Bachmann-Pfabe S,Dehmer KJ, Kavka M, Uptmoor R. Phenotypic variation of root-system architecture under high P and low P conditions in potato (Solanum tuberosum L.). BMC Plant Biol. 2023;23:68. https://doi.org/10.1186/s12870-023-04070-9
  57. Yousefi F, Soltani F, Lalehparvar AR, Stevens R. Genetic diversity of eggplant (Solanum melongena L.) accessions based on morpho-physiological characteristics and root system architecture traits. J Agric Sci Technol. 2024;26(2):387-401.
  58. Alaguero-Cordovilla A, Gran-Gómez FJ, Tormos-Moltó S, Pérez-Pérez JM. Morphological characterization of root system architecture in diverse tomato genotypes during early growth. Int J Mol Sci. 2018;19(12): 3888. https://doi.org/10.3390/ijms19123888
  59. Bui HH, Serra V, Pagès L. Root system development and architecture in various genotypes of the solanaceae family. Botany. 2015;93(8):465-474. https://doi.org/10.1139/cjb-2015-0008
  60. Salinier J, Daunay MC, Talmot V, Lecarpentier C, Pagès L, Bardel A, et al. Root architectural trait diversity in aubergine (Solanum melongena L.) and related species and correlations with plant biomass. Crop Breed Genet Genom. 2019;1:e190011. https://doi.org/10.20900/cbgg20190011
  61. Santoro V, Schiavon M, Gresta F, Ertani A, Cardinale F, Sturrock CJ, et al. Strigolactones control root system architecture and tip anatomy in Solanum lycopersicum L. plants under P starvation. Plants (Basel). 2020;9(5):612. https://doi.org/10.3390/plants9050612
  62. Zinta R, Tiwari JK, Buckseth T, Thakur K, Goutam U, Kumar D, et al. Root system architecture for abiotic stress tolerance in potato: lessons from plants. Front Plant Sci. 2022;13:926214. https://doi.org/10.3389/fpls.2022.926214
  63. Miyazaki K. Root system architecture and its relationship to the vegetative reproduction function in horsenettle (Solanum carolinense). Weed Biol Manag. 2008;8(2):97-103. https://doi.org/10.1111/j.1445-6664.2008.00281.x
  64. Tracy SR, Black CR, Roberts JA, Sturrock C, Mairhofer S, Craigon J, et al. Quantifying the impact of soil compaction on root system architecture in tomato (Solanum lycopersicum) by X-ray micro-computed tomography. Ann Bot. 2012;110(2):511-19. https://doi.org/10.1093/aob/mcs031

Downloads

Download data is not yet available.